JPH02200176A - Cell culture method and device - Google Patents
Cell culture method and deviceInfo
- Publication number
- JPH02200176A JPH02200176A JP1017793A JP1779389A JPH02200176A JP H02200176 A JPH02200176 A JP H02200176A JP 1017793 A JP1017793 A JP 1017793A JP 1779389 A JP1779389 A JP 1779389A JP H02200176 A JPH02200176 A JP H02200176A
- Authority
- JP
- Japan
- Prior art keywords
- culture
- culture solution
- stirring
- medium
- supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004113 cell culture Methods 0.000 title claims description 43
- 239000012528 membrane Substances 0.000 claims description 108
- 238000003756 stirring Methods 0.000 claims description 62
- 238000001914 filtration Methods 0.000 claims description 43
- 239000012510 hollow fiber Substances 0.000 claims description 43
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 39
- 229910052760 oxygen Inorganic materials 0.000 claims description 39
- 239000001301 oxygen Substances 0.000 claims description 39
- 239000001963 growth medium Substances 0.000 claims description 37
- 239000012737 fresh medium Substances 0.000 claims description 29
- 238000004114 suspension culture Methods 0.000 claims description 18
- 238000012258 culturing Methods 0.000 claims description 16
- 239000002609 medium Substances 0.000 claims description 13
- 235000004252 protein component Nutrition 0.000 claims description 11
- 239000000725 suspension Substances 0.000 claims description 11
- 238000007599 discharging Methods 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 230000007246 mechanism Effects 0.000 claims description 4
- 238000013019 agitation Methods 0.000 claims description 2
- 210000004027 cell Anatomy 0.000 description 59
- 238000000034 method Methods 0.000 description 31
- 210000002966 serum Anatomy 0.000 description 17
- 239000011148 porous material Substances 0.000 description 10
- 238000011001 backwashing Methods 0.000 description 9
- 230000010412 perfusion Effects 0.000 description 9
- 235000018102 proteins Nutrition 0.000 description 9
- 102000004169 proteins and genes Human genes 0.000 description 9
- 108090000623 proteins and genes Proteins 0.000 description 9
- 238000004140 cleaning Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000000926 separation method Methods 0.000 description 7
- 230000004083 survival effect Effects 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 210000004102 animal cell Anatomy 0.000 description 5
- 238000012136 culture method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- 244000309466 calf Species 0.000 description 4
- 238000011109 contamination Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229910001882 dioxygen Inorganic materials 0.000 description 4
- -1 polyethylene Polymers 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 210000004408 hybridoma Anatomy 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 206010003445 Ascites Diseases 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000008072 Lymphokines Human genes 0.000 description 1
- 108010074338 Lymphokines Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004115 adherent culture Methods 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 210000000628 antibody-producing cell Anatomy 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 229940121357 antivirals Drugs 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 238000012832 cell culture technique Methods 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 210000001840 diploid cell Anatomy 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000006920 protein precipitation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/04—Filters; Permeable or porous membranes or plates, e.g. dialysis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M27/00—Means for mixing, agitating or circulating fluids in the vessel
- C12M27/02—Stirrer or mobile mixing elements
Landscapes
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は細胞の培養方法及び培養装置に関し、更に詳し
くは、細胞を高密度で長期にわたって安定して培養する
ための培養方法及び培養装置に関するものである。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a cell culturing method and a culturing device, and more particularly to a culturing method and culturing device for stably culturing cells at high density over a long period of time. It is something.
細胞培養技術は、例えばウィルス、ワクチン、インター
フェロンの如き抗ウィルス剤、或いはホルモンの如き生
物薬品の製造にとって重要である。Cell culture techniques are important for the production of viruses, vaccines, antivirals such as interferons, or biological drugs such as hormones.
更に近年特定タンパク賞などを標的とするモノクローナ
ル抗体の生産は抗体産生細胞とミエローマによるハイブ
リドーマの培養によるものであり、その技術の解決は工
業的に重要なテーマである。Furthermore, in recent years, the production of monoclonal antibodies targeting specific protein awards has been achieved by culturing hybridomas made from antibody-producing cells and myeloma, and solving this technology is an industrially important theme.
従来、細胞培養は培養びんなどを用いて実験室的規模で
行なわれている。一方、近年前記した如き有用物質の産
生を目的として工業的な細胞の培養法及びそのための装
置として、いくつかの提案がなされている。これらの提
案は、大きく分けて付着培養と浮遊培養つまり懸濁培養
との2つの方式に分類されるが、それらの方式は培養さ
れる細胞の特性によっていずれかに決められる。Conventionally, cell culture has been carried out on a laboratory scale using culture bottles and the like. On the other hand, in recent years, several proposals have been made for industrial cell culture methods and apparatus for the purpose of producing the above-mentioned useful substances. These proposals are broadly classified into two methods: adherent culture and suspension culture, and the method is determined depending on the characteristics of the cells to be cultured.
本発明は懸濁培養型の細胞培養における装置および方法
に関する。その懸濁培養によって細胞を培養する方法に
関し、例えばマグネテインクスクーラーもしくは機械的
に駆動されるシャフト上の羽根車によって、スピナーフ
ラスコの中に調整された撹拌機能を設けた培養方法など
が提案されている。しかし上記の方法においては、一定
量の栄養分の中で培養されるため細胞の生長増殖は比較
的低い密度で停止する。このような細胞の懸濁培養にお
いて、大量に且つ高密度で培養するために一般に新しい
培養液を培養槽中へ供給しつつ生育阻害物質を含んだ古
い培養液を培養槽外へ排出しながら培養する方式が提案
され、この方式は潅流培養方式と言われている。この方
式を用いて潅養するに当って重要なことは、懸濁液中の
細胞と前記古い培養液とを長期にわたって効率よく分離
し、古い培養液を培養槽外へ取り出し、培養槽内の細胞
の生育環境を最適条件下に維持することである。The present invention relates to apparatus and methods for cell culture in suspension culture. Regarding methods of culturing cells by suspension culture, methods have been proposed in which a spinner flask is provided with a controlled agitation function, for example by a magnetine cooler or an impeller on a mechanically driven shaft. ing. However, in the above method, since the cells are cultured in a fixed amount of nutrients, the growth and proliferation of cells stops at a relatively low density. In such suspension culture of cells, in order to culture in large quantities and at high density, the culture is generally carried out while supplying new culture medium into the culture tank and discharging old culture medium containing growth-inhibiting substances to the outside of the culture tank. A method was proposed, and this method is called the perfusion culture method. What is important when using this method for irrigation is to efficiently separate the cells in suspension from the old culture medium over a long period of time, remove the old culture medium from the culture tank, and remove the old culture medium from the culture tank. The aim is to maintain the cell growth environment under optimal conditions.
さらに細胞培養により有用物質を得るために工業的に重
要なことは、目的とする有用物質を高い濃度で得ること
である。一般に細胞培養において培養液中の細胞が産生
ずる有用物質の濃度は極めて低く、培養液から有用物質
を分離、精製するために煩雑な手段を要し、回収率の低
下、コストアップの原因の1つとなっている。このため
培養を可能なかぎり高い細胞密度で行うことが強く望ま
れている。Furthermore, what is industrially important for obtaining useful substances by cell culture is obtaining the target useful substances at high concentrations. Generally, in cell culture, the concentration of useful substances produced by cells in the culture medium is extremely low, and complicated means are required to separate and purify useful substances from the culture medium, which is one of the causes of reduced recovery rates and increased costs. It is one. For this reason, it is strongly desired to culture at the highest possible cell density.
なお、この種の装置に関連するものとしては例えば特開
昭61−257181号公報が挙げられる。Note that, for example, Japanese Patent Application Laid-Open No. 61-257181 is related to this type of device.
