[go: up one dir, main page]

JPH0220680A - Focal position detecting device for laser device - Google Patents

Focal position detecting device for laser device

Info

Publication number
JPH0220680A
JPH0220680A JP63168422A JP16842288A JPH0220680A JP H0220680 A JPH0220680 A JP H0220680A JP 63168422 A JP63168422 A JP 63168422A JP 16842288 A JP16842288 A JP 16842288A JP H0220680 A JPH0220680 A JP H0220680A
Authority
JP
Japan
Prior art keywords
detection
laser beam
laser
focal position
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63168422A
Other languages
Japanese (ja)
Other versions
JPH0661633B2 (en
Inventor
Masao Izumo
正雄 出雲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63168422A priority Critical patent/JPH0661633B2/en
Publication of JPH0220680A publication Critical patent/JPH0220680A/en
Publication of JPH0661633B2 publication Critical patent/JPH0661633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Measurement Of Optical Distance (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To detect a focal position with respect to many kinds of objects to be irradiated whose reflection characteristics are different by providing a means for selecting that which has the maximum value from each output corresponding to plural detection use laser beams, and calculating the focal position. CONSTITUTION:A Z table 6 is set to an initial position, an optical image 10a by a first detection use laser beam 8a is formed on an XY plane 7 of a working surface 5, and its reflected light is detected by a photoelectric converting means 11. Subsequently, an optical image 10b by a second detection use laser beam 8b is formed, and its reflected is detected by the photoelectric converting means 11. Next, a larger one of outputs of the photoelectric converting means 11 corresponding to both the detection use laser beams 8a, 8b whose wavelengths are different from each other is selected by a laser beam selecting means 16, and its output is set to a binarizing circuit 12. From the data, a binarized image is derived, and a focal position is detected from a position of the working surface 5 on which its maximum width becomes minimum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、レーザ加工装置等においてそのレーザ光の
焦点位置を検出する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for detecting the focal position of a laser beam in a laser processing device or the like.

〔従来の技術〕[Conventional technology]

第3図は例えば特開昭59−159290号公報に開示
された従来のレーザ加工装置の焦点位置検出装置を示す
構成図である。図において、(1)は加工用レーザ光、
(2)はハーフミラ−1(3)は集光レンズ、(4)は
ハーフミラ−1(5)はハーフミラ−(2)、集光レン
ズ(3)を透過し、ハーフミラ−(4)で反射した加工
用レーザ光(1)がほぼ直角に入射する加工面で、加工
用レーザ光(1)の入射軸(Z軸)の方向に移動可能な
Zテーブル(6)の上面をなす。(7)は加工面(5)
に形成されたXY平面である。(8)は加工用レーザ光
(1)と同軸、同焦点となるようハーフミラ−(2)で
反射した後集光レンズ(3)を透過し、更にハーフミラ
−(4)で反射して加工面(5)に照射される検出用レ
ーザ光、(9)はその検出用レーザ発生手段、00はX
Y平面(7)上に結像された検出用レーザ光(8)の光
像、Ql)はXY平面(7)を走査して光像αOを受光
し電気信号として出力する光像検出手段としての光電変
換手段、(6)は光電変換手段αυからの光像αQの出
力を2値化像に変換する2値化回路、(至)は2値化像
の最大幅を検出する最大幅検出回路、α荀はZテーブル
(6)をZ軸方向に移動させたときの2値化像の最大幅
の変化から検出用レーザ光(8)の焦点位置を検出する
焦点位置検出回路で、2値化回路(6)、最大幅検出回
路(至)および焦点位置検出回路α荀により焦点位置演
算手段αυを構成する。
FIG. 3 is a configuration diagram showing a focal position detection device of a conventional laser processing apparatus disclosed in, for example, Japanese Patent Laid-Open No. 159290/1982. In the figure, (1) is a processing laser beam;
(2) is half mirror 1 (3) is a condensing lens, (4) is half mirror 1 (5) is transmitted through half mirror (2), condensing lens (3), and reflected by half mirror (4). This is the processing surface onto which the processing laser beam (1) enters at a substantially right angle, and forms the upper surface of a Z table (6) that is movable in the direction of the incident axis (Z-axis) of the processing laser beam (1). (7) is the machined surface (5)
It is an XY plane formed in . (8) is coaxial and parfocal with the processing laser beam (1), reflected by a half mirror (2), transmitted through a condensing lens (3), and further reflected by a half mirror (4) to be applied to the processing surface. (5) is the detection laser beam irradiated, (9) is the detection laser generating means, 00 is X
The optical image Ql) of the detection laser beam (8) formed on the Y plane (7) is used as an optical image detection means to scan the XY plane (7), receive the optical image αO, and output it as an electrical signal. (6) is a binarization circuit that converts the output of the optical image αQ from the photoelectric conversion unit αυ into a binarized image, (to) is a maximum width detection unit that detects the maximum width of the binarized image The circuit α is a focal position detection circuit that detects the focal position of the detection laser beam (8) from the change in the maximum width of the binarized image when the Z table (6) is moved in the Z-axis direction. The value conversion circuit (6), the maximum width detection circuit (to), and the focus position detection circuit α constitute a focus position calculation means αυ.

