[go: up one dir, main page]

JPH02206364A - Control method for pulse-width control system power converter apparatus - Google Patents

Control method for pulse-width control system power converter apparatus

Info

Publication number
JPH02206364A
JPH02206364A JP2215889A JP2215889A JPH02206364A JP H02206364 A JPH02206364 A JP H02206364A JP 2215889 A JP2215889 A JP 2215889A JP 2215889 A JP2215889 A JP 2215889A JP H02206364 A JPH02206364 A JP H02206364A
Authority
JP
Japan
Prior art keywords
phase
voltage
power supply
output
lowest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2215889A
Other languages
Japanese (ja)
Other versions
JPH0744834B2 (en
Inventor
Jun Koyama
純 小山
Takashi Koga
古賀 高志
Hideki Hayashi
林 秀喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP1022158A priority Critical patent/JPH0744834B2/en
Publication of JPH02206364A publication Critical patent/JPH02206364A/en
Publication of JPH0744834B2 publication Critical patent/JPH0744834B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ac-Ac Conversion (AREA)

Abstract

PURPOSE:To raise an output maximum voltage and to conduct controlling an output current easily by suitably switching the switching element of a PWM cycloconverter. CONSTITUTION:The title apparatus is composed of three-phase AC power supplies eU, eV, eW, filters L1, C1, L2, C2, switching elements SAU-SCW, and an induction motor IM being a load; and said switching elements SAU-SCW are bidirectional and connected in an antiparallel manner. The phase of the lowest voltage out of voltage commands UA, UB, UC is connected with the lowest phase of a supply voltage. If the C-phase of the induction motor IM is the lowest potential of the power supply, the switching element SCU is closed and the switching elements SCV, SCW are opened and connected with the power supply V-phase. on the other hand, the other phase, of which voltage command is not lowest, are controlled in the output voltage and voltage waveform through PWM control by the switching elements SA, SB between respective power supplies by outlet line voltage commands UAC, UBC. Thus, it is possible to control the output voltage and voltage waveform of an apparatus.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はパルス幅制御方式電力変換装置の制御方法に係
り、交流電源から直接具なった周波数の出力が得られ、
4象限運転も容易なことから、誘導電動機等のACドラ
イブに適用して効果大であり、他に大容量の誘導加熱、
誘導攪拌への応用にも適しているパルス幅制御方式電力
変換装置を実現し易る制御方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a control method for a pulse width control type power conversion device, which enables output of a specific frequency to be obtained directly from an AC power supply,
Since four-quadrant operation is easy, it is highly effective when applied to AC drives such as induction motors, and is also useful for large-capacity induction heating,
The present invention relates to a control method that facilitates the realization of a pulse width control type power conversion device that is also suitable for application to induction stirring.

〔従来技術とその問題点〕[Prior art and its problems]

第4図は本発明の理解を容易にするため示したサイクロ
コンバータの主回路図であり、’U * eV +ew
は三相交流電源、Ll、Ol、L2.02はフィルタ、
SAU”””SCWはスイッチング素子、IMは負荷と
なる誘導電動機である。
Figure 4 is a main circuit diagram of a cycloconverter shown to facilitate understanding of the present invention, and 'U * eV +ew
is a three-phase AC power supply, Ll, Ol, L2.02 is a filter,
SAU"""SCW is a switching element, and IM is an induction motor serving as a load.

ここに、サイクロコンバータは交流電源から直接異なっ
た周波数の交流を得るものであり、入出力とも三相の例
で示しであるが、単相、その他の多相であってもよい。
Here, the cycloconverter directly obtains alternating currents of different frequencies from an alternating current power supply, and although both input and output are shown as three-phase examples, they may be single-phase or other multi-phase.

従来、第4回生回路例においては、スイッチング素子S
AU * 8AV + SAW + SBU * SB
Y −SBW r SCU +scv l scwに双
方向性スイッチング素子が、具体的には逆並列接続され
たサイリスタなどが用いられ、入出力周波数に比べて高
周波のチョッピングを行い、出力電圧・力率などを調整
することが行われている。
Conventionally, in the fourth regenerative circuit example, the switching element S
AU * 8AV + SAW + SBU * SB
Y -SBW r SCU +scv l A bidirectional switching element, specifically a thyristor connected in anti-parallel, is used for scw, and it chops a high frequency compared to the input/output frequency and adjusts the output voltage, power factor, etc. Adjustments are being made.