上記従来技術は懸濁培養液からの細胞の長期にわたって
安定した分離について配慮がされておらず、十分な潅流
培養が行えず高密度培養ができないという問題があった
。すなわち、この動物細胞と培養液との分離は無菌環境
下で細胞が生育した状態で、分離された培養液中に細胞
が混入しない方法で分離できればよく、通常培養槽内で
行う。The above-mentioned conventional technology does not take into account stable separation of cells from a suspension culture solution over a long period of time, and has the problem that sufficient perfusion culture cannot be performed and high-density culture cannot be performed. That is, the animal cells and the culture solution can be separated as long as they can be separated while the cells are grown in a sterile environment in a manner that does not allow the cells to be mixed into the separated culture solution, and is usually carried out in a culture tank.
その分離手段としてはホローファイバモジュール、遠心
分離や培養槽内にセトリングゾーンを設けた方法がある
。これらの手段のうちホローファイバモジュールを用い
る方法は、体積当りの濾過面積が大きくとれ、膜を介し
て古い培養液を培養槽外に排出し、続いて新鮮培地で膜
の逆洗浄を行うことにより培地を供給するので潅流培養
に適している。しかし、膜分離法には、常に膜汚染によ
る目づまりという問題がつきまとい、特に動物細胞の分
離では顕著であり、長期にわたって安定した分離は難し
いという問題があった。Separation means include a hollow fiber module, centrifugation, and a method in which a settling zone is provided in a culture tank. Among these methods, the method using a hollow fiber module has a large filtration area per volume, and the old culture solution is drained out of the culture tank through the membrane, and then the membrane is backwashed with fresh culture medium. It is suitable for perfusion culture because it supplies a medium. However, membrane separation methods always have the problem of clogging due to membrane contamination, which is particularly noticeable when separating animal cells, making it difficult to perform stable separation over a long period of time.
そこで本発明の目的は、長期にわたって安定した潅流培
養が行え高密度培養が可能な方法及び装置を提供するこ
とである。Therefore, an object of the present invention is to provide a method and apparatus that can perform stable perfusion culture over a long period of time and enable high-density culture.
上記目的を達成するため、本発明の細胞培養方法は細胞
を懸濁状態で培養しつつ培養槽内に設けた膜を介して懸
濁培養液から培養液の培養槽外への一部排出、続いて新
鮮培地の供給を行いつつ連続培養を行なう細胞培養方法
に於いて、細胞を培養槽内で懸濁状態を保つための培養
液の流動方向を、濾過膜を介しての培養液の排出時と、
新鮮培地の供給時とで逆転させることにある。In order to achieve the above object, the cell culture method of the present invention involves culturing cells in suspension while partially discharging the culture solution from the suspension culture solution to the outside of the culture tank through a membrane provided in the culture tank. In a cell culture method in which continuous culture is performed while continuously supplying fresh medium, the flow direction of the culture solution to keep the cells in a suspended state in the culture tank is determined by adjusting the flow direction of the culture solution through the filtration membrane. time and
The purpose is to reverse the flow when fresh medium is supplied.
さらに、本発明は上記細胞培養方法において、細胞を培
養槽内で懸濁状態を保つための培養液の流動方向を、攪
拌手段による培養液の攪拌方向とし、濾過膜を介しての
培養液の排出時と、新鮮培地の供給時とで前記攪拌方向
を反転することを特徴とする。Furthermore, in the cell culture method of the present invention, the flow direction of the culture solution for keeping the cells in a suspended state in the culture tank is the direction in which the culture solution is stirred by the stirring means, and the culture solution is flowed through the filtration membrane. It is characterized in that the stirring direction is reversed between when discharging the medium and when supplying a fresh medium.
さらに、本発明は細胞を懸濁状態で培養しつつ培養槽内
に設けた膜を介して懸濁培養液から培養液の培養槽外へ
の一部排出、続いて新鮮培地の供給を継続的に行いつつ
連続培養を行なう細胞培養方法に於いて、濾過膜を介し
ての培養液の排出時に生じた細胞の変形を、新鮮培地の
供給時に復元せしめることにより細胞による膜の目詰ま
りを除去することを特徴とする細胞培養方法にある。Furthermore, while culturing cells in a suspension state, the present invention allows part of the culture solution to be discharged from the suspension culture solution to the outside of the culture tank via a membrane provided in the culture tank, and then continuously supplies fresh culture medium. In a cell culture method in which continuous culture is performed while performing continuous culture, clogging of the membrane by cells is removed by restoring the deformation of the cells that occurs when the culture medium is discharged through the filtration membrane when fresh medium is supplied. The cell culture method is characterized by the following.
さらに、本発明は細胞を懸濁状態で培養しつつ培養槽内
に設けた濾過膜を介して懸濁培養液から培養液の培養槽
外への一部排出、続いて新鮮培地の供給を継続的に行い
つつ連続培養を行なう細胞培養装置に於いて、培養液を
攪拌して細胞を懸濁状態とするための攪拌手段と、前記
濾過膜を介して培養液の培養槽外への一部排出、及び、
新鮮培地の供給を行う培養液排出・供給手段と、前記培
養液排出・供給手段による培養液排出・供給を制御する
培養液排出・供給制御手段と、前記攪拌手段の攪拌方向
を前記培養液排出・供給と同期的に制御する攪拌方向制
御手段と、を具備し、攪拌手段による培養液の攪拌方向
を、濾過膜を介しての培養液の排出時と、新鮮培地の供
給時とで反転せしめ得るように構成したことを特徴とす
る細胞培養装置にある。Furthermore, while culturing cells in a suspended state, the present invention allows part of the culture solution to be discharged from the suspension culture solution to the outside of the culture tank via a filter membrane provided in the culture tank, and then continues to supply fresh culture medium. In a cell culture apparatus that performs continuous culture while performing continuous culture, there is provided a stirring means for stirring the culture solution to suspend the cells, and a part of the culture solution to the outside of the culture tank through the filtration membrane. discharge, and
A culture solution discharge/supply means for supplying a fresh medium; a culture solution discharge/supply control means for controlling the culture solution discharge/supply by the culture solution discharge/supply means; and a culture solution discharge/supply control means for controlling the stirring direction of the stirring means to control the culture solution discharge.・Equipped with a stirring direction control means that controls in synchronization with the supply, the stirring direction of the culture solution by the stirring means is reversed between when the culture solution is discharged through the filtration membrane and when fresh culture medium is supplied. A cell culture device characterized in that it is configured to obtain a cell culture device.
さらに、本発明は上記細胞培養装置において、撹拌手段
が正逆回転可能な攪拌翼を有し、培養液排出・供給制御
手段が、培養液排出・供給経路のバルブの開閉及びポン
プの作動を制御する手段からなり、攪拌手段の攪拌方向
を制御する攪拌方向制御手段が、前記攪拌翼を回転せし
めるスターラー及び前記スターラーの作動を前記培養液
排出・供給経路のバルブの開閉及びポンプの作動と同期
的に制御して前記攪拌翼の回転方向を所定時間に反転甘
めしる手段からなる細胞培養装置にある。Furthermore, in the cell culture apparatus of the present invention, the stirring means has stirring blades that can be rotated in forward and reverse directions, and the culture solution discharge/supply control means controls the opening/closing of the valve of the culture solution discharge/supply route and the operation of the pump. The stirring direction control means controls the stirring direction of the stirring means, and the stirring direction control means controls the stirrer that rotates the stirring blade and the operation of the stirrer in synchronization with the opening/closing of the valve of the culture liquid discharge/supply route and the operation of the pump. The cell culture apparatus comprises means for controlling the direction of rotation of the stirring blade to be reversed at a predetermined time.