次に動作について説明する。先ず、Zテーブル(6)が
所定の初期位置にセットされ、この状態で、加工面(5
)のXY平面(7)上に検出用レーザ光(8)を結像さ
せその光像αQを得る。光電変換手段αυがXY平面(
7)を走査し、2値化回路(2)が更に各走査線毎の光
像αQの座標値としての2値化像に変換する。
Next, the operation will be explained. First, the Z table (6) is set at a predetermined initial position, and in this state, the processing surface (5
) on the XY plane (7) to obtain the optical image αQ. The photoelectric conversion means αυ is on the XY plane (
7) is scanned, and the binarization circuit (2) further converts it into a binarized image as the coordinate values of the optical image αQ for each scanning line.

最大幅検出回路(至)は以上の2値化像から上記初期位
置における最大幅を検出する。焦点位置検出回路α→は
、以上の操作をZテーブル(6)をZ軸方向に順次移動
させて行うことにより求まる2値化像の最大幅とZテー
ブル(6)の位置との関係特性からこの最大幅の最小値
を検出しそのときの加工面(5)の位置を焦点位置とし
て出力する。
The maximum width detection circuit (to) detects the maximum width at the initial position from the binarized image. The focus position detection circuit α→ is based on the relationship between the maximum width of the binarized image and the position of the Z table (6), which is found by sequentially moving the Z table (6) in the Z-axis direction. The minimum value of this maximum width is detected and the position of the processed surface (5) at that time is output as the focal position.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の焦点位置検出装置は、以上のように、検出用レー
ザ光を被照射物である加工面に照射結像させ、その光像
の反射光を受光して焦点位置を演算せんとするものであ
る。従って、被照射物の種類によっては検出用レーザ光
を十分反射せず焦点位置の検出に支障を来たす場合が生
じる。特に、レーザ光を利用して薄膜を加工する場合、
被照射物となる当該薄膜は、成膜時の膜厚コントロール
の難しさのためサンプルによってその膜厚にバラツキが
生じそれに対応してその反射特性が異なり、結果として
焦点位置の検出能力がサンプルに影響されるという問題
点があった。
As described above, conventional focus position detection devices are designed to irradiate a detection laser beam onto the processing surface of the irradiated object and form an image, and then receive the reflected light of the light image to calculate the focus position. be. Therefore, depending on the type of object to be irradiated, the detection laser beam may not be reflected sufficiently, causing a problem in detecting the focal position. In particular, when processing thin films using laser light,
Due to the difficulty in controlling the thickness of the thin film that is the object to be irradiated, the film thickness varies depending on the sample, and its reflection characteristics vary accordingly.As a result, the ability to detect the focal position varies depending on the sample. There was a problem with being affected.

この発明は以上のような問題点を解消するためになされ
たもので、種々の被照射物に対しても安定した性能を発
揮するレーザ装置用焦点位置検出装置を得ることを目的
とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to obtain a focal position detection device for a laser device that exhibits stable performance even for various objects to be irradiated.

