[go: up one dir, main page]

JPH02195657A - Electrolyte circulation type secondary battery - Google Patents

Electrolyte circulation type secondary battery

Info

Publication number
JPH02195657A
JPH02195657A JP1013686A JP1368689A JPH02195657A JP H02195657 A JPH02195657 A JP H02195657A JP 1013686 A JP1013686 A JP 1013686A JP 1368689 A JP1368689 A JP 1368689A JP H02195657 A JPH02195657 A JP H02195657A
Authority
JP
Japan
Prior art keywords
electrolyte
negative electrode
positive electrode
liquid
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1013686A
Other languages
Japanese (ja)
Other versions
JP2815112B2 (en
Inventor
Toshio Shigematsu
敏夫 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1013686A priority Critical patent/JP2815112B2/en
Publication of JPH02195657A publication Critical patent/JPH02195657A/en
Application granted granted Critical
Publication of JP2815112B2 publication Critical patent/JP2815112B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は電解液循環型二次電池に関するものであり、
特に、電池容量の増大および電池性能の向上を図るよう
に改善された電解液循環型二次型′池に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to an electrolyte circulation type secondary battery,
In particular, the present invention relates to an improved electrolyte circulation type secondary cell that increases battery capacity and improves battery performance.

[従来の技術] 電気エネルギは、そのままの形態では貯蔵が困難である
ため、貯蔵可能なエネルギ形態に変換しなければならな
い。他方、安定した電力供給を行なうには、電力需要に
合わせて供給(すなわち発電)を行なう必要がある。こ
のため、電力会社は、常に最大需要に見合った発電設備
を建設し、需要に即応して発電を行なっている。しかし
ながら、第2図に電力需要曲線Aで示すように、昼間お
よび夜間では、電力の需要に大きな差が存在する。
[Prior Art] Since electrical energy is difficult to store in its original form, it must be converted into a storable energy form. On the other hand, in order to provide a stable power supply, it is necessary to supply (that is, generate power) in accordance with the power demand. For this reason, electric power companies always construct power generation facilities that meet the maximum demand and generate power in response to demand. However, as shown by the power demand curve A in FIG. 2, there is a large difference in power demand during the day and at night.

同様の現象は、週、月および季節間でも生じている。Similar phenomena occur across weeks, months, and seasons.

そこで、電力を効率良く貯蔵することが可能であれば、
オフピーク時余剰電力(第2図のXで示した部分に相当
する)を貯蔵し、ピーク時にこれを放出すれば第2図の
Yで示した部分を賄うことができ、需要の変動に対応す
ることができ、常にほぼ一定の電力(第2図の破線Zに
相当する量)のみを発電すればよいことになる。このよ
うなロードレベリングを達成することができれば、発電
設備を軽減することが可能となり、かつエネルギの節約
ならびに石油等の燃料節減にも大きく寄与することがで
きる。
Therefore, if it is possible to store electricity efficiently,
By storing surplus electricity during off-peak hours (corresponding to the portion indicated by This means that only a substantially constant amount of power (an amount corresponding to the broken line Z in FIG. 2) needs to be generated at all times. If such load leveling can be achieved, it will be possible to reduce the number of power generation facilities, and it will also be possible to greatly contribute to energy savings and fuel savings such as oil.

そこで、従来より種々の電力貯蔵法が提案されている。Therefore, various power storage methods have been proposed.

たとえば揚水発電が既に実施されているが、揚水発電で
は設備が消費地から遠く隔たったところに設置されてお
り、したがって送変電損失を伴うこと、ならびに環境面
での立地に制約があることなどの問題がある。それゆえ
に、揚水発電に変わる新しい電力貯蔵技術の開発が望ま
れているが、その1つとしてレドックスフロー電池の開
発が進められている。
For example, pumped storage power generation has already been implemented, but with pumped storage power generation, the equipment is installed far away from the consumption area, resulting in transmission and substation losses, and there are environmental restrictions on location. There's a problem. Therefore, there is a desire to develop a new power storage technology to replace pumped storage power generation, and the development of redox flow batteries is currently underway as one such technology.