さらに、本発明は細胞を懸濁状態で培養しつつ培養槽内
に設けた濾過膜を介して懸濁培養液から培養液の培養槽
外への一部排出、続いて新鮮培地の供給を継続的に行い
つつ連続培養を行なう細胞培養装置に於いて、培養液を
攪拌して細胞を懸濁状態とするための攪拌手段と、前記
濾過膜を介して培養液の培養槽外への一部排出、及び、
新鮮培地の供給を行う培養液排出・供給手段と、前記培
養液排出・供給手段による培養液排出・供給を制御する
培養液排出・供給制御手段と、前記攪拌手段の攪拌方向
を前記培養液排出・供給と同期的に制御する攪拌方向制
御手段と、を具備し、攪拌手段による培養液の攪拌方向
を、濾過膜を介しての培養液の排出時と、新鮮培地の供
給時とで反転せしめ得るように構成し、かつ、前記培養
液排出・供給手段が酸素供給手段を兼ねた複数対の機構
からなり、前記複数対の機構のそれぞれについて、培養
液排出・供給及び酸素供給を交互に行わしめる制御手段
を具備したことを特徴とする細胞培養装置にある。Furthermore, while culturing cells in a suspended state, the present invention allows part of the culture solution to be discharged from the suspension culture solution to the outside of the culture tank via a filter membrane provided in the culture tank, and then continues to supply fresh culture medium. In a cell culture apparatus that performs continuous culture while performing continuous culture, there is provided a stirring means for stirring the culture solution to suspend the cells, and a part of the culture solution to the outside of the culture tank through the filtration membrane. discharge, and
A culture solution discharge/supply means for supplying a fresh medium; a culture solution discharge/supply control means for controlling the culture solution discharge/supply by the culture solution discharge/supply means; and a culture solution discharge/supply control means for controlling the stirring direction of the stirring means to control the culture solution discharge.・Equipped with a stirring direction control means that controls in synchronization with the supply, the stirring direction of the culture solution by the stirring means is reversed between when the culture solution is discharged through the filtration membrane and when fresh culture medium is supplied. and the culture solution discharge/supply means is comprised of a plurality of pairs of mechanisms that also serve as oxygen supply means, and the culture solution discharge/supply and oxygen supply are alternately performed for each of the plurality of pairs of mechanisms. The present invention provides a cell culture apparatus characterized by comprising a control means for controlling the cell culture.
上記濾過膜としては本発明の細胞培養方法の目的に適す
ものであればいずれのものも使用できるが、例えば中空
系膜が好適に用いられる。As the above-mentioned filtration membrane, any membrane can be used as long as it is suitable for the purpose of the cell culture method of the present invention, and for example, a hollow membrane is preferably used.
さらに、上記の濾過膜を介して供給する新鮮培地として
は目的とする細胞を増殖せしめるに好適な培地であれば
いずれのものも使用できるが、特に、タンパク成分を除
いたものが好適であり、タンパク成分は濾過膜を介する
ことなく培養槽に供給することが好ましい。Furthermore, as the fresh medium supplied through the above-mentioned filtration membrane, any medium suitable for growing the target cells can be used, but one without protein components is particularly suitable, It is preferable that the protein component is supplied to the culture tank without passing through a filtration membrane.
本発明の培養方法において、培養する細胞としては、懸
濁状態にて増殖可能なものであればよく、天然の動物細
胞のみならず、人為的或いは遺伝子操作により変性され
た細胞、例えばハイブリドーマであってもよい。また細
胞としてリンホカインを産生ずるリンパ球由来の細胞で
あってもよく、インターフェロンの如き有用な生理活性
物質を産生ずる2倍体細胞であってもよい。さらに種々
のモノクローナル抗体を産生ずる細胞であってもよく、
植物細胞、微性物であってもよい。In the culture method of the present invention, the cells to be cultured may be of any type as long as they can grow in suspension, and include not only natural animal cells but also cells that have been modified artificially or by genetic manipulation, such as hybridomas. You can. The cells may also be lymphocyte-derived cells that produce lymphokines, or diploid cells that produce useful physiologically active substances such as interferon. Furthermore, it may be a cell that produces various monoclonal antibodies,
It may be a plant cell or a microscopic substance.
本発明における懸濁状態の細胞培養において培養槽では
培養しようとする細胞が培養液中に浮遊した状態で培養
される。この細胞の浮遊は、前記したように、培養液の
流動方向を所定の時間間隔で逆転させることによりなさ
れ、そして、この流動方向の逆転は、例えばマグネティ
ックスクーラーによる培養槽の中に調整された撹拌手段
によってなされる。培養液は実質的に水よりなる水性媒
体に、種々の無機塩、ビタミン類、ブドウ糖、アミノ酸
などの通常細胞培養に使用される添加成分が加えられて
いる。また動物の血清やアルブミン、インシュリン等の
タンパク質は細胞の増殖に不可欠であり、それぞれ適量
加えられている。In the suspension cell culture according to the present invention, cells to be cultured are cultured in a culture tank in a suspended state in a culture solution. As described above, this cell suspension is achieved by reversing the flow direction of the culture solution at predetermined time intervals, and the reversal of the flow direction is adjusted in the culture tank using, for example, a magnetic cooler. This is done by stirring means. The culture solution is an aqueous medium consisting essentially of water, to which additive components commonly used in cell culture, such as various inorganic salts, vitamins, glucose, and amino acids, are added. Proteins such as animal serum, albumin, and insulin are essential for cell proliferation, and appropriate amounts of each are added.
本発明における潅流培養を行うための細胞分離用の膜と
しては、体積当りの濾過面積が大きくとれる中空糸膜が
好ましい。膜はテフロンやポリエチレン製の疎水性膜、
セルロース製の親水性膜いずれでもよい。又、膜の細孔
径は、例えば動物細胞がハイブリドーマである場合、−
aにその大きさはIOpm以上であるから5μm以下で
あればよい。As the cell separation membrane for performing perfusion culture in the present invention, a hollow fiber membrane is preferable because it can provide a large filtration area per volume. The membrane is a hydrophobic membrane made of Teflon or polyethylene,
Any hydrophilic membrane made of cellulose may be used. In addition, the pore size of the membrane is, for example, when the animal cell is a hybridoma, -
Since the size of a is IOpm or more, it is sufficient that it is 5 μm or less.
また本発明の方法を実施するに当って1.新しい培地の
供給と、古い培養液の排出とは、培養槽中の液面の水準
がほぼ一定となるように維持することが望ましいが、必
ずしもその必要はない。新しい培地の供給と古い培養液
の排出とは、それぞれ独立して、連続的に行なうことも
でき、また間欠的に行なうこともできる。In carrying out the method of the present invention, 1. Although it is desirable to maintain the liquid level in the culture tank at a substantially constant level when supplying new culture medium and discharging old culture solution, this is not always necessary. The supply of new culture medium and the discharge of old culture solution can be performed independently and continuously, or can be performed intermittently.
本発明の培養方法において、懸濁液中の酸素濃度を一定
に維持するために、酸素を供給する方法としては、懸濁
液中へ酸素または酸素含有ガスを直接供給してもよく、
また他の供給手段によってもよい。他の供給手段として
は、例えば培養槽内に浸漬した多孔性の酸素供給管に酸
素を流し、酸素を拡散・溶解させる方法である。In the culture method of the present invention, in order to maintain a constant oxygen concentration in the suspension, oxygen or an oxygen-containing gas may be directly supplied into the suspension.
Alternatively, other supply means may be used. Another supply method is, for example, a method in which oxygen is diffused and dissolved by flowing oxygen through a porous oxygen supply pipe immersed in a culture tank.
培養を効率的に行なうために、新しい培養液および酸素
などを懸濁液中へ均一に供給し、一方、古い培養液を槽
外へ排出する必要があり、そのため懸濁液は良く撹拌さ
れていることが望ましい。In order to perform culture efficiently, it is necessary to uniformly supply new culture solution and oxygen into the suspension, while draining the old culture solution out of the tank, so the suspension must be well stirred. It is desirable to be present.
これには撹拌方法として、撹拌翼の回転による如き機械
的撹拌方法が適している。As a stirring method, a mechanical stirring method such as rotation of a stirring blade is suitable for this purpose.
また培養は、培養槽の有効培養容積に対して新しい培養
液を供給する割合(It換率)は−日当り0.2〜10
.好ましくは0.5〜5の範囲とするのが適当である。In addition, in culture, the ratio of supplying new culture solution to the effective culture volume of the culture tank (It conversion rate) is -0.2 to 10 per day.
.. Preferably, it is appropriate to set it in the range of 0.5 to 5.