〔課題を解決するための手段および作用〕この発明に係
るレーザ装置用焦点位置検出装置は、検出用レーザ発生
手段が相互に波長が異なる複数の検出用レーザ光を発生
し、レーザ光選別手段(こよって上記各検出用レーザ光
に対応する各出力からその値が最大のものを選別し、当
該最大出力から焦点位置を演算する。
[Means and effects for solving the problem] In the focal position detection device for a laser device according to the present invention, the detection laser generation means generates a plurality of detection laser beams having mutually different wavelengths, and the laser beam selection means ( Therefore, the one with the maximum value is selected from the respective outputs corresponding to the respective detection laser beams, and the focal position is calculated from the maximum output.

また、他の装置のものは、検出用レーザ発生手段として
その検出用レーザ光の波長を変化させうるものとし、レ
ーザ波長調整手段によって光像検出手段の出力が所定値
以上となるよう上記検出用レーザ光の波長を調整し、当
該調整後の出力から焦点位置を演算する。
In addition, the other devices are capable of changing the wavelength of the detection laser beam as a detection laser generating means, and the laser wavelength adjustment means is used to adjust the output of the optical image detection means to a predetermined value or more. The wavelength of the laser beam is adjusted, and the focal position is calculated from the adjusted output.

〔実施例〕〔Example〕

第1図はこの発明の一実施例におけるレーザ加工装置の
焦点位置検出装置を示す構成図である。
FIG. 1 is a configuration diagram showing a focal position detection device of a laser processing apparatus in an embodiment of the present invention.

図において、(1)(3)〜(7)αυ〜(至)は従来
の場合と同一である。(2)は検出用レーザ光(8)を
加工用レーザ光(1)の光軸と同一の光軸から集光レン
ズ(3)に入射するためのハーフミラ−で、(2a)(
2b)の2個のハーフミラ−からなる。(9a)は第1
の検出用レーザ光(8a)をハーフミラ−(2a)へ出
射する第1のレーザ発生器、(9b)は第1の検出用レ
ーザ光(8a)とは波長が異なる第2の検出用レーザ光
(8b)をハーフミラ−(2b)へ出射する第2のレー
ザ発生器で、両レーザ発生器(9a)(9b)は雨検出
用レーザ光(8a)(8b)が共に加工用レーザ光(1
)と同軸、同焦点となるよう配置される。そして、両レ
ーザ発生器(9aX9b)により検出用レーザ発生手段
(9)を構成する。αQは、各検出用レーザ光(8a)
(sb)に対する光電変換手段αηの出力のうちその値
が大きい方のものを選別するレーザ光選別手段である。
In the figure, (1), (3) to (7) αυ to (to) are the same as in the conventional case. (2) is a half mirror for making the detection laser beam (8) enter the condenser lens (3) from the same optical axis as the processing laser beam (1);
2b) consists of two half mirrors. (9a) is the first
A first laser generator emits a detection laser beam (8a) to a half mirror (2a), and (9b) a second detection laser beam having a different wavelength from the first detection laser beam (8a). (8b) to the half mirror (2b), and both laser generators (9a) and (9b) emit rain detection laser beams (8a) and (8b) to the processing laser beam (1).
) and are placed so that they are coaxial and parfocal. Both laser generators (9aX9b) constitute a detection laser generating means (9). αQ is each detection laser beam (8a)
This is a laser beam selection means for selecting the output having a larger value among the outputs of the photoelectric conversion means αη for (sb).

次に動作について説明する。先ず、従来と同様にZテー
ブル(6)を初期位置にセットし、加工面(5)のXY
平面(7)上に第1の検出用レーザ光(8a)による光
像(10a)を結像させ、その反射光を光電変換手段q
υが検出する。次に、同様にして、XY平面(7)上に
第2の検出用レーザ光(8b)による光像(10b)を
結像させ、その反射光を光電変換手段αυが検出する。
Next, the operation will be explained. First, as before, set the Z table (6) to the initial position and adjust the XY position of the machining surface (5).
A light image (10a) is formed by the first detection laser beam (8a) on the plane (7), and the reflected light is converted to the photoelectric conversion means q.
υ detects. Next, in the same manner, an optical image (10b) is formed by the second detection laser beam (8b) on the XY plane (7), and the photoelectric conversion means αυ detects the reflected light.

