JPH02208211A - Production of fine silicon nitride powder - Google Patents
Production of fine silicon nitride powderInfo
- Publication number
- JPH02208211A JPH02208211A JP2767889A JP2767889A JPH02208211A JP H02208211 A JPH02208211 A JP H02208211A JP 2767889 A JP2767889 A JP 2767889A JP 2767889 A JP2767889 A JP 2767889A JP H02208211 A JPH02208211 A JP H02208211A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- powder
- mixed gas
- pulverization
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052581 Si3N4 Inorganic materials 0.000 title claims abstract description 41
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 239000000843 powder Substances 0.000 title claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000007789 gas Substances 0.000 claims abstract description 20
- 238000010298 pulverizing process Methods 0.000 claims abstract description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 16
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 8
- 239000011261 inert gas Substances 0.000 claims abstract description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 239000004215 Carbon black (E152) Substances 0.000 abstract description 6
- 239000013078 crystal Substances 0.000 abstract description 6
- 229930195733 hydrocarbon Natural products 0.000 abstract description 6
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 6
- 238000011109 contamination Methods 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 11
- 238000000227 grinding Methods 0.000 description 8
- 239000011164 primary particle Substances 0.000 description 7
- 239000002243 precursor Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は窒化ケイ素微粉末の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing fine silicon nitride powder.
従来、窒化ケイ素粉末は、例えば以下のような方法によ
り製造されている。すなわち、■シリカ粉末を、NI(
3ガス中、又はNH3とC0H,(炭化水素)との混合
ガス中、800〜1600℃で加熱処理することにより
窒化ケイ素粉末を製造する方法、
■シリカ粉末に種子粒子として窒化ケイ素、炭化ケイ素
、酸窒化ケイ素又は金属ケイ素のうち少なくとも1種を
混合した粉末を、NH,ガス中、又はNH3とCff1
H,(炭化水素)との混合ガス中、800〜1600℃
で加熱処理することにより窒化ケイ素粉末を製造する方
法(例えば特開昭83162516号)、が知られてい
る。Conventionally, silicon nitride powder has been produced, for example, by the following method. That is, ■silica powder is mixed with NI(
3. A method for producing silicon nitride powder by heat treatment at 800 to 1600°C in a gas or a mixed gas of NH3 and COH (hydrocarbon). ■ Silicon nitride, silicon carbide, as seed particles in silica powder, A powder containing at least one of silicon oxynitride or silicon metal is mixed in NH, gas, or NH3 and Cff1.
800-1600℃ in mixed gas with H, (hydrocarbon)
A method of manufacturing silicon nitride powder by heat treatment with a method (for example, Japanese Patent Application Laid-Open No. 83162516) is known.
前述した■の方法では、生成する窒化ケイ素粉末の一次
粒子径は2〜10卯と相当大きくなる。このため、この
窒化ケイ素粉末を焼結する際、焼結性が低く、緻密な窒
化ケイ素焼結体を得ることが困難となる。これらの点を
改善するために、窒化ケイ素粉末を例えば転勤ボールミ
ルを用いて粉砕する場合、100〜200時間というか
なりの長時間を要する。しかし、このような長時間の粉
砕を行うと、膨大なエネルギーを消費するうえ、場合に
よっては粉砕媒体からの不純物混入などの問題が生じる
。In the method (2) described above, the primary particle size of the silicon nitride powder produced is considerably large, ranging from 2 to 10 μm. For this reason, when this silicon nitride powder is sintered, the sinterability is low, making it difficult to obtain a dense silicon nitride sintered body. In order to improve these points, when the silicon nitride powder is pulverized using, for example, a transfer ball mill, it takes a long time of 100 to 200 hours. However, such long-term grinding consumes a huge amount of energy and, in some cases, causes problems such as contamination of impurities from the grinding media.