本発明の細胞培養装置の概要は第1図に示す通り、酵素
供給チューブ4、中空系膜3、攪拌翼2を具備した培養
槽と前記攪拌翼に対応して外部に設置した反転スターク
−5からなる。The outline of the cell culture apparatus of the present invention is shown in FIG. 1, which includes a culture tank equipped with an enzyme supply tube 4, a hollow membrane 3, and a stirring blade 2, and an inverted Stark-5 installed externally corresponding to the stirring blade. Consisting of
第2図は本発明の培養液の攪拌方向を変えるために必要
な装置構成及び制御手段の一例を示したものである。す
なわち、反転スターク−5の回転方向を制御するスター
ラーコントロールボックス6とポンプP−1+ P−2
,P−3及び電動バルブv−1゜V−2をタイマー7に
より、それぞれ制御し、潅流培養を行うものである0例
えば、実施例1おけるポンプP−1,P−2,P−3、
電動バルブV−1,V−2及び反転スターク−5の培養
時間経過における作動状態は第3図の通りである。FIG. 2 shows an example of the device configuration and control means necessary for changing the stirring direction of the culture solution according to the present invention. That is, a stirrer control box 6 that controls the rotation direction of the reversing Stark-5 and pumps P-1+P-2.
, P-3 and electric valves v-1 and V-2 are controlled by a timer 7 to perform perfusion culture.
The operating states of the electric valves V-1 and V-2 and the reverse Stark-5 over the course of the culture time are shown in FIG.
なお、ポンプ、電動バルブ及び反転スターラーの制御は
上記の様にタイマーにより行う方法の外に、培養槽内に
設けた液面計(レベルセンサー)により行うことも可能
である。In addition to controlling the pump, electric valve, and reversing stirrer using a timer as described above, it is also possible to control the pump, electric valve, and reversing stirrer using a liquid level gauge (level sensor) provided in the culture tank.
第4図は細胞分離膜と酸素供給膜を併用したものである
。すなわち、中空糸膜3Aにて、濾過及び逆流サイクル
中は、中空糸膜3Bには酸素Bを通気し、培養槽1に酸
素を供給する。中空糸膜3Aでの濾過、逆流サイクル終
了後は、中空糸膜3Bにて濾過、逆流サイクルを開始す
ると共に、中空糸膜3Aに酸素Bを通気し培養槽1に酸
素を供給する。このような酸素の供給と細胞の分離には
、多孔質のテフロン膜が適している。この方法によれば
、膜の濾過負荷が半減すると共に、酸素通気により膜洗
浄が強化されるため、膜の濾過寿命が著しく向上する。FIG. 4 shows a combination of a cell separation membrane and an oxygen supply membrane. That is, during the filtration and backflow cycles in the hollow fiber membrane 3A, oxygen B is aerated through the hollow fiber membrane 3B, and oxygen is supplied to the culture tank 1. After the filtration and backflow cycle with the hollow fiber membrane 3A is completed, the filtration and backflow cycle is started with the hollow fiber membrane 3B, and oxygen B is aerated through the hollow fiber membrane 3A to supply oxygen to the culture tank 1. A porous Teflon membrane is suitable for such oxygen supply and cell separation. According to this method, the filtration load on the membrane is halved, and membrane cleaning is strengthened by oxygen aeration, so the filtration life of the membrane is significantly improved.
培養槽内で動物細胞を懸濁状態に保つために培養液を撹
拌するための撹拌機の回転が、中空糸膜による培養液の
濾過排出時と新鮮培地の供給による膜洗浄時で異なるよ
うに動作する。このため、濾過時の培養液の撹拌により
変形した細胞は膜の細孔の一部に入り込み目づまりを起
こすが、新鮮培地の供給による膜洗浄時は培養液の撹拌
方向が逆であるため、濾過時変形し膜の細孔内に目づま
りした細胞の形状は復元するため、細孔より離脱しやす
くなり膜は十分洗浄される。なお、この時の膜洗浄はタ
ンパク質成分不含の新鮮培地を用いて行うことが望まし
い、このようにすると、培養液のタンパク質成分の析出
による中空糸膜の内面汚染は半減する。ここで、細胞の
増殖に不可欠なタンパク質成分は、別途、培養槽に供給
する。The rotation of the stirrer used to stir the culture medium in order to keep animal cells suspended in the culture tank is now different between when the culture medium is filtered and discharged using the hollow fiber membrane and when the membrane is washed by supplying fresh medium. Operate. For this reason, cells deformed by stirring the culture medium during filtration enter some of the pores of the membrane and cause clogging, but when cleaning the membrane by supplying fresh medium, the direction of stirring of the culture medium is reversed, so the pores of the membrane become clogged. The shape of the cells that are deformed and clogged in the pores of the membrane is restored, so that they are easily separated from the pores and the membrane is thoroughly washed. Note that it is preferable that the membrane cleaning at this time be performed using a fresh medium that does not contain protein components. If this is done, the inner surface contamination of the hollow fiber membrane due to precipitation of protein components in the culture solution will be halved. Here, protein components essential for cell proliferation are separately supplied to the culture tank.
また、細胞培養装置において、複数対の中空糸膜を培養
槽内に装着し、前記複数対の中空糸膜を介して酸素供給
と濾過・膜洗浄サイクルを交互に行わしめるようにした
細胞培養装置は、濾過時に細胞が変形し膜の細孔内に目
づまりする。しかし膜洗浄時及び特に酸素供給時に膜の
細孔内から目づまりした細胞が放出されるため膜は十分
洗浄される。Further, in the cell culture device, a plurality of pairs of hollow fiber membranes are installed in a culture tank, and oxygen supply and filtration/membrane cleaning cycles are alternately performed via the plurality of pairs of hollow fiber membranes. The cells deform during filtration and clog the pores of the membrane. However, the membrane is sufficiently cleaned because the clogged cells are released from the pores of the membrane during membrane cleaning and especially when oxygen is supplied.
以上述べた方法及び装置において、撹拌翼を濾過時と膜
洗浄時とで互いに反対の方向に回転させるには、タイマ
ー及びコントロールボックス又は液面レベルセンサー及
びコントロールボックスにより構成された手段を用いる
。コントロールボックスは反転スターラー、全てのバル
ブ及びポンプと電気的に連動している0反転スターラー
の回転方向、バルブの開閉、ポンプの作動を濾過時と膜
洗浄時の周期に合わせて適切に往復するよう電気信号を
送る。In the method and apparatus described above, means constituted by a timer and a control box or a liquid level sensor and a control box is used to rotate the stirring blades in opposite directions during filtration and membrane cleaning. The control box controls the rotating direction of the 0-reversing stirrer, which is electrically linked to the reversing stirrer, all valves and pumps, the opening and closing of the valves, and the operation of the pump to appropriately reciprocate in accordance with the cycles of filtration and membrane cleaning. send electrical signals.
更に複数対の中空糸膜が交互に酸素供給と濾過・洗浄サ
イクルへと作動する構成の作用は、少なくとも一つの中
空糸膜の付近に酸素濃度センサーを具備しているためこ
の中空糸膜付近の酸素濃度が高くなると(この時はこの
中空糸膜は酸素供給を行なっている)、該酸素濃度セン
サーが酸素供給管の中途に位置する調節器に電気信号が
送られ、この信号が該調節器から直結したポンプ・バル
ブをそれぞれ作動させ、該中空膜を濾過・逆洗浄に配さ
れる。次にこの中空糸膜付近の酸素濃度が低くなると、
このときは酸素濃度センサーから前記と逆の電気信号が
調節器に送られる酸素濃度センサー付近の中空糸膜は酸
素供給へと配せられ、このがサイクルが繰り返されるの
である。Furthermore, the structure in which multiple pairs of hollow fiber membranes alternately operate in oxygen supply and filtration/cleaning cycles is possible because an oxygen concentration sensor is provided near at least one hollow fiber membrane. When the oxygen concentration increases (at this time, this hollow fiber membrane is supplying oxygen), the oxygen concentration sensor sends an electrical signal to the regulator located in the middle of the oxygen supply pipe, and this signal is sent to the regulator. The pumps and valves directly connected to the membranes are operated, and the hollow membranes are used for filtration and backwashing. Next, when the oxygen concentration near this hollow fiber membrane decreases,
At this time, the hollow fiber membrane near the oxygen concentration sensor, where an electrical signal opposite to that described above is sent from the oxygen concentration sensor to the regulator, is arranged to supply oxygen, and the cycle is repeated.