しかし、その出力電圧は入力電圧の(1/2)までが限
度であり、高い出力が得られなかった。
However, the output voltage was limited to (1/2) of the input voltage, and high output could not be obtained.

このことは、文献IEF3E、TRAN8ACTION
ON POWgRgLEOTR,0NI08.APRI
L、1988゜rI−tgsENT PI(,0GES
8  IN Tl(BDEVELOPMENT  OF
  5OLD  5TATE  ACMOTORDRI
VIJ等にも見られる。
This is explained in the document IEF3E, TRAN8ACTION
ON POWgRgLEOTR,0NI08. APRI
L, 1988°rI-tgsENT PI(,0GES
8 IN Tl(BDEVELOPMENT OF
5OLD 5TATE ACMOTORDRI
It can also be seen in VIJ etc.

〔問題点の解決手段および作用〕[Means for solving problems and their effects]

本発明は上述したような点に鑑みなされたもので、特に
ほぼ入力電圧に等しい出力電圧が得られ、かつ入力力率
なども制御可能な電力変換装置を実現し得る格別な制御
方法を提供するものである。
The present invention has been made in view of the above-mentioned points, and particularly provides an exceptional control method capable of realizing a power conversion device that can obtain an output voltage substantially equal to the input voltage and also control the input power factor. It is something.

以下、本発明を図面に基づいて詳細説明する。Hereinafter, the present invention will be explained in detail based on the drawings.

まず、本発明に係る成力変換装置を第4図により説明す
る。
First, the force conversion device according to the present invention will be explained with reference to FIG.

(50、60Hz等)の三相1源から異なった周波数(
例えばO〜120市)の成力を誘導1ば動機IMに供給
することができ、かつスイッチング素子SAU””SC
Wを高周波(例えば1〜20に托Qのパルス幅制御する
ことにより、出力電圧をig整し入出力環流波形を正弦
波に近いものとしたことができるため、電動機損失の少
ない可変電圧・可変周波数(VVVF’)駆動を実現す
ることができる。
(50, 60Hz, etc.) from one three-phase source to different frequencies (
For example, the power of 0 to 120) can be supplied to the induction 1 motor IM, and the switching element SAU""SC
By controlling the pulse width of W to a high frequency (for example, 1 to 20), the output voltage can be adjusted and the input/output circulation waveform can be made close to a sine wave. Frequency (VVVF') driving can be realized.

また、出力電流を電源のどの相から得るかを、スイッチ
ング素子SAU””’SCWにより選択することにより
電源側力率を調整することができる・例えば、遅れ力率
の誘導電動機IMを負荷とした場合でも電源側力率を1
としたことができ、かつ電流波形は正弦波に近いために
高調波も少なく、電源側に与える撹乱の少ない成力変換
装置としたことができる。
In addition, the power factor on the power supply side can be adjusted by selecting from which phase of the power supply the output current is obtained using the switching element SAU""'SCW. For example, when an induction motor IM with a lagging power factor is used as the load. Even if the power factor on the power supply side is 1
In addition, since the current waveform is close to a sine wave, there are few harmonics, and it is possible to create a force conversion device that causes less disturbance to the power source side.

この種の成力変換装置は、負荷の各相の底流を電源の任
意の相から得ることができかつスイッチング素子がパル
ス幅制御されるため、PWMサイクロコンバータと呼ば
れる。
This type of power conversion device is called a PWM cycloconverter because the undercurrent of each phase of the load can be obtained from any phase of the power supply and the switching elements are pulse width controlled.

PWMサイクロコンバータはつぎのような特長を有する
The PWM cycloconverter has the following features.

(1)通常使用されている(コンバータ)−(インバー
タ)方式の成力変換装置のような直流リンク回路の平滑
リアクトル、平滑コンデンサなどのエネルギー蓄積要素
を必要としないため、小形で大容量の装置を製作し易い
(1) It is a small and large-capacity device because it does not require energy storage elements such as smoothing reactors and smoothing capacitors in DC link circuits like the normally used (converter)-(inverter) type power conversion devices. Easy to produce.

(21(コンバータ)−(インバータ)方式ニ比べて直
列に入るスイッチング素子数が少ないため、素子損失が
少なく効率を上げることができる。
(21) Compared to the (converter)-(inverter) system, the number of switching elements connected in series is smaller, so element loss is reduced and efficiency can be increased.