ここで、加工面(5)従って被照射物の表面の反射率は
、それに照射されるレーザ光の波長に大きく影響される
。従って、相互に波長が異なる雨検出用レーザ光(8a
)および(8b)に対応する光電変換手段αηの出力に
は差が生じ、レーザ光選別手段αQが、この両川力のい
ずれか大きい方を選別しその出力を2値化回路@へ送る
。これ以降の処理は従来と同様である。即ち、反射光が
より大きくなる検出用レーザ光の出力データにより、2
値化像を求め、その最大幅が最小となる加工面(5)の
位置から焦点位置を検出する。
Here, the reflectance of the processed surface (5), that is, the surface of the object to be irradiated, is greatly influenced by the wavelength of the laser beam irradiated thereon. Therefore, rain detection laser beams (8a
) and (8b), a difference occurs between the outputs of the photoelectric conversion means αη, and the laser light selection means αQ selects whichever of these two forces is larger and sends the output to the binarization circuit @. The subsequent processing is the same as before. In other words, depending on the output data of the detection laser beam that increases the reflected light, 2
A valued image is obtained, and the focal position is detected from the position of the processing surface (5) where the maximum width thereof is the minimum.

従って、被照射物が種々異なると、従来の場合、その検
出用レーザ光の波長は一種類のものであったので、その
波長光に対する被照射物の反射率が低いために焦点位置
の検出が不可能となる場合が生じたが、第1図のものに
おいては、検出用レーザ光として波長の異なる2種類の
レーザ光を使用し、反射光がより大となる方を選んで処
理する方式を採用したので、より多くの種類の被照射物
における検出が可能となる訳である。特に、同一ロット
内でもその反射特性が変動する薄膜加工における焦点位
置の検出に有益である。
Therefore, when the objects to be irradiated are different, in the conventional case, the wavelength of the detection laser beam was one type, and the detection of the focal position was difficult because the reflectance of the object to be irradiated was low for light of that wavelength. However, in the case shown in Figure 1, two types of laser beams with different wavelengths are used as detection laser beams, and the one with the largest amount of reflected light is selected for processing. By adopting this method, it becomes possible to detect more types of irradiated objects. In particular, it is useful for detecting the focal position in thin film processing where the reflection characteristics vary even within the same lot.

なお、上記実施例では、検出用レーザ光を2種類とした
が、この種類をもつと増やすことにより、より広範囲の
被照射物での焦点位置の検出が可能となり、この場合レ
ーザ光選別手段Mは、入力されたデータの内の最大のも
のを選別する。
In the above embodiment, there are two types of detection laser beams, but by increasing the number of these types, it becomes possible to detect the focal position on a wider range of objects to be irradiated, and in this case, the laser beam selection means M selects the largest input data.

第2図は他の実施例における同検出装置を示す。FIG. 2 shows the same detection device in another embodiment.

図において、(1)〜αυは従来の場合と同様である。In the figure, (1) to αυ are the same as in the conventional case.

但し検出用レーザ発生手段(9)は液体レーザや半導体
レーザ等を用いた色素レーザをその光源とするもので、
出射する検出用レーザ光(8)の波長を所定の範囲で変
化させ得るものとしている。そして、aηは検出用レー
ザ発生手段(9)と光電変換手段αυとの間に接続され
たレーザ波長調整手段である。
However, the detection laser generating means (9) uses a dye laser such as a liquid laser or a semiconductor laser as its light source.
The wavelength of the emitted detection laser beam (8) can be changed within a predetermined range. Further, aη is a laser wavelength adjusting means connected between the detection laser generating means (9) and the photoelectric conversion means αυ.