また、酸素濃度センサーと調節器が電気的に連動し、該
調節器が各々ポンプ、バルブへと連動する構成によって
前述と似たような作用によって培養槽内の酸素濃度は終
始はぼ一定に保たれる。In addition, the oxygen concentration sensor and the regulator are electrically linked, and the regulators are linked to the pump and valve, respectively, so that the oxygen concentration in the culture tank is kept almost constant from beginning to end by a similar effect to that described above. dripping
また、更に、上述の中空糸膜の構成により懸濁培養液中
にユニットが沈められており、そのユニットにある毛管
束の一端より導管を経て新鮮培地が供給され、中空糸膜
を介して新鮮培地が懸濁培養液中へ供給されると共に、
細胞が産出した老廃物、代謝生産物、その他生前阻害物
質を含んだ古い培養液が中空糸膜を通過してユニットの
他端にある毛管束を経て培養槽の外へ流出されるので、
懸濁培養液中において細胞の大量、高密度による培養が
容易に可能となる。Further, the unit is submerged in the suspension culture solution due to the hollow fiber membrane structure described above, and fresh culture medium is supplied from one end of the capillary bundle in the unit through the conduit, and the fresh medium is supplied through the hollow fiber membrane. A medium is supplied into the suspension culture, and
The old culture solution containing waste products, metabolic products, and other substances that inhibit the growth of cells produced by the cells passes through the hollow fiber membrane and flows out of the culture tank through the capillary bundle at the other end of the unit.
Cells can be easily cultured in large quantities and at high density in a suspension culture solution.
以下、本発明の実施例を用いて詳細に説明する。 Hereinafter, the present invention will be explained in detail using examples.
但し、本発明はこれらの実施例に限定されるものでない
。However, the present invention is not limited to these examples.
〈実施例1〉
(1)培養装置
第1図に示す培養システムを使用した。培養槽1には細
孔径2μmのテフロン製中空糸膜(2φX6m)3が内
蔵されており、モジュールの一端はバルブにより切換え
られる培養液の流出口りと新鮮培地の流入口Aが設けら
れている。なお、培養槽1の正味の容積は約20001
B!である。<Example 1> (1) Culture device A culture system shown in FIG. 1 was used. The culture tank 1 has a built-in Teflon hollow fiber membrane (2φ x 6m) 3 with a pore diameter of 2 μm, and one end of the module is provided with an outflow port for the culture solution and an inlet port A for the fresh medium, which can be switched by a valve. . In addition, the net volume of culture tank 1 is approximately 20001
B! It is.
(2)培養液 イーグルMEM培地と新生子牛血清を用いた。(2) Culture solution Eagle's MEM medium and newborn calf serum were used.
(3)培養方法及び結果
あらかじめオートクレーブ滅菌した前記培養槽に正味培
養容積が約2000−になるように培養液(新生子牛血
清10%含む)を送入し、これにラット腹水肝ガン由来
株化細胞を1×10h個/−となるように接種した。培
養槽1では炭酸ガスを含む酸素ガスBが(溶存酸素が3
ppmとなるように)多孔質ポリテトラフルオロエチ
レン製の酸素供給管4を通して自動的にコントロールさ
れて送入されている。培養槽中の培養液は37°Cに保
持されている。培養槽中にはマリン型撹拌翼2が取付け
られており、撹拌速度は60rpmであった。なお、撹
拌翼2はタイマーにより任意の時間反転可能なマグネテ
ィック反転スターラー5と連動する。培養は下記■、■
、■により行った。(3) Culture method and results A culture medium (containing 10% newborn calf serum) was introduced into the above-mentioned culture tank, which had been sterilized by autoclaving in advance, so that the net culture volume was approximately 2,000 μm, and this was added to the strain derived from rat ascites hepatoma. cells were inoculated at 1 x 10 cells/-. In culture tank 1, oxygen gas B containing carbon dioxide (dissolved oxygen
ppm) through an oxygen supply pipe 4 made of porous polytetrafluoroethylene under automatic control. The culture solution in the culture tank is maintained at 37°C. A marine type stirring blade 2 was installed in the culture tank, and the stirring speed was 60 rpm. Incidentally, the stirring blades 2 are interlocked with a magnetic reversing stirrer 5 which can be reversed for an arbitrary period of time using a timer. The culture is as follows■,■
, ■.
■濾過過程
ポンプP−2により中空糸膜3を介して培養液を200
mt/hで2.5時間濾過し古い培養液を排出する。■ Filtration process 200% of the culture solution is passed through the hollow fiber membrane 3 by the pump P-2.
Filter at mt/h for 2.5 hours and drain the old culture solution.
反転スターラ−5は右回転とした。The reversing stirrer 5 was rotated clockwise.
■逆洗浄過程
ポンプP−1により血清不含新鮮培地Aを20〇−/h
で2.5時間、中空糸膜3を逆洗浄すると共に、ポンプ
P−3により血清Cを20 m/ /hで2.5時間培
養槽lに別途に送入し、新鮮培地と血清を供給する。■Backwashing process pump P-1 pumps serum-free fresh medium A 200-/h.
The hollow fiber membrane 3 was backwashed for 2.5 hours, and serum C was separately pumped into the culture tank L at 20 m/h for 2.5 hours using pump P-3 to supply fresh medium and serum. do.
反転スターラー5は左回転とした。The reversing stirrer 5 was rotated to the left.
■休止過程 ポンプP−1,P−2,P−3を全て1時間停止する。■Pause process All pumps P-1, P-2, and P-3 are stopped for one hour.
反転スターラ−5は右回転とした。The reversing stirrer 5 was rotated clockwise.
上記、■→■→■を1サイクル(6時間)とし、これを
くり返す潅流培養操作を40日間継続した。The above perfusion culture operation was repeated for 40 days, with one cycle (6 hours) of ■→■→■.
その結果を第1表に示すとおり細胞密度、生存率ともに
きわめて良好であった。As shown in Table 1, the cell density and survival rate were both extremely good.
(本頁以下余白)
反転
(タンパク質を別途入れる)(fi艮J反転
(培地にタンパク質含む)(艮)
〈実施例2〉
培養装置及び培養液は実施例1と同じものを用いた。実
験方法は実施例1における■逆洗浄過程をポンプP−1
により血清含有(10χ)新鮮培地を200m/hで2
.5時間、中空糸膜3を逆洗浄する(ポンプP−3によ
る血清の供給は停止する)。この時の反転スターテ−5
は左回転とした。これら以外は全て同じとした。結果は
第2表に示すとおり、細胞密度、生存率ともに良好であ
った。(Margins below this page) Inversion (add protein separately) (fi 艮J Inversion (contain protein in medium) (艮) <Example 2> The same culture apparatus and culture solution as in Example 1 were used. Experimental method The ■backwashing process in Example 1 was performed using pump P-1.
Fresh serum-containing (10χ) medium was grown at 200 m/h for 2 hours.
.. The hollow fiber membrane 3 is backwashed for 5 hours (serum supply by pump P-3 is stopped). At this time, the reversal start-5
was rotated to the left. Everything else was the same except for these. As shown in Table 2, both cell density and survival rate were good.
(本質以下余白)
〈実施例3〉
培養装置及び培養液は実施例1と同じものを用いた。培
養する細胞は株化細胞のHeLaを用いた。(Margin below the essence) <Example 3> The same culture device and culture solution as in Example 1 were used. The cells to be cultured were the established cell line HeLa.
実験方法は実施例1における■逆洗浄過程をポンプP−
1により血清含有(10χ)新鮮培地を200−/hで
2.5時間、中空糸膜3を逆洗浄する(ポンプP−3に
よる血清の供給は停止する)。この時の反転スターテ−
5は左回転とした。これら以外は全て同じとした。結果
は第3表に示すとおり、細胞密度、生存率ともに良好で
あった。The experimental method was to perform the backwashing process in Example 1 using pump P-
1, the hollow fiber membrane 3 is backwashed with a serum-containing (10x) fresh medium at 200-/h for 2.5 hours (serum supply by pump P-3 is stopped). At this time, the reverse start
5 was a left rotation. Everything else was the same except for these. As shown in Table 3, both cell density and survival rate were good.