第3図は、既に提案されているレドックスフロー電池の
一例を示す概略構成図である。このレドックスフロー電
池1は、セル2および正極液タンク3および負極液タン
ク4を備え、2個のタンク3.4を用いるため2タンク
方式と呼ばれているものである。セル2内は、たとえば
イオン交換膜からなる隔膜5により仕切られており、−
刃側が正極セル2a1他方側が負極セル2bを構成する
FIG. 3 is a schematic configuration diagram showing an example of a redox flow battery that has already been proposed. This redox flow battery 1 includes a cell 2, a positive electrode liquid tank 3, and a negative electrode liquid tank 4, and is called a two-tank type because it uses two tanks 3.4. The inside of the cell 2 is partitioned by a diaphragm 5 made of, for example, an ion exchange membrane, and -
The blade side constitutes a positive electrode cell 2a1, and the other side constitutes a negative electrode cell 2b.

正極セル2aおよび負極セル2b内には、それぞれ、電
極として正極6および負極7が配置されている。
A positive electrode 6 and a negative electrode 7 are arranged as electrodes in the positive electrode cell 2a and the negative electrode cell 2b, respectively.

第3図に示したレドックスフロー電池1では、たとえば
鉄イオン、クロムイオンのような原子価が変化するイオ
ンの水溶液をタンク3.4に貯蔵し、これをポンプP、
、P2で流通型電界セル2に送液し、酸化還元反応によ
り充放電を行なう。
In the redox flow battery 1 shown in FIG. 3, an aqueous solution of ions whose valences change, such as iron ions and chromium ions, is stored in a tank 3.4, and pumps P,
, P2, the liquid is sent to the flow type electrolytic cell 2, and charging and discharging are performed by an oxidation-reduction reaction.

たとえば、正極液としてpe*+/pe2+塩酸溶液、
負極液としてCr”/Cr”+塩酸溶液を用いると、各
酸化還元系の両極6,7における電池反応は、次式のよ
うになり、起電力は約1vである。
For example, pe*+/pe2+ hydrochloric acid solution as the positive electrode liquid,
When Cr"/Cr"+hydrochloric acid solution is used as the negative electrode liquid, the battery reaction at both electrodes 6 and 7 of each redox system is as shown in the following equation, and the electromotive force is about 1V.

セル2の正極セル2aと正極液タンク3とは、第1の導
管11および第2の導管12により連結されている。他
方、負極液タンク4についても同様に、第3の導管13
および第4の導管14により連結されている。正極液タ
ンク3および負極液タンク4には、それぞれ、反応液と
して正極液および負極液が貯留されており、第1の導管
11および第3の導管13に設けられた反応液給送手段
としてのポンプP、、P2によりセル2内に供給される
。供給された正極液および負極液は、正極セル2aおよ
び負極セル2b内で反応し、反応の終了した液は、それ
ぞれ、第2の導管12および第4の導管14を経て正極
液タンク3および負極液タンク4内に戻される。
The positive electrode cell 2a of the cell 2 and the positive electrode liquid tank 3 are connected by a first conduit 11 and a second conduit 12. On the other hand, similarly for the negative electrode liquid tank 4, the third conduit 13
and a fourth conduit 14. The positive electrode liquid tank 3 and the negative electrode liquid tank 4 each store a positive electrode liquid and a negative electrode liquid as reaction liquids, and the reaction liquid feeding means provided in the first conduit 11 and the third conduit 13 serve as reaction liquid feeding means. It is supplied into the cell 2 by pumps P, , P2. The supplied catholyte and anode liquid react in the cathode cell 2a and anode cell 2b, and the reacted liquid passes through the second conduit 12 and fourth conduit 14 to the cathode liquid tank 3 and the anode, respectively. The liquid is returned to the liquid tank 4.