本装置においても、従来と同様に検出用レーザ光(8)
を加工面(5)のXY平面(7)上に照射し、その光像
α0の反射光を、XY平面(7)を走査する光電変換手
段αυが受光する。ここで、光電変換手段αυの出力の
大きさが、それ以降の焦点位置演算手段αeにおける処
理に支障がないレベル以上であれば、そのまま同処理を
行うが、同レベルに満たない場合はレーザ波長調整手段
α力から検出用レーザ発生手段(9)にその波長を順次
変更するように信号を送り、光電変換手段αηの出力が
所定のレベル以上となる検出用レーザ光(8)の波長が
選択され、その出力に基づいて以下の処理演算を行い焦
点位置を検出する。
In this device as well, the detection laser beam (8)
is irradiated onto the XY plane (7) of the processing surface (5), and the reflected light of the optical image α0 is received by the photoelectric conversion means αυ that scans the XY plane (7). Here, if the magnitude of the output of the photoelectric conversion means αυ is at least a level that does not interfere with the subsequent processing in the focal position calculation means αe, the same processing is performed as is, but if it is less than the same level, the laser wavelength A signal is sent from the adjustment means α force to the detection laser generation means (9) to change its wavelength sequentially, and the wavelength of the detection laser light (8) at which the output of the photoelectric conversion means αη is equal to or higher than a predetermined level is selected. Based on the output, the following processing calculations are performed to detect the focal position.

従って、本装置においては、反射特性が異なるより多く
の種類の被照射物に対して、その焦点位置を迅速に検出
することができるという効果を有し、この反射特性が変
動しやすい薄膜加工において特に有効である。
Therefore, this device has the effect of being able to quickly detect the focal position of more types of irradiated objects with different reflection characteristics. Particularly effective.

なお、第2図の実施例では、検出用レーザ発生手段(9
)の光源として色素レーザを用いたが、必ずしも、これ
に限られることはなく、波長が可変のレーザであればど
んなものでもよい。
In the embodiment shown in FIG. 2, the detection laser generating means (9
), a dye laser was used as the light source; however, it is not necessarily limited to this, and any laser with a variable wavelength may be used.

また、上記実施例はいずれもレーザ加工装置に適用する
ものについて説明したが、本発明はレーザ加工以外のレ
ーザ装置、例えばレーザ計測装置等Eとも同様に適用す
ることができる。
In addition, although the above embodiments have all been described as being applied to a laser processing device, the present invention can be similarly applied to laser devices other than laser processing, such as a laser measuring device.

更に、上記各実施例はいずれもその焦点位置の検出を2
値化像の最大幅検出により行っているが、本発明は他の
方法、例えば検出用レーザ光の反射光の強度変化から演
算検出する方法により焦点位置を検出するような場合に
も同様の効果を発揮するものである。
Furthermore, in each of the above embodiments, the detection of the focal position is performed in two ways.
Although this is carried out by detecting the maximum width of the converted image, the present invention can also have similar effects when detecting the focal position by other methods, such as a method of calculating and detecting changes in the intensity of the reflected light of the detection laser beam. It is something that demonstrates the.

また、上記各実施例はいずれも集光レンズ(3)と加工
面(5)との距離を変化させる方法として、Zテーブル
(6)をZ軸方向に移動させる方式を採用したが、Zテ
ーブル(6)は固定し、集光レンズ(3)をその光軸の
方向に移動させる方式としてもよい。
Furthermore, in each of the above embodiments, a method of moving the Z table (6) in the Z-axis direction was adopted as a method of changing the distance between the condenser lens (3) and the processing surface (5). (6) may be fixed and the condenser lens (3) may be moved in the direction of its optical axis.

〔発明の効果〕〔Effect of the invention〕

以上のように、請求項1の発明では、検出用レーザ発生
手段が相互に波長が異なる複数の検出用レーザ光を発生
し、被照射物からの反射光の最大のものを選別して処理
する構成としたので、反射特性が異なるより多くの種類
の被照射物における焦点位置の検出が可能となる。
As described above, in the invention of claim 1, the detection laser generating means generates a plurality of detection laser beams having mutually different wavelengths, and selects and processes the largest reflected light from the irradiated object. With this configuration, it becomes possible to detect the focal position of more types of objects to be irradiated with different reflection characteristics.