(本質以下余白)
反転
第
表
(培地にタンパク質含む)(良)
細胞はHeLa
〈実施例4〉
(1)培養装置
第3図に示す培養システムを使用した。培養槽1には細
孔径2μmのポリテトラフルオロエチレン製中空糸膜(
2φx6m)3A、3Bが内蔵されており、それぞれに
は酸素供給管と濾過逆洗浸管を兼ねた管が埋設されてい
る。モジュールの一端はバルブにより切換えられる培養
液の流出口りと新鮮培地の流入口Aが設けられている。(Leaving space below the essence) Inverted table (medium contains protein) (good) Cells were HeLa <Example 4> (1) Culture device The culture system shown in FIG. 3 was used. Culture tank 1 was equipped with a hollow fiber membrane made of polytetrafluoroethylene with a pore diameter of 2 μm (
2φ x 6m) 3A and 3B are built-in, and a pipe that doubles as an oxygen supply pipe and a filtration backwash immersion pipe is buried in each. One end of the module is provided with a culture solution outflow port and a fresh culture medium inflow port A, which are switched by a valve.
なお、培養槽1の正味の容積は約1800−である。In addition, the net volume of the culture tank 1 is about 1800-.
(2)培養液 イーグルMEM培地と新生子牛血清を用いた。(2) Culture solution Eagle's MEM medium and newborn calf serum were used.
(3)培養方法及び結果
あらかじめオートクレーブ滅菌した前記培養槽に正味培
養容積が約1800mlになるように培養液(新生子牛
血清10%含む)を送入し、これにラット腹水肝ガン由
来株化細胞を1×10b個/dとなるように接種した。(3) Culture method and results A culture medium (containing 10% newborn calf serum) was introduced into the culture tank, which had been sterilized by autoclaving in advance, so that the net culture volume was about 1800 ml, and a strain derived from rat ascites liver cancer was introduced. Cells were inoculated at 1×10 b cells/d.
培養槽1では炭酸ガスを含む酸素ガスBが(溶存酸素が
3 ppmとなるように)多孔質ポリテトラフルオロエ
チレン製の酸素供給管4を通して自動的にコントロール
されて送入されている。培養槽中の培養液は37°Cに
保持されている。培養槽中にはマリン型撹拌翼2が取付
けられており、撹拌速度は60rpmであった。培養は
下記■、■、■により行った。Into the culture tank 1, oxygen gas B containing carbon dioxide gas (so that dissolved oxygen is 3 ppm) is automatically controlled and fed through an oxygen supply pipe 4 made of porous polytetrafluoroethylene. The culture solution in the culture tank is maintained at 37°C. A marine type stirring blade 2 was installed in the culture tank, and the stirring speed was 60 rpm. Cultivation was carried out as described below.
■濾過逆洗浄過程
ポンプP−2:P−1により中空糸膜3Aを介して培養
液を200−/hで5時間濾過逆洗浄し古い培養液を排
出する。そして、中空糸膜3Bはその間酸素ガスBを送
入する。スター5−5は右回転である。ポンプP−3に
より血清Cを20d/hで2.5時間培養槽lに送入し
、新鮮培地と血清を供給する。(2) Filtration and backwashing process Pump P-2: P-1 filters and backwashes the culture solution through the hollow fiber membrane 3A at 200-/h for 5 hours, and discharges the old culture solution. During this time, oxygen gas B is introduced into the hollow fiber membrane 3B. Star 5-5 is clockwise rotation. Pump P-3 pumps serum C into culture tank 1 at 20 d/h for 2.5 hours to supply fresh medium and serum.
反転スターラ−5は左回転とした。The reversing stirrer 5 was rotated counterclockwise.
■休止過程 ポンプP−1,P〜2.P−3を全て1時間停止する。■Pause process Pump P-1, P~2. Stop all P-3 for 1 hour.
スター5−5は右回転である。Star 5-5 is clockwise rotation.
上記、■→■を1サイクル(6時間)とし、これをくり
返す潅流培養操作を40日間継続した。その結果は第4
表に示すとおり、細胞密度、生存率ともに良好であった
。The perfusion culture operation was repeated for 40 days, with one cycle (6 hours) of ■→■ as described above. The result is the fourth
As shown in the table, both cell density and survival rate were good.
第
表
(培地にタンパク質含む)(良)
複中空糸膜
〈実施例5〉
培養装置及び培養液は実施例4と同じものを用いた。培
養する細胞は株化細胞の一種であるHeLaを用いた。Table 1 (Medium contains protein) (Good) Double hollow fiber membrane <Example 5> The same culture device and culture solution as in Example 4 were used. The cells to be cultured were HeLa, which is a type of established cell line.
実験方法は実施例4におけるの濾過逆洗浄過程をポンプ
P−2:P−1により血清含有(10χ)新鮮培地を1
50d/hで5時間、中空糸膜3−Aを濾過逆洗浄する
。(ポンプP−3による血清の供給は停止する)この時
の反転スターシーは左回転とした。これら以外は全て同
じとした。結果は第5表に示すとおり、細胞密度、生存
率ともに良好であった。The experimental method was to repeat the filtration and backwashing process in Example 4 by pumping 1 serving of serum-containing (10χ) fresh medium using pump P-2:P-1.
The hollow fiber membrane 3-A is filtered and backwashed at 50 d/h for 5 hours. (The supply of serum by pump P-3 was stopped.) At this time, the inversion Starcy was rotated to the left. Everything else was the same except for these. As shown in Table 5, both cell density and survival rate were good.
(本質以下余白)
(培地にタンパク質含む)(良)
複中空糸膜 細胞はHeLa
〈比較例1〉
培養装置及び培養液は実施例1と同じものを用いた。実
験方法は実施例1における反転スターシ−5の回転方向
を常時右回転とした以外は全て同じとした。結果は第6
表に示すとおりである。(Left below the essence) (Contains protein in medium) (Good) Double hollow fiber membrane Cells are HeLa <Comparative Example 1> The same culture device and culture solution as in Example 1 were used. The experimental method was the same as in Example 1 except that the rotating direction of the inverted Starshi-5 was always clockwise. The result is the 6th
As shown in the table.
(本質以下余白)
常時右回転
(タンパク質含まず)(良)
〈比較例2〉
培養装置及び培養液は実施例4と同じものを用いた。実
験方法は実施例1における反転スタージ−5の回転方向
を常時右回転とし、■逆洗浄過程をポンプP−1により
血清含有(10χ)新鮮培地を200m//hで2.5
時間、中空糸膜3を逆洗浄する(ポンプP−3による血
清の供給は停止する)。以外は全て実施例1と同じとし
た。結果第7表に示すとおりである。(Margins below essence) Constant clockwise rotation (no protein included) (good) <Comparative Example 2> The same culture device and culture solution as in Example 4 were used. The experimental method was as follows: The rotating direction of the inverted Sturge-5 in Example 1 was always clockwise, and the backwashing process was performed by pumping P-1 with serum-containing (10χ) fresh medium at 200 m//h for 2.5 m/h.
The hollow fiber membrane 3 is backwashed for an hour (serum supply by pump P-3 is stopped). Everything else was the same as in Example 1. The results are shown in Table 7.