従来のレドックスフロー電池は以上のように構成されて
いる。しかしながら、次に述べるような問題点があった
。第4A図および第4B図は、第3図に示した従来のレ
ドックスフロー電池における充電の際および放電の際の
セル内の反応状態を示す部分切欠正面図である。第4A
図および第4B図において矢印A・・・Dで示すように
、従来のレドックスフロー電池では、充電動作および放
電動作を繰返すうちに、正極活物質および負極活物質が
隔膜2を透過し、その結果正極液および負極液内の電極
活物質量が減少するため電力貯蔵量が低下し、充放電効
率が低下するという欠点があった。
A conventional redox flow battery is configured as described above. However, there were problems as described below. 4A and 4B are partially cutaway front views showing reaction states within the cell during charging and discharging in the conventional redox flow battery shown in FIG. 3. FIG. 4th A
As shown by arrows A...D in the figures and FIG. 4B, in the conventional redox flow battery, as the charging operation and discharging operation are repeated, the positive electrode active material and the negative electrode active material permeate through the diaphragm 2, and as a result, There was a drawback that the amount of electrode active material in the positive and negative electrode liquids decreased, resulting in a decrease in the amount of power stored and a decrease in charging and discharging efficiency.

この欠点を克服するために、発明者等は、既に、正極に
も負極活物質を導入し、負極にも正極活物質を導入する
といういわゆる1液型電解液系の技術を提案している(
実開昭61−170号公報)。
In order to overcome this drawback, the inventors have already proposed a so-called one-component electrolyte system technology in which a negative electrode active material is introduced into the positive electrode and a positive electrode active material is also introduced into the negative electrode (
Utility Model Application Publication No. 1983-170).

この方法によると、電極反応は、正極および負極におい
て、それぞれ次の式により行なわれる。
According to this method, electrode reactions are carried out at the positive electrode and the negative electrode, respectively, according to the following equations.

いて、充電前の電解液が、正極活物質としてのFe2+
および負極活物質としてのCr”+を等モル含んでいる
ため、セル内において隔膜を介した物質移動は効果的に
防止され、それゆえに正極セルおよび負極セル内でのそ
れぞれの電極活物質の濃度低下は確実に防止される。す
なわち第5A図に充電動作時のセル22内を略図的正面
図で示すが、この場合矢印AおよびBで示される物質移
動はほとんど生じないことになるのである。同様に、放
電動作時においても、隔膜25を隔てた物質移動はほと
んど起こらず、よって第5B図に略図的正面図で示すよ
うに、放電動作時においても矢印CおよびDで示す方向
の物質移動は生じない。
The electrolyte before charging contains Fe2+ as the positive electrode active material.
Since it contains equimolar amounts of Cr"+ and Cr"+ as the negative electrode active material, mass transfer through the diaphragm within the cell is effectively prevented, and therefore the concentration of each electrode active material in the positive electrode cell and the negative electrode cell is In other words, as shown in FIG. 5A, which is a schematic front view of the inside of the cell 22 during charging operation, the mass transfer indicated by arrows A and B hardly occurs. Similarly, during the discharge operation, almost no mass transfer across the diaphragm 25 occurs, and therefore, as shown in a schematic front view in FIG. 5B, mass transfer in the directions indicated by arrows C and D during the discharge operation. does not occur.

[発明が解決しようとする課題] 従来のレドックスフロー電池の改良方法は以上のように
なされている。しかしながら、上述の1液型電解液系に
おいて、電解液が隔膜を通して移動するのを完全に防止
できない場合があり、このような場合、放電停止後、電
解液の移動を行ない、初期状態に戻す等の操作が行なわ
れていた。
[Problems to be Solved by the Invention] The conventional method for improving redox flow batteries is as described above. However, in the one-component electrolyte system described above, there are cases where it is not possible to completely prevent the electrolyte from moving through the diaphragm, and in such cases, it is necessary to move the electrolyte after stopping the discharge and return it to the initial state. operations were being carried out.

しかしながら、その操作は煩雑であるばかりでなく、何
ら本質的な解決ではなく、恒久的な対策にはなっていな
かった。
However, this operation was not only complicated, but also did not provide any essential solution, nor was it a permanent solution.

この発明は上記のような問題点を解決するためになされ
たもので、操作が簡単で、電池容量の増大および電池性
能の向上を図ることのできる電解液循環型二次電池を提
供することを目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide an electrolyte circulation type secondary battery that is easy to operate, increases battery capacity, and improves battery performance. purpose.