(3)主回路構成より明らかな如く4象限運転がスイッ
チング素子の点弧操作のみで容易に実現できる。
(3) As is clear from the main circuit configuration, four-quadrant operation can be easily achieved by simply igniting the switching elements.

係る第4図の主回路構成装置の制御方法につき、つぎに
そのスイッチング素子の点弧方法について説明する。す
なわち、前述の如く本点弧方式によれば、出力電圧とし
てほぼ入力電圧に等しいものを得ることができる。
Regarding the method of controlling the main circuit configuration device shown in FIG. 4, a method of igniting the switching element will be described next. That is, as described above, according to this ignition method, it is possible to obtain an output voltage approximately equal to the input voltage.

第1図は本発明を説明するため示したスイッチング素子
の動作状態を表す説明図であり、誘導電動機1量ノA 
、 B 、 C各相(DFK圧指令1JA 、’s 。
FIG. 1 is an explanatory diagram showing the operating state of the switching element shown for explaining the present invention, and is an illustration showing the operating state of the switching element shown for explaining the present invention.
, B, C phases (DFK pressure command 1JA,'s.

υC*と各相のスイッチング素子sAI SB + s
cのスイッチング方法の関係を示したものである。ここ
に、スイッチング素子8人は第4図に示したスイッチン
グ素子SAU + sAv+ SAWの総称であり、他
のスイ、チング素子SB、Scも同様である。
υC* and each phase switching element sAI SB + s
This figure shows the relationship between the switching methods of c. Here, the eight switching elements are a general term for the switching elements SAU+sAv+SAW shown in FIG. 4, and the same applies to the other switching elements SB and Sc.

まず、電圧指令υA * UB +ひCのうち一番低い
相はスイッチング素子により、電源は圧の一番低い相に
接続される〇 区間工を例にとると、電圧指令υA  ’Hに比べて電
圧指令υCが最低ゆえ、スイッチング素子Scは誘導電
動機IMのC相を電源の最低1位eMINをもつ相に接
続する。ここで、 asoN=MIN[eu、ev+ewlである。仮1(
、(ev≦ew)でかつ(ev≦εU)であれば、(e
MrN=’v )ゆえ、誘導電動機IMのC相は電源の
U相に接続される。
First, taking as an example a section construction where the lowest phase of the voltage command υA * UB + HIC is connected to the switching element and the power supply is connected to the phase with the lowest voltage, compared to the voltage command υA 'H. Since the voltage command υC is the lowest, the switching element Sc connects the C phase of the induction motor IM to the phase of the power supply having the lowest position eMIN. Here, asoN=MIN[eu, ev+ewl. Temporary 1 (
, (ev≦ew) and (ev≦εU), then (e
MrN='v) Therefore, the C phase of the induction motor IM is connected to the U phase of the power supply.

すなわち、スイッチング素子8CVが閉路され、スイッ
チング素子5CUsSCWは開路される。
That is, switching element 8CV is closed, and switching element 5CUsSCW is opened.

一方、電圧指令が最低でない他の相は電源の最大電圧ε
MAXと最低上位aMIN間でパルス幅制御(PWM制
御)される。ここで、 e、AX=MAxc eur已V + ’W ]である
On the other hand, for other phases whose voltage command is not the lowest, the maximum voltage ε of the power supply
Pulse width control (PWM control) is performed between MAX and the lowest aMIN. Here, e, AX=MAXc eur 已V + 'W].

さらに前述の例に従い区間工について述べると、スイッ
チング素子SAは出力線間電圧指令17AC*により、
スイッチング素子SBは出力線間電圧指令υBc*によ
り、それぞれ鍼源のεMAX+ ’MEN間でPWM制
御される。
Furthermore, referring to the section construction according to the above-mentioned example, the switching element SA is activated by the output line voltage command 17AC*.
The switching element SB is PWM-controlled between εMAX+'MEN of each acupuncture source by the output line voltage command υBc*.

他の区間11.OIについても各相が入れ換わるのみで
同様の動作を行う。
Other sections 11. The same operation is performed for OI, only the phases are replaced.

つぎに、PWM制御の方法を第2図により説明示したも
のと考えてよい。
Next, the method of PWM control may be considered to be explained and illustrated with reference to FIG.