一方、■の方法では、種子粒子として添加する窒化ケイ
素などを0.5−以下に細かくすれば、次粒子径が1−
以下の比較的細かい窒化ケイ素粉末を得ることができる
。しかし、この場合も■と同様に、種子粒子を微細化す
るために例えば転勤ボールミルを用いて粉砕する場合、
50〜150時間というかなりの長時間を要し、前述し
た問題が生じる。On the other hand, in method (2), if the silicon nitride etc. added as seed particles are made finer to 0.5- or less, the primary particle size is 1-
The following relatively fine silicon nitride powder can be obtained. However, in this case as well, when pulverizing the seed particles using a transfer ball mill, for example, to make the seed particles finer,
It takes a considerable amount of time, 50 to 150 hours, and the above-mentioned problems arise.
本発明は前記問題点を解決するためになされたものであ
り、長時間の粉砕を行うことなしに、微細な窒化ケイ素
微粉末を得ることができる方法を提供することを目的と
する。The present invention has been made to solve the above problems, and an object of the present invention is to provide a method capable of obtaining fine silicon nitride powder without requiring long-term pulverization.
本発明の窒化ケイ素微粉末の製造方法は、シリカ粉末を
NH3とC□H7との混合ガス中、800〜1400℃
で加熱処理する第1工程と、得られた生成物を粉砕処理
する第2工程と、得られた粉砕処理物をNH3ガス中、
又はNH,とC□H4、COもしくは不活性ガスのうち
少なくとも1種との混合ガス中、1200〜1600℃
で加熱処理する第3工程とを具備したことを特徴とする
ものである。The method for producing fine silicon nitride powder of the present invention involves heating silica powder at 800 to 1400°C in a mixed gas of NH3 and C□H7.
a first step of heat-treating the obtained product; a second step of pulverizing the obtained product; and a second step of pulverizing the obtained product in NH3 gas.
or 1200 to 1600°C in a mixed gas of NH, and at least one of C□H4, CO, or an inert gas.
The present invention is characterized by comprising a third step of heat treatment.
本発明において、第1工程は基本的には下記(a)式に
従って51gN4を生成させる反応である。In the present invention, the first step is basically a reaction in which 51 g of N4 is produced according to the following formula (a).
3 S i02 +4 NH3→S 13 H4+6H
20−(a)この第1工程においてC□H,(炭化水素
ガス)を添加するのは、(a)式で生成するH20を(
b)式に従って反応させることにより、H20の分圧を
下げ、(a)式の反応速度を上げるためである。3 S i02 +4 NH3→S 13 H4+6H
20-(a) The reason for adding C□H, (hydrocarbon gas) in this first step is to add H20 produced by equation (a) to (
This is to lower the partial pressure of H20 and increase the reaction rate of formula (a) by reacting according to formula (b).
前記(a)式の反応が進行し、窒化ケイ素粒子が生成す
る過程は未だ充分に解明されているわけではないが、本
発明者らの研究によれば以下のような過程をたどるもの
と推定される。すなわち、まず完全な結晶構造及び化学
量論比を満足していない、10nm程度の非常に微細な
窒化ケイ素の前駆体ともいえる粒子(以下、窒化ケイ素
前駆体と記す)が生成し、これらが何個か集合してほぼ
完全な結晶構造及び化学量論比を有する窒化ケイ素の一
次粒子が形成される。この際、集合する窒化ケイ素前駆
体の数により、−次位子の大きさが決まると考えられる
。Although the process by which the reaction of formula (a) proceeds and silicon nitride particles are generated has not yet been fully elucidated, it is estimated that the following process follows according to the research conducted by the present inventors. be done. That is, first, very fine particles of about 10 nm that can be called silicon nitride precursors (hereinafter referred to as silicon nitride precursors) that do not satisfy a perfect crystal structure and stoichiometry are generated, and what are these particles? The particles collectively form primary particles of silicon nitride having a nearly perfect crystal structure and stoichiometry. At this time, it is thought that the size of the -order ion is determined by the number of silicon nitride precursors that aggregate.
この第1工程の加熱温度を800〜1400℃としたの
は、800℃未満では実質的に反応が進行せず、140
0℃を超えると直ちに粒径2〜lOρの相当大きな一次
粒子が生成し、それ以降の工程を施しても微細な窒化ケ
イ素粉末を得ることができなくなるためである。The heating temperature in this first step was set at 800 to 1400°C because the reaction does not substantially proceed below 800°C.