また、請求項2の発明では、波長可変の検出用レーザ発
生手段を備え、被照射物からの反射光が所定値以上とな
るよう検出用レーザ光の波長を調整するようにしたので
、同様に、反射特性が異なるより多くの種類の被照射物
における焦点位置の検出が可能となる効果を有する。
Further, in the invention of claim 2, since the wavelength-tunable detection laser generating means is provided and the wavelength of the detection laser light is adjusted so that the reflected light from the object to be irradiated is equal to or more than a predetermined value, the same can be said. This has the effect that the focal position can be detected in more types of objects having different reflection characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例におけるレーザ加工装置用
焦点位置検出装置を示す構成図、第2図は他の実施例に
おける同検出装置を示す構成図、第3図は従来の同検出
装置を示す構成図である。 図において、(1)はレーザ光としての加工用レーザ光
、(3)は集光レンズ、(5)は被照射物としての加工
面、(8) (82X8b)は検出用レーザ光、(9)
 (9a) (9b)は検出用レーザ発生手段、口1 
(10a) (10b)は光像、(1υは光像検出手段
としての光電変換手段、α均は焦点位置演算手段、(l
[19はレーザ光選別手段、αηはレーザ波長調整手段
である。 なお、各図中同一符号は同一または相当部分を示す。 代理人 弁理士  大 岩 増 雄 第1図 第2@ 3:専光し久 fニア7r:J工1旨 第3図
FIG. 1 is a configuration diagram showing a focal position detection device for a laser processing device in one embodiment of the present invention, FIG. 2 is a configuration diagram showing the same detection device in another embodiment, and FIG. 3 is a conventional same detection device. FIG. In the figure, (1) is a processing laser beam as a laser beam, (3) is a condenser lens, (5) is a processing surface as an irradiated object, (8) (82X8b) is a detection laser beam, (9 )
(9a) (9b) is a detection laser generating means, mouth 1
(10a) (10b) is a light image, (1υ is a photoelectric conversion means as a light image detection means, α is a focal position calculation means, (l
[19 is a laser beam selection means, αη is a laser wavelength adjustment means. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent: Masuo Oiwa, Patent Attorney Figure 1 Figure 2 @ 3: Senkou Shikyu F Near 7r: J Engineering 1 Figure 3

Claims (1)

【特許請求の範囲】 1、レーザ光を集光レンズを介して被照射物に集光させ
るレーザ装置の上記レーザ光の焦点位置を検出するもの
であつて、上記レーザ光の光軸と同一の光軸から上記集
光レンズを介して上記被照射物に集光させる検出用レー
ザ光を出射する検出用レーザ発生手段と、上記被照射物
上に結像された上記検出用レーザ光による光像の反射光
を受光する光像検出手段と、上記被照射物と集光レンズ
との距離を変化させたときの上記光像検出手段の出力変
化から上記焦点位置を演算する焦点位置演算手段とを備
えたものにおいて、 上記検出用レーザ発生手段は相互に波長が異なる複数の
検出用レーザ光を発生するものとし、その各検出用レー
ザ光に対応する上記光像検出手段の各出力からその値が
最大のものを選別して上記焦点位置演算手段に出力する
レーザ光選別手段を備えたことを特徴とするレーザ装置
用焦点位置検出装置。 2、レーザ光を集光レンズを介して被照射物に集光させ
るレーザ装置の上記レーザ光の焦点位置を検出するもの
であつて、上記レーザ光の光軸と同一の光軸から上記集
光レンズを介して上記被照射物に集光させる検出用レー
ザ光を出射する検出用レーザ発生手段と、上記被照射物
上に結像された上記検出用レーザ光による光像の反射光
を受光する光像検出手段と、上記被照射物と集光レンズ
との距離を変化させたときの上記光像検出手段の出力変
化から上記焦点位置を演算する焦点位置演算手段とを備
えたものにおいて、 上記検出用レーザ発生手段は検出用レーザ光の波長を変
化させうるものとし、上記光像検出手段の出力が所定値
以上となるよう上記検出用レーザ光の波長を調整するレ
ーザ波長調整手段を備えたことを特徴とするレーザ装置
用焦点位置検出装置。
[Claims] 1. A device for detecting the focal position of the laser beam of a laser device that focuses the laser beam on an object to be irradiated via a condensing lens, the focal position of which is the same as the optical axis of the laser beam. a detection laser generating means for emitting a detection laser beam from an optical axis to be focused on the object to be irradiated via the condenser lens; and an optical image formed by the detection laser beam on the object to be irradiated. a light image detection means for receiving the reflected light; and a focus position calculation means for calculating the focus position from a change in the output of the light image detection means when the distance between the object to be irradiated and the condensing lens is changed. The detection laser generating means generates a plurality of detection laser beams having mutually different wavelengths, and the value is determined from each output of the optical image detection means corresponding to each detection laser beam. A focal position detection device for a laser device, comprising: laser beam selection means for selecting the largest one and outputting it to the focal position calculation means. 2. A device for detecting the focal position of the laser beam of a laser device that focuses the laser beam on an object to be irradiated via a condensing lens, and which focuses the laser beam from the same optical axis as the optical axis of the laser beam. a detection laser generating means for emitting a detection laser beam to be focused on the irradiated object through a lens; and a detection laser generating means for receiving reflected light of a light image formed on the irradiation object by the detection laser beam. A device comprising a light image detection means and a focus position calculation means for calculating the focus position from a change in the output of the light image detection means when the distance between the irradiated object and the condensing lens is changed, The detection laser generating means is capable of changing the wavelength of the detection laser light, and includes a laser wavelength adjustment means for adjusting the wavelength of the detection laser light so that the output of the optical image detection means is equal to or higher than a predetermined value. A focal position detection device for a laser device, characterized in that:
JP63168422A 1988-07-06 1988-07-06 Focus position detector for laser device Expired - Lifetime JPH0661633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63168422A JPH0661633B2 (en) 1988-07-06 1988-07-06 Focus position detector for laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63168422A JPH0661633B2 (en) 1988-07-06 1988-07-06 Focus position detector for laser device