ここに、第2図(イ)は三相交流11 rA”u *ε
V*”Wの4[圧を、第2図(0)ハ(eMAX−eM
IN ) tcヨり振s変調されたキャリア三角波と出
力線間電圧指令す υ8.ヲ示し、スイッチング素子SA * SBは三角
波とυBCの交点に従ってPWM制御されるものとなる
Here, Fig. 2 (a) shows three-phase AC 11 rA”u *ε
4 [pressure of V*”W, Fig. 2 (0) C (eMAX-eM
IN) tc yaw s modulated carrier triangular wave and output line voltage command υ8. The switching elements SA*SB are PWM-controlled according to the intersection of the triangular wave and υBC.

また、第2図(ハ)は閉路されるスイッチング素子を示
したものであり、スイッチング素子Scについて言えば
、時刻T2まではV相素子すなわちスイッチング素子S
CVが、時刻T2以降はW相素子のスイッチング素子S
CWが閉路されることを示している。
Moreover, FIG. 2(C) shows a switching element that is closed, and regarding the switching element Sc, until time T2, the switching element Sc is a V-phase element, that is, the switching element Sc.
CV is the switching element S of the W-phase element after time T2.
This indicates that CW is closed.

スイッチング素子SBについて見ると、時刻TIと時刻
T21ul ’T’ gi、(%Ax=8u ) t 
(’a(IN=eV ) テij。
Looking at the switching element SB, time TI and time T21ul 'T' gi, (%Ax=8u) t
('a(IN=eV) Teij.

るから、スイッチング素子sBυ+SBYにより、第2
図(0)の三角波と1rBCとの交点に従ってPWM制
御される。当然ながら、スイッチング素子8BWはこの
間開路を保つ。
Therefore, the second
PWM control is performed according to the intersection of the triangular wave and 1rBC in figure (0). Naturally, the switching element 8BW remains open during this time.

第2図に)は(源の中性点に対するB、C相の出力1圧
υB、υCを示したものである。ここに、時刻T1〜時
刻T2間に着目すると、出力電圧vCはスイッチング素
子Scvが閉路されているため、υc=8v (=eM
IN ) であり、出力4圧υBはスイッチング素子SBUが閉路
されている二 υB=εσ(〒8MAX ) スイッチング素子SBVが閉路されている間υs =e
v (=QMIN ) となり、図示の如(PWM制御された矩形波となるO 第2図(ホ)は出力線間電圧υ8C(=1)B−ひC)
波形を示したものである。
(Figure 2) shows the output voltages υB and υC of the B and C phases with respect to the neutral point of the source.If we pay attention to the period from time T1 to time T2, the output voltage vC is the voltage of the switching element. Since Scv is closed, υc=8v (=eM
IN ), and the output 4 voltage υB is 2 υB = εσ (〒8MAX) while the switching element SBU is closed, υs = e
v (=QMIN), as shown in the figure (it becomes a PWM-controlled rectangular wave).
This shows the waveform.

かくの如き点弧方式より明らかなように、出力線間電圧
υIIcは出力線間電圧指令υBCに従って已MAX 
* ’MIN間でPWM制御されるため、出力線間電圧
指令yBCにより出力電圧および屯田波形の制御が可能
である。
As is clear from such an ignition method, the output line voltage υIIc is MAX according to the output line voltage command υBC.
* 'Since PWM control is performed between MIN, the output voltage and the Tonta waveform can be controlled by the output line voltage command yBC.

出力電圧値としても、出力線間電圧υBCのピーク値が
(’MAX−eMrN)までとれるとしたさ、入力屯田
と等しいところまで上げることが可能である。
As for the output voltage value, assuming that the peak value of the output line voltage υBC can be taken up to ('MAX-eMrN), it is possible to raise it to a point equal to the input voltage.

なお、(LI Of)、(L2 C2)は入出カル流中
のキャリア周波数成分を除去し、より正弦波に近づける
ため設けられる。
Note that (LI Of) and (L2 C2) are provided in order to remove the carrier frequency component in the input/output Cull flow and make it closer to a sine wave.

つぎにまた、第2図は出力電圧をυBC*により電圧制
御したものであるが、さらに出力電流制御に適用した例
を第3図に示す。
Next, while FIG. 2 shows the output voltage controlled by υBC*, FIG. 3 shows an example in which it is further applied to output current control.