(本質以下余白)
第 7 表
常時右回転(タンパク質含む)(不良)複中空糸膜
上記実施例と比較例より中空糸膜の目づまりが起ると、
圧力損失が増大するため膜を介しての培養液の濾過と新
鮮培地による逆洗浄が十分行えなくなり、置換率が徐々
に低下する。このため古い培養液の抜き取りと、新鮮培
地の供給が行えず栄養成分(例えばグルコースやアミノ
酸)の供給不足と増殖阻害因子(例えば細胞の老廃成分
である乳酸やアンモニアなど)の蓄積が起り、細胞の増
殖は頭打ちとなると共に生存率が低下する。これより、
中空糸膜の目づまりによる置換率の低下を防ぐことが重
要であることが分る。(Leaving space below the essence) Table 7 Constant clockwise rotation (contains protein) (defective) Double hollow fiber membrane From the above examples and comparative examples, when clogging of the hollow fiber membrane occurs,
Due to the increased pressure loss, filtration of the culture solution through the membrane and backwashing with fresh culture medium cannot be performed sufficiently, and the replacement rate gradually decreases. As a result, old culture medium cannot be removed and fresh culture medium cannot be supplied, resulting in insufficient supply of nutrients (e.g. glucose and amino acids) and accumulation of growth-inhibiting factors (e.g. cell waste components such as lactic acid and ammonia). The proliferation reaches a plateau and the survival rate decreases. Than this,
It can be seen that it is important to prevent a decrease in the replacement rate due to clogging of the hollow fiber membrane.
本実施例によれば中空糸膜の逆洗浄において、■血清不
合新鮮培地による洗浄、■培養液の撹拌方向の反転によ
り、タンパク質成分による中空糸膜の内面汚染の減少と
、濾過時中空糸膜細孔に目づまりした細胞形状の復元に
よる脱離が起るため中空糸膜の目づまりが著しく減少す
る効果がある。According to this example, in the backwashing of hollow fiber membranes, by (1) washing with a serum-incompatible fresh medium and (2) reversing the stirring direction of the culture solution, it is possible to reduce the internal contamination of the hollow fiber membranes by protein components and to reduce the contamination of the hollow fiber membranes during filtration. Since detachment occurs due to restoration of the shape of the cells that clog the pores, this has the effect of significantly reducing clogging of the hollow fiber membrane.
上記のことより、培養実験は置換率を1.0に設定して
行ったが、置換率を大きくすれば、細胞密度は更に増大
することは明らかである。From the above, although the culture experiment was conducted with the substitution rate set at 1.0, it is clear that if the substitution rate is increased, the cell density will further increase.
以上述べた構成:作用により細胞を培養液の中で懸濁培
養(浮遊培養)・潅流培養の方法で長期間にわたって高
い生存率で高密度培養する方法が確立され、また、その
ための装置も提供することが可能となった。The structure described above has established a method of culturing cells at high density and with a high survival rate over a long period of time using suspension culture (suspension culture) or perfusion culture in a culture medium, and also provides equipment for this purpose. It became possible to do so.
第1図は本発明の細胞培養装置を示す図であり、第2図
は本発明の制御手段を設えた細胞培養装置を示す図であ
り、第3図は複数対の中空糸膜を具備した細胞培養装置
を示す図であり、第4図は本発明細胞培養装置における
反転スタージーの回転方向、ポンプの作動、バルブの開
閉を横軸を時間軸とした作動図である。
l・・・培養槽、2・・・撹拌翼、3 (3A、3B
)・・・中空糸膜、4・・・酸素供給管、5・・・反転
スタージー6・・・コントロールボックス、7・・・タ
イマー、8・・・タンパク譬成分導入管、9・・・酸素
濃度センサー10・・・調節器、11・・・アルカリタ
ンク、12・・・pHコントロール用電磁弁、13・・
・pH電極、工4・・・pH電極コネクタ、15・・・
回転計、16・・・回転数調整ハンドル、17・・・軸
受、18・・・のぞき窓、19・・・ヒーター、20・
・・サーモセンサー、2工・・・温度制御器、50・・
・スターラーA・・・新鮮培地の流入口、B・・・酸素
ガスモジュール、C・・・タンパク質成分モジュール、
D・・・培養液の流出口。FIG. 1 is a diagram showing a cell culture device of the present invention, FIG. 2 is a diagram showing a cell culture device equipped with a control means of the present invention, and FIG. 3 is a diagram showing a cell culture device equipped with a plurality of pairs of hollow fiber membranes. FIG. 4 is a diagram showing a cell culture device, and FIG. 4 is an operational diagram showing the rotation direction of the inverted stargie, pump operation, and valve opening/closing in the cell culture device of the present invention, with the horizontal axis as the time axis. l... Culture tank, 2... Stirring blade, 3 (3A, 3B
)...Hollow fiber membrane, 4...Oxygen supply tube, 5...Reversing stirrer 6...Control box, 7...Timer, 8...Protein component introduction tube, 9...Oxygen Concentration sensor 10...Adjuster, 11...Alkaline tank, 12...Solenoid valve for pH control, 13...
・pH electrode, work 4...pH electrode connector, 15...
Tachometer, 16... Rotation speed adjustment handle, 17... Bearing, 18... Peephole, 19... Heater, 20...
・Thermosensor, 2 pieces...Temperature controller, 50...
- Stirrer A... Fresh medium inlet, B... Oxygen gas module, C... Protein component module,
D... Culture solution outlet.
Claims (1)
介して懸濁培養液から培養液の培養槽外への一部排出、
続いて新鮮培地の供給を行いつつ連続培養を行なう細胞
培養方法に於いて、細胞を培養槽内で懸濁状態を保つた
めの培養液の流動方向を、濾過膜を介しての培養液の排
出時と、新鮮培地の供給時とで逆転させることを特徴と
する細胞培養方法。 2、細胞を培養槽内で懸濁状態を保つための培養液の流
動方向が、攪拌手段による培養液の攪拌方向であり、濾
過膜を介しての培養液の排出時と、新鮮培地の供給時と
で前記攪拌方向を反転することを特徴とする請求項1記
載の細胞培養方法。 3、細胞を懸濁状態で培養しつつ培養槽内に設けた膜を
介して懸濁培養液から培養液の培養槽外への一部排出、
続いて新鮮培地の供給を継続的に行いつつ連続培養を行
なう細胞培養方法に於いて、濾過膜を介しての培養液の
排出時に生じた細胞の変形を、新鮮培地の供給時に復元
せしめることにより細胞による膜の目詰まりを除去する
ことを特徴とする細胞培養方法。 4、濾過膜が中空糸膜であることを特徴とする請求項1
乃至3のいずれか1つに記載の細胞培養方法。 5、濾過膜を介して供給する新鮮培地としてタンパク質
成分を除いた成分からなる培地を用い、濾過膜の目詰り
を除去することを特徴とする請求項1〜4記載の細胞培
養方法。 6、細胞を懸濁状態で培養しつつ培養槽内に設けた濾過
膜を介して懸濁培養液から培養液の培養槽外への一部排
出、続いて新鮮培地の供給を行いつつ連続培養を行なう
細胞培養装置に於いて、培養液を攪拌して細胞を懸濁状
態とするための攪拌手段と、前記濾過膜を介して培養液
の培養槽外への一部排出、及び、新鮮培地の供給を行う
培養液排出・供給手段と、前記培養液排出・供給手段に
よる培養液排出・供給を制御する培養液排出・供給制御
手段と、前記攪拌手段の攪拌方向を前記培養液排出・供
給と同期的に制御する攪拌方向制御手段と、を具備し、
攪拌手段による培養液の攪拌方向を、濾過膜を介しての
培養液の排出時と、新鮮培地の供給時とで反転せしめ得
るように構成したことを特徴とする細胞培養装置。 7、攪拌手段が正逆回転可能な攪拌翼を有し、培養液排
出・供給制御手段が、培養液排出・供給経路のバルブの
開閉及びポンプの作動を制御する手段からなり、攪拌手
段の攪拌方向を制御する攪拌方向制御手段が、前記攪拌
翼を回転せしめるスターラー及び前記スターラーの作動
を前記培養液排出・供給経路のバルブの開閉及びポンプ
の作動と同期的に制御して前記攪拌翼の回転方向を所定
時間に反転せめしる手段からなることを特徴とする請求
項5記載の細胞培養装置。 8、濾過膜が中空糸膜であることを特徴とする請求項6
又は請求項7記載の細胞培養装置。 9、濾過膜を介して供給する新鮮培地としてタンパク質
成分を除いた成分からなる培地を用い、タンパク質成分
を含む液体は直接培養槽内に供給することを特徴とする
請求項5ないし7のいずれか1つに記載の細胞培養装置
。 10、細胞を懸濁状態で培養しつつ培養槽内に設けた濾
過膜を介して懸濁培養液から培養液の培養槽外への一部
排出、続いて新鮮培地の供給を継続的に行いつつ連続培
養を行なう細胞培養装置に於いて、培養液を攪拌して細
胞を懸濁状態とするための攪拌手段と、前記濾過膜を介
して培養液の培養槽外への一部排出、及び、新鮮培地の
供給を行う培養液排出・供給手段と、前記培養液排出・
供給手段による培養液排出・供給を制御する培養液排出
・供給制御手段と、前記攪拌手段の攪拌方向を前記培養
液排出・供給と同期的に制御する攪拌方向制御手段と、
を具備し、攪拌手段による培養液の攪拌方向を、濾過膜
を介しての培養液の排出時と、新鮮培地の供給時とで反
転せしめ得るように構成し、かつ、前記培養液排出・供
給手段が酸素供給手段を兼ねた複数対の機構からなり、
前記複数対の機構のそれぞれについて、培養液排出・供
給及び酸素供給を交互に行わしめる制御手段を具備した
ことを特徴とする細胞培養装置。[Claims] 1. Partial discharge of the culture solution from the suspension culture solution to the outside of the culture tank through a membrane provided in the culture tank while culturing cells in a suspended state;
In a cell culture method in which continuous culture is performed while continuously supplying fresh medium, the flow direction of the culture solution to keep the cells in a suspended state in the culture tank is determined by adjusting the flow direction of the culture solution through the filtration membrane. A cell culture method characterized by reversing the time and supplying a fresh medium. 2. The flow direction of the culture solution to keep the cells in a suspended state in the culture tank is the direction in which the culture solution is stirred by the stirring means, and when the culture solution is discharged through the filtration membrane and when fresh culture medium is supplied. 2. The cell culture method according to claim 1, wherein the stirring direction is reversed from time to time. 3. Partial discharge of the culture solution from the suspension culture solution to the outside of the culture tank via a membrane provided in the culture tank while culturing cells in a suspended state;
In a cell culture method in which continuous culture is performed while continuously supplying fresh medium, the deformation of the cells that occurs when the culture medium is drained through the filtration membrane is restored when fresh medium is supplied. A cell culture method characterized by removing membrane clogging caused by cells. 4. Claim 1, wherein the filtration membrane is a hollow fiber membrane.