Publications (2)

Publication Number Publication Date
JPH0220680A true JPH0220680A (en) 1990-01-24
JPH0661633B2 JPH0661633B2 (en) 1994-08-17

Family

ID=15867832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63168422A Expired - Lifetime JPH0661633B2 (en) 1988-07-06 1988-07-06 Focus position detector for laser device

Country Status (1)

Country Link
JP (1) JPH0661633B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003251476A (en) * 2002-03-01 2003-09-09 Denso Corp High density energy machining device and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101279578B1 (en) * 2012-04-03 2013-06-27 주식회사 이오테크닉스 Auto focusing apparatus for laser processing and auto focusing method using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003251476A (en) * 2002-03-01 2003-09-09 Denso Corp High density energy machining device and method

Also Published As

Publication number Publication date
JPH0661633B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
US20110141461A1 (en) Surface Inspection Method and Surface Inspection Apparatus
US20070008521A1 (en) Lighting optical machine and defect inspection system
US4983827A (en) Linescan apparatus for detecting salient pattern of a product
US5011960A (en) Wiring pattern detection method and apparatus
KR20010013628A (en) Method for focusing during imaging of structured surfaces of disc-shaped objects
JP2931268B2 (en) Laser scan optical device
JP3144661B2 (en) Three-dimensional electrode appearance inspection device
JP2001074422A (en) Solid shape detector, solder containing inspection device and method therefor
KR100878425B1 (en) Surface measuring device
JPH0220680A (en) Focal position detecting device for laser device
US5017864A (en) Apparatus for the inspection of printed circuit boards on which components have been mounted
JPH0769272B2 (en) Foreign matter inspection device
JPH04279846A (en) optical inspection equipment
KR100422987B1 (en) Sensor for acquiring 3d image data
JPH04182085A (en) Laser marking apparatus
US8093540B2 (en) Method of focus and automatic focusing apparatus and detecting module thereof
JPH07225195A (en) Flaw measuring method for minute pattern
JP2667416B2 (en) Pattern defect inspection method
JPH05172511A (en) Scanning-type detecting apparatus
JP2025022362A (en) Inspection method and inspection device
JP2818597B2 (en) Pattern inspection method
KR19990010264A (en) Laser scattering wafer inspection equipment
JPH0129401B2 (en)
JPS63124019A (en) Collimator for surface inspecting instrument
JPS61243347A (en) Surface inspecting device