第3図(イ)は第2図(イ)と同様のeU + ’V 
+ eWを示したものであり、第3図(ロ)はB相の出
力直流指令Ln*と市流実測値tBを示したものである
Figure 3 (a) is the same eU + 'V as in Figure 2 (a).
+eW, and FIG. 3(b) shows the B-phase output DC command Ln* and the actual measured value tB of the commercial current.

第3図(ハ)はB相の出力電圧vBを示したものであり
、ここで’MAX + ”M I Nの選び方は前述の
通りである。
FIG. 3(C) shows the output voltage vB of the B phase, and the method of selecting 'MAX + MIN' is as described above.

すなわち、出力直流指令LB  が4流実測値LBより
大きい区間では(νB = eMAX )に、小さい区
間では(υB=εMIN )となるようスイッチングを
行う。ここに、図は一定時間毎に上述の判別を行い、電
流かようにして、第2図において出力線間電圧υnc 
カeMAx + ”MIN間でPWM制御されており、
1源の最高電位の相が主として負荷に電流を供給する。
That is, switching is performed so that the output DC command LB is larger than the measured value LB of the 4th current (νB=eMAX), and the output DC command LB is smaller than the measured value LB (υB=εMIN). Here, the figure performs the above-mentioned determination at regular intervals, and in this way, the output line voltage υnc is determined in Figure 2.
PWM control is performed between the eMAX + MIN and
The highest potential phase of one source primarily supplies current to the load.

従って、電源側力率は負荷力率によって一義的に定まっ
てしまい、誘導成動機IMのような遅れ力率の負荷では
嶋源側も遅れ力率となる。
Therefore, the power factor on the power source side is uniquely determined by the load power factor, and in a load with a lagging power factor such as the induction motor IM, the Shimamoto side also has a lagging power factor.

しかし、電源相を’MAX * eMIN以外の相とし
たことにより、出力最高電圧の低下は招くものの、電源
側力率を任意に、制御、することができる。
However, by setting the power supply phase to a phase other than 'MAX*eMIN, it is possible to arbitrarily control the power factor on the power supply side, although this causes a decrease in the maximum output voltage.

例えば、第2図の(′r2〜T3)間ではスイッチング
素子SBカ(e−u =eMAX )と(8W=8Mx
N)間でPWM制御され、B相に遅れ電流を供給してい
るところを、εVと8w間の制御により以前と同位相の
電流を供給するようにすることにより、電源電圧位相が
遅れて同位相としたことが可能である。
For example, between ('r2 and T3) in FIG. 2, switching element SB power (eu = eMAX) and (8W = 8Mx
By controlling between εV and 8W to supply current in the same phase as before, the power supply voltage phase is delayed and the same current is supplied to the B phase. It is possible to set it as a phase.

そして、aUとevの割り合いをPWMffilJ鐸す
ることにより、電源屯田の移相量をAl4mすることが
できるのは勿論である。
Of course, by controlling the ratio between aU and ev, the amount of phase shift of the power source can be reduced to Al4m.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、PWMサイクロコン
バータの以前の特色を失うことなく出力最高電圧を上昇
させ、出力電流の制御も容易に行うことが可能な電力変
換装置を実現し得る格別な制御方法を提供することがで
き、産業上の効果は極めて犬である。
As detailed above, according to the present invention, it is possible to realize an exceptional power conversion device that can increase the maximum output voltage and easily control the output current without losing the previous features of the PWM cycloconverter. It can provide a control method and the industrial effect is extremely dog.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明を説明するため示した、スイッ
チング素子の動作状態を表した説明図、第2図は第1図
を展開した各部波形図および第3図は底流制御の適用例
の波形図である。第4図は本発明の理解を容易にするた
め示したサイクロコンバータの主回路図である。 vA*rυ−1υc*−−4,圧指令、sAl s、 
l sc 1sAtr−scw・・・・・・スイッチン
グ素子、υAB  +・νAc** * vac  ・・・・・・出力線間電圧指令、VB * 
Z’C・・・・・・出力ぼ・ * 圧、υBC・・・・・・出力線間電圧、しB ・・・・
・・出力電流指令、し8・・・・・・電流実測値。
Figures 1 to 3 are explanatory diagrams showing the operating states of switching elements, shown to explain the present invention, Figure 2 is a waveform diagram of each part expanded from Figure 1, and Figure 3 is an application of undercurrent control. FIG. 3 is an example waveform diagram. FIG. 4 is a main circuit diagram of a cycloconverter shown to facilitate understanding of the present invention. vA*rυ-1υc*--4, pressure command, sAl s,
l sc 1sAtr-scw...Switching element, υAB +・νAc** * vac...Output line voltage command, VB *
Z'C...Output voltage, υBC...Output line voltage, B...
...Output current command, 8...Actual current measurement value.