4. The cell culture method according to any one of 3 to 3. 5. The cell culture method according to any one of claims 1 to 4, characterized in that the fresh medium supplied through the filtration membrane is a medium made of components excluding protein components, and clogging of the filtration membrane is removed. 6. While culturing the cells in suspension, part of the culture solution from the suspension culture solution is discharged to the outside of the culture tank via a filtration membrane installed in the culture tank, and then continuous culture is performed while supplying fresh medium. In a cell culture apparatus that performs the following steps, there is provided a stirring means for stirring the culture solution to suspend the cells, a part of the culture solution is discharged to the outside of the culture tank through the filtration membrane, and a fresh medium. a culture solution discharge/supply means for controlling the culture solution discharge/supply by the culture solution discharge/supply means; and a culture solution discharge/supply control means for controlling the culture solution discharge/supply by the culture solution discharge/supply means; and stirring direction control means for controlling the stirring direction synchronously with the
1. A cell culture device characterized in that the direction of agitation of a culture medium by a stirring means can be reversed between when the culture medium is discharged through a filtration membrane and when a fresh medium is supplied. 7. The stirring means has stirring blades that can be rotated in forward and reverse directions, and the culture solution discharge/supply control means includes means for controlling the opening/closing of the valve of the culture solution discharge/supply route and the operation of the pump; A stirring direction control means for controlling the direction of the stirring blade rotates the stirring blade by controlling the stirrer that rotates the stirring blade and the operation of the stirrer in synchronization with the opening/closing of the valve of the culture solution discharge/supply route and the operation of the pump. 6. The cell culture device according to claim 5, further comprising means for reversing the direction at a predetermined time. 8. Claim 6, characterized in that the filtration membrane is a hollow fiber membrane.
Or the cell culture device according to claim 7. 9. Any one of claims 5 to 7, characterized in that the fresh medium supplied through the filtration membrane is a medium consisting of components excluding protein components, and the liquid containing the protein components is supplied directly into the culture tank. 1. The cell culture device according to item 1. 10. While culturing cells in suspension, part of the culture solution from the suspension culture solution is drained out of the culture tank through a filter membrane provided in the culture tank, and then fresh culture medium is continuously supplied. In a cell culture device that performs continuous culture while stirring, a stirring means for stirring the culture solution to suspend the cells, a part of the culture solution to be discharged outside the culture tank through the filtration membrane, and , a culture solution discharge/supply means for supplying fresh culture medium, and a culture solution discharge/supply means for supplying fresh culture medium;
a culture solution discharge/supply control means for controlling the culture solution discharge/supply by the supply means; a stirring direction control means for controlling the stirring direction of the stirring means synchronously with the culture solution discharge/supply;
The stirring direction of the culture solution by the stirring means can be reversed between when the culture solution is discharged through the filtration membrane and when fresh culture medium is supplied, and the culture solution is discharged and supplied. The means consists of multiple pairs of mechanisms that also serve as oxygen supply means,
A cell culture apparatus characterized in that each of the plurality of pairs of mechanisms is provided with a control means for alternately discharging and supplying the culture medium and supplying oxygen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1017793A JPH02200176A (en) | 1989-01-30 | 1989-01-30 | Cell culture method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1017793A JPH02200176A (en) | 1989-01-30 | 1989-01-30 | Cell culture method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02200176A true JPH02200176A (en) | 1990-08-08 |
Family
ID=11953591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1017793A Pending JPH02200176A (en) | 1989-01-30 | 1989-01-30 | Cell culture method and device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02200176A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998032840A1 (en) * | 1997-01-24 | 1998-07-30 | Asahi Medical Co., Ltd. | Method for separating cells |
WO2015122528A1 (en) * | 2014-02-17 | 2015-08-20 | 旭化成株式会社 | Cell culturing device |
-
1989
- 1989-01-30 JP JP1017793A patent/JPH02200176A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998032840A1 (en) * | 1997-01-24 | 1998-07-30 | Asahi Medical Co., Ltd. | Method for separating cells |
US6268119B1 (en) | 1997-01-24 | 2001-07-31 | Asahi Medical Co., Ltd. | Method for separating cells |
WO2015122528A1 (en) * | 2014-02-17 | 2015-08-20 | 旭化成株式会社 | Cell culturing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7298054B2 (en) | Disposable bioprocess systems that support bioactivity | |
US20220325708A1 (en) | Alternating tangential flow rapid harvesting | |
Feder et al. | The large-scale cultivation of mammalian cells | |
JP2777385B2 (en) | Biological cell culture method, culture system and culture device | |
JP2019528087A (en) | Bioreactor and use thereof | |
JPH09500818A (en) | Particle sedimentation tank used for cell culture | |
JP7464687B2 (en) | Cell culture method and cell culture device | |
US5286646A (en) | Method for mammalian cell culture | |
JPS61257181A (en) | Culture of animal cell | |
JPS63501475A (en) | Apparatus and method for delivering gas to liquids, especially tissue culture growth media, without creating bubbles | |
JPH07203945A (en) | Living cell culture device | |
JP6744161B2 (en) | Separation device, culture device and separation method | |
JPS62130683A (en) | Method and apparatus for culturing cell | |
JPS63226279A (en) | Method and apparatus for culturing immobilized or adhesive cell of mammal | |
JPH02200176A (en) | Cell culture method and device | |
JPH06269274A (en) | Culture device of cell of organism and method of culture | |
EP0242984B1 (en) | Culture device | |
JPH0499483A (en) | Method for perfusion culture of animal cell | |
JPH078230B2 (en) | Cell culture device | |
JPH0428352B2 (en) | ||
JP2810140B2 (en) | Cell culture method and device | |
JPS6156075A (en) | Cultivation of human-human hybridoma | |
JPS60156378A (en) | Culture medium of cell | |
JPH0373274B2 (en) | ||
JPS62244380A (en) | Cultivation method and device |