This is because when the temperature exceeds 0°C, considerably large primary particles with a particle size of 2 to 1Oρ are immediately generated, and it becomes impossible to obtain fine silicon nitride powder even if the subsequent steps are carried out.
第1工程におけるNH,とC□H,との混合比は、Cm
H,をCH4に換算して体積比でN H3’ / CH
4−0,5〜2000、より好ましくは1〜1000で
あることが望ましい。The mixing ratio of NH and C□H in the first step is Cm
H, is converted to CH4 and the volume ratio is N H3' / CH
4-0.5 to 2000, more preferably 1 to 1000.
本発明において、第2工程の粉砕工程は、前記窒化ケイ
素前駆体を物理的に引き離して、窒化ケイ素の一次粒子
の粗大化を抑制するための工程である。In the present invention, the second pulverizing step is a step for physically separating the silicon nitride precursor to suppress coarsening of the primary particles of silicon nitride.
この第2工程の粉砕は、転勤ボールミル、振動ボールミ
ル、遊星ミル、媒体撹拌ミルなど一般に普及している粉
砕機を用いることができる。For the second step of pulverization, commonly used pulverizers such as a transfer ball mill, a vibrating ball mill, a planetary mill, and a media stirring mill can be used.
粉砕時間は、例えば内径160mm5内容積4.8gの
ボールミルに、被粉砕物30gとともに直径16mmの
ボール4 kgを投入した場合、5〜10時間である。The grinding time is, for example, 5 to 10 hours when 4 kg of balls with a diameter of 16 mm are charged together with 30 g of the material to be ground into a ball mill with an inner diameter of 160 mm and an internal volume of 4.8 g.
なお、粉砕時間は、粉砕機の種類、大きさなどにより異
なるが、いずれも10時間以下でよく、従来よりも大幅
に時間が短縮される。Although the grinding time varies depending on the type and size of the grinder, it may be 10 hours or less in any case, which is much shorter than conventional methods.
なお、粉砕工程時には、粉砕助剤を共存させて粉砕を行
ってもよい。粉砕助剤としては、5i1A 、Q SZ
r s Y s M g ST t SCeもしくは
La。In addition, at the time of a pulverization process, pulverization may be performed in the presence of a pulverization aid. As grinding aids, 5i1A, Q SZ
r s Y s M g ST t SCe or La.
又はこれらの元素の窒化物、炭化物、ホウ化物もしくは
酸化物を挙げることができる。また、粉砕助剤の添加量
は、出発原料のシリカ粉末1重量部に対して、0.00
5〜2重量部であることが望ましい。このように粉砕助
剤を共存させた場合、最終的に得られる窒化ケイ素の一
次粒子径が小さくなる。Alternatively, nitrides, carbides, borides, or oxides of these elements can be mentioned. The amount of grinding aid added is 0.00 parts by weight of silica powder as the starting material.
The amount is preferably 5 to 2 parts by weight. When a grinding aid is present in this way, the primary particle diameter of silicon nitride finally obtained becomes smaller.
本発明において、第3工程は窒化ケイ素前駆体の集合に
より、はぼ完全な結晶構造及び化学量論比を有する窒化
ケイ素の一次粒子を形成させる工程である。In the present invention, the third step is a step of forming primary particles of silicon nitride having an almost perfect crystal structure and stoichiometric ratio by aggregating silicon nitride precursors.
この第3工程の加熱温度を1200〜16009Cとし
たのは、】200°C未満では完全な結晶構造及び化学
量論比を有する窒化ケイ素か得られず、1600°Cを
超えると繊維状窒化ケイ素の混入が多くなるためである
。より好ましい加熱温度は1400〜1600°Cであ
る。The reason why the heating temperature in this third step was set to 1200 to 16009C is that silicon nitride with a perfect crystal structure and stoichiometric ratio cannot be obtained below 200°C, and fibrous silicon nitride cannot be obtained when it exceeds 1600°C. This is because the amount of contamination increases. A more preferable heating temperature is 1400 to 1600°C.