Claims (4)

【特許請求の範囲】[Claims] (1)付勢信号にて主回路電流の導通しゃ断が可能な自
己消弧形半導体スイッチを用い、交流電源より任意の周
波数の多相交流出力を得るパルス幅制御方式電力変換装
置の制御方法において、出力電圧指令が最も低い電圧の
相に関係するスイッチ群を電源電圧の最も低電位の相に
接続するとともに、出力の他の相のスイッチ群は電源の
最高位電位相および最低位電位相のいずれかに接続する
ようにし、この両者への選択接続するオンオフ比を変え
ることにより出力電圧を調整することを特徴としたパル
ス幅制御方式電力変換装置の制御方法。
(1) In a control method for a pulse width control type power conversion device that obtains multiphase AC output of any frequency from an AC power supply using a self-extinguishing semiconductor switch that can conduct or cut off the main circuit current in response to an energizing signal. , the switch group related to the phase with the lowest output voltage command is connected to the phase with the lowest potential of the power supply voltage, and the switch groups of the other output phases are connected to the highest potential phase and lowest potential phase of the power supply. 1. A method for controlling a pulse width control type power conversion device, characterized in that the output voltage is adjusted by connecting one of the two and changing the on/off ratio of the selective connection to both.
(2)出力電流が指令値より小なる場合その相のスイッ
チ群を電源の最高電位相に接続し、指令値より大なる場
合は最低電位相に接続することにより出力電流を調整す
ること特徴とした請求項第(1)項記載のパルス幅制御
方式電力変換装置の制御方法。
(2) When the output current is smaller than the command value, the switch group of that phase is connected to the highest voltage phase of the power supply, and when it is larger than the command value, the output current is adjusted by connecting it to the lowest voltage phase. A method for controlling a pulse width control type power conversion device according to claim (1).
(3)電源の最高位あるいは最低位相以外の電源相へ選
択接続することにより、電源側あるいは出力側の力率調
整を行うことを特徴とした請求項第(1)項および第(
2)項記載のパルス幅制御方式電力変換装置の制御方法
(3) The power factor of the power supply side or the output side is adjusted by selectively connecting to a power supply phase other than the highest or lowest phase of the power supply.
2) A method for controlling a pulse width control type power converter according to item 2).
(4)電源側入力電流検出手段を設けるとともに、電源
電流を制御することを特徴とした請求項第(2)項記載
のパルス幅制御方式電力変換装置の制御方法。
(4) A method for controlling a pulse width control type power conversion device according to claim (2), further comprising providing a power supply side input current detection means and controlling the power supply current.
JP1022158A 1989-01-31 1989-01-31 Pulse width control power converter Expired - Lifetime JPH0744834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1022158A JPH0744834B2 (en) 1989-01-31 1989-01-31 Pulse width control power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1022158A JPH0744834B2 (en) 1989-01-31 1989-01-31 Pulse width control power converter

Publications (2)

Publication Number Publication Date
JPH02206364A true JPH02206364A (en) 1990-08-16
JPH0744834B2 JPH0744834B2 (en) 1995-05-15

Family

ID=12075029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1022158A Expired - Lifetime JPH0744834B2 (en) 1989-01-31 1989-01-31 Pulse width control power converter

Country Status (1)

Country Link
JP (1) JPH0744834B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0852425A1 (en) * 1995-09-08 1998-07-08 Kabushiki Kaisha Yaskawa Denki Power converter and power converting method
JPH1118489A (en) * 1997-06-19 1999-01-22 Toyo Electric Mfg Co Ltd Drive controller for synchronous motor
JP2004222337A (en) * 2003-01-09 2004-08-05 Fuji Electric Holdings Co Ltd Ac-ac power converter
JP2006020389A (en) * 2004-06-30 2006-01-19 Yaskawa Electric Corp Noise filter and motor drive mounted with it
WO2006112275A1 (en) * 2005-04-15 2006-10-26 Kabushiki Kaisha Yaskawa Denki Matrix converter apparatus
JP2006325327A (en) * 2005-05-19 2006-11-30 Toyo Electric Mfg Co Ltd Protecting unit of matrix converter
JP2009535013A (en) * 2006-04-24 2009-09-24 パワー コンサベイション リミテッド Harmonic current suppression and power saving in nonlinear load systems