[課題を解決するための手段] この発明は隔膜で分離された正極と負極と、正極活物質
を含む正極電解液を蓄える正極液タンクと、負極活物質
を含む負極電解液を蓄える負極液タンクと、を備え、上
記正極と上記正極液タンクとの間で上記正極電解液を循
環させながら、上記正極に上記正極電解液を送り込み、
一方で上記負極と上記負極液タンクとの間で上記負極電
解液を循環させながら、上記負極に上記負極電解液を送
り込み、充放電を行なわせる電解液循環型二次電池に係
るものである。そして、上記目的を達成するために、上
記循環している正極電解液および負極電解液の少なくと
も一方の液量を検知する電解液量検知手段と、上記電解
液量検知手段の得た情報に基づいて、上記正極電解液の
正極への送液圧力および前記負極電解液の負極への送液
圧力の少なくとも一方を調節する電解液送液圧力調節手
段と、を備えている。
[Means for Solving the Problems] This invention provides a positive electrode and a negative electrode separated by a diaphragm, a positive electrode liquid tank for storing a positive electrode electrolyte containing a positive electrode active material, and a negative electrode liquid tank for storing a negative electrode electrolyte containing a negative electrode active material. and feeding the cathode electrolyte to the cathode while circulating the cathode electrolyte between the cathode and the cathode tank,
On the other hand, the present invention relates to an electrolyte circulation type secondary battery in which the negative electrode electrolyte is circulated between the negative electrode and the negative electrode tank, and the negative electrode electrolyte is fed to the negative electrode for charging and discharging. In order to achieve the above object, an electrolyte amount detection means for detecting the amount of at least one of the circulating positive electrode electrolyte and negative electrode electrolyte, and an electrolyte amount detection means based on the information obtained by the electrolyte amount detection means. and an electrolytic solution feeding pressure adjusting means for adjusting at least one of the feeding pressure of the positive electrode electrolyte to the positive electrode and the feeding pressure of the negative electrode electrolyte to the negative electrode.

[作用コ 上述したごとく、正極電解液と負極電解液が電池セルへ
と送液される際、両極の送液圧力差等により、一方の極
から他方の極へ隔膜を通って液が移動することがある。
[Operation] As mentioned above, when the positive electrode electrolyte and the negative electrode electrolyte are sent to the battery cell, the liquid moves from one electrode to the other through the diaphragm due to the difference in the sending pressure between the two electrodes. Sometimes.

この液の移動量は、循環している正極電解液および負極
電解液の少なくとも一方の液量を電解液量検知手段で検
知することによって求められる。そして、この液の移動
量に基づいて、正極電解液の正極への送液圧力および負
極電解液の負極への送液圧力の少なくとも一方を電解液
送液圧力調節手段により調節(すなわち、液量の増加し
ている極の送液圧力を高める、またはこの対極の送液圧
力を下げる等)することにより、液を隔膜を通して逆向
きに移動させることができる。こうした操作を繰返すこ
とにより、常に両極液量は初期量を維持できるようにな
る。
The amount of movement of this liquid is determined by detecting the amount of at least one of the circulating positive electrode electrolyte and negative electrode electrolyte using an electrolyte amount detection means. Based on the amount of movement of this liquid, at least one of the feeding pressure of the positive electrode electrolyte to the positive electrode and the feeding pressure of the negative electrode electrolyte to the negative electrode is adjusted by the electrolytic solution feeding pressure adjusting means (i.e., the liquid volume The liquid can be moved in the opposite direction through the diaphragm by increasing the liquid delivery pressure at the increasing pole, or by decreasing the liquid delivery pressure at this counter electrode, etc.). By repeating these operations, the amount of bipolar fluid can always be maintained at the initial amount.

[実施例] 以下、この発明の実施例を図について説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は、実施例に係るレドックスフロー電池の一例を
示す概略構成図である。このレドックスフロー電池1は
、セル2および正極液タンク3および負極液タンク4を
備える。セル2内は、たとえばイオン交換膜からなる隔
膜5により仕切られており、−刃側が正極セル2a、他
方側が負極セル2bを構成する。正極セル2aおよび負
極