この第3に程では、雰囲気ガスとしてNH,ガス、又は
NH,とC,、、■、、、COもしくは不活性ガスのう
ち少なくとも1種との混合ガスが用いられるが、NH3
とCff、H,、Coもしくは不活性ガスのうち少なく
とも1種との混合ガスを用いる場合、NH3の含有量は
50体積%以上であることが望ましい。これは、NH3
の含有量が50体積%未満では生成する窒化ケイ素粉末
中の総酸素量や総炭素量が多くなったり、繊維状の窒化
ケイ素が生成するためである。In this third step, NH, gas, or a mixed gas of NH, and at least one of C, , CO, or an inert gas is used as the atmospheric gas, but NH3
When using a mixed gas of at least one of Cff, H, Co, or an inert gas, the content of NH3 is desirably 50% by volume or more. This is NH3
This is because if the content is less than 50% by volume, the total amount of oxygen and total carbon in the produced silicon nitride powder will increase, or fibrous silicon nitride will be produced.
本発明方法によれば、種子粒子を用いることなく、しか
も粉砕時間を従来より大幅に短縮することができにもか
かわらず、微細な窒化ケイ素微粒子を製造することがで
きる。According to the method of the present invention, fine silicon nitride particles can be produced without using seed particles and while the grinding time can be significantly shortened compared to the conventional method.
以下、本発明の詳細な説明する。 The present invention will be explained in detail below.
実施例1〜6及び比較例1〜6
第1工程として、シリカ粉末50gを窒化ケイ素の容器
に充填し、この容器を内径100mmのアルミナ製炉芯
管を有する管状炉に挿入した後、第1表に示す温度にお
いて、NH,を10Ω/minの流量で、C3Hsを1
Ω/minの流量でそれぞれ供給し、10時間加熱した
。Examples 1 to 6 and Comparative Examples 1 to 6 In the first step, 50 g of silica powder was filled into a silicon nitride container, and this container was inserted into a tube furnace having an alumina furnace core tube with an inner diameter of 100 mm. At the temperature shown in the table, NH, at a flow rate of 10Ω/min, C3Hs at 1
Each was supplied at a flow rate of Ω/min and heated for 10 hours.
次に、第2工程として、得られた生成物粉末30gを、
直径16 mmのボール4 kgとともに、内径LGO
mr6、内容積4.8Ωの窒化ケイ素製ポット中へ投入
し、80rpmで10時間粉砕した。なお、比較例5に
ついてはこの粉砕工程を行っていない。Next, as a second step, 30 g of the obtained product powder was
With a ball 4 kg with a diameter of 16 mm, an inner diameter LGO
The mixture was placed in a silicon nitride pot with an mr of 6 and an internal volume of 4.8Ω, and pulverized at 80 rpm for 10 hours. Note that in Comparative Example 5, this pulverization step was not performed.
次いで、第3工程として、得られた粉砕処理物を前記第
1工程と同一の容器及び管状炉を用い、第1表に示す雰
囲気中、同表に示す温度において、同表に示す時間加熱
することにより窒化ケイ素微粉末を得た。Next, in the third step, the obtained pulverized product is heated in the atmosphere shown in Table 1, at the temperature shown in the table, for the time shown in the table, using the same container and tube furnace as in the first step. As a result, silicon nitride fine powder was obtained.
このようにして得られた粉末について、総酸素量及び総
炭素量の測定、X線回折による結晶相の同定、SEMに
よる粒子形状及び−炭粒子径の観察測定を行った。これ
らの結果を第1表に示す。Regarding the powder thus obtained, the total oxygen content and total carbon content were measured, the crystal phase was identified by X-ray diffraction, and the particle shape and carbon particle diameter were observed and measured by SEM. These results are shown in Table 1.
〔発明の効果〕
以上詳述したように不発明方n、1、−よれば、種I゛
粒子を添加することなく、しかも長時間の粉砕を行うこ
となしに、微細な窒化ケイ素微粉末を得ることができる
。この結果、窒化ケーイ累微粉末の焼結性が良好となり
、緻密な窒化ケイ素焼結体を177ることかできる。し
たがって、71〉5発明方4び)上竿的価値は極めて大
きい。[Effect of the invention] As detailed above, according to the non-inventive method n, 1, -, fine silicon nitride fine powder can be produced without adding species I particles and without carrying out long-term pulverization. Obtainable. As a result, the sinterability of the silicon nitride cumulative powder becomes good, and a dense silicon nitride sintered body can be obtained. Therefore, the value of 71〉5 Invention Method 4) is extremely large.
Claims (1)
800〜1400℃で加熱処理する第1工程と、得られ
た生成物を粉砕処理する第2工程と、得られた粉砕処理
物をNH_3ガス中、又はNH_3とC_mH_n、C
Oもしくは不活性ガスのうち少なくとも1種をとの混合
ガス中、1200〜1600℃で加熱処理する第3工程
とを具備したことを特徴とする窒化ケイ素微粉末の製造
方法。Silica powder in a mixed gas of NH_3 and C_mH_n,
The first step is heat treatment at 800 to 1400°C, the second step is pulverization of the obtained product, and the pulverized product is pulverized in NH_3 gas or NH_3 and C_mH_n,C.
A method for producing fine silicon nitride powder, comprising a third step of heat treatment at 1200 to 1600° C. in a mixed gas with at least one of O or an inert gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2767889A JP2788045B2 (en) | 1989-02-08 | 1989-02-08 | Method for producing fine silicon nitride powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2767889A JP2788045B2 (en) | 1989-02-08 | 1989-02-08 | Method for producing fine silicon nitride powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02208211A true JPH02208211A (en) | 1990-08-17 |
JP2788045B2 JP2788045B2 (en) | 1998-08-20 |
Family
ID=12227624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2767889A Expired - Lifetime JP2788045B2 (en) | 1989-02-08 | 1989-02-08 | Method for producing fine silicon nitride powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2788045B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240106403A (en) | 2022-12-29 | 2024-07-08 | 주식회사 티에프제이 | Manufacturing Method of Stabilized Polyacrylonitrile Fiber with Crimping Using Mist-Type Emulsion Treatment |
-
1989
- 1989-02-08 JP JP2767889A patent/JP2788045B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240106403A (en) | 2022-12-29 | 2024-07-08 | 주식회사 티에프제이 | Manufacturing Method of Stabilized Polyacrylonitrile Fiber with Crimping Using Mist-Type Emulsion Treatment |
Also Published As
Publication number | Publication date |
---|---|
JP2788045B2 (en) | 1998-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5850929B2 (en) | Method for manufacturing silicon carbide powder | |
Ogasawara et al. | Microstructure and hysteresis curves of the barium hexaferrite from co-precipitation by organic agent | |
JPS59107908A (en) | Manufacturing method of silicon nitride powder with excellent sinterability | |
JPH02208211A (en) | Production of fine silicon nitride powder | |
JPS63147811A (en) | Production of fine sic powder | |
JPS61242905A (en) | Production of alpha-silicon nitride powder | |
JPS6047204B2 (en) | Method for manufacturing silicon nitride powder | |
JPH02271919A (en) | Production of fine powder of titanium carbide | |
JPH02180710A (en) | Preparation of finely powdered alpha- or beta- silicon carbide | |
JP2731333B2 (en) | Silicon nitride sintered body, method of manufacturing the same, silicon nitride powder and method of manufacturing the same | |
JPS6183606A (en) | Production of easily sinterable aluminum nitride powder | |
JPS636601B2 (en) | ||
JP2635695B2 (en) | Method for producing α-silicon nitride powder | |
JPH0532405A (en) | Silicon nitride powder, method for producing silicon nitride powder, and silicon nitride sintered body | |
JP2610156B2 (en) | Method for producing silicon nitride powder | |
JPH01234371A (en) | Production of main raw material for aln sintered body | |
JPH0114168B2 (en) | ||
JPS5823327B2 (en) | Method for producing β-type silicon carbide powder | |
JPS6146403B2 (en) | ||
JPH03232800A (en) | Production of silicon carbide whisker | |
JPS58217469A (en) | Manufacture of silicon nitride-silicon carbide composition | |
JPH0227778A (en) | Manufacture of thermoelectric element | |
JPH06199506A (en) | Production of aluminum nitride powder | |
JPS6060909A (en) | Manufacture of silicon nitride powder | |
JPH085653B2 (en) | Method for producing ultrafine silicon carbide powder |