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0852425A4 (en) * 1995-09-08 1999-12-29 Yaskawa Denki Seisakusho Kk Power converter and power converting method
EP0852425A1 (en) * 1995-09-08 1998-07-08 Kabushiki Kaisha Yaskawa Denki Power converter and power converting method
JPH1118489A (en) * 1997-06-19 1999-01-22 Toyo Electric Mfg Co Ltd Drive controller for synchronous motor
JP2004222337A (en) * 2003-01-09 2004-08-05 Fuji Electric Holdings Co Ltd Ac-ac power converter
JP2006020389A (en) * 2004-06-30 2006-01-19 Yaskawa Electric Corp Noise filter and motor drive mounted with it
US7782643B2 (en) 2005-04-15 2010-08-24 Kabushiki Kaisha Yaskawa Denki Matrix converter apparatus
WO2006112275A1 (en) * 2005-04-15 2006-10-26 Kabushiki Kaisha Yaskawa Denki Matrix converter apparatus
GB2439035A (en) * 2005-04-15 2007-12-12 Yaskawa Denki Seisakusho Kk Matrix converter apparatus
GB2439035B (en) * 2005-04-15 2008-10-22 Yaskawa Denki Seisakusho Kk Matrix converter apparatus
JP4803177B2 (en) * 2005-04-15 2011-10-26 株式会社安川電機 Matrix converter device
KR100963725B1 (en) * 2005-04-15 2010-06-14 가부시키가이샤 야스카와덴키 Matrix converter device
JP2006325327A (en) * 2005-05-19 2006-11-30 Toyo Electric Mfg Co Ltd Protecting unit of matrix converter
JP4640794B2 (en) * 2005-05-19 2011-03-02 東洋電機製造株式会社 Matrix converter protection device
JP2009535013A (en) * 2006-04-24 2009-09-24 パワー コンサベイション リミテッド Harmonic current suppression and power saving in nonlinear load systems

Also Published As

Publication number Publication date
JPH0744834B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
McMurray Modulation of the chopping frequency in DC choppers and PWM inverters having current-hysteresis controllers
US5625545A (en) Medium voltage PWM drive and method
Chéron et al. Soft commutation
CN1069603A (en) The parallel Operation Control device of pam inverter
EP4071999A1 (en) Regenerative medium voltage drive (cascaded h bridge) with reduced number of sensors
US20140043870A1 (en) Three phase boost converter to achieve unity power factor and low input current harmonics for use with ac to dc rectifiers
JPH07298631A (en) Three-phase pwm voltage generating circuit
Rahman et al. A current-forced reversible rectifier fed single-phase variable speed induction motor drive
JPH02206364A (en) Control method for pulse-width control system power converter apparatus
Mailah et al. Neutral-point-clamped multilevel inverter using space vector modulation
JP3337041B2 (en) Control method for single-phase three-wire inverter device
Darijevic et al. Four-level five-phase open-end winding drive with unequal dc-link voltages
Bala et al. Matrix converter BLDC drive using reverse-blocking IGBTs
Singh et al. PWM control of a dual inverter drive using a floating capacitor inverter
Kim et al. A Comparison of DPWM and Inverter Loss Energy Based FCS-MPC for IPMSM
Mizukoshi et al. Improvement of output voltage waveform in dual inverter fed open-winding induction motor at low speed area
Sivakotiah et al. Speed control of brushless DC motor on resonant pole inverter using fuzzy logic controller
Hess et al. Modulation strategies for a new SCR-based induction motor drive system with a wide speed range
Morel et al. A predictive control for a matrix converter-fed permanent magnet synchronous machine
Lee et al. Design and implementation of a reverse matrix converter for permanent magnet synchronous motor drives
JPH08186986A (en) Power conversion apparatus
JPS609384A (en) Power regeneration control circuit of inverter
Soebagia et al. Input power factor control of AC-DC series resonant DC link converter using PID operation
JPH0732607B2 (en) Control device for electric vehicle power converter
Venkatasubramanian et al. An efficient control method for PMSM drive using an optimized indirect matrix converter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080515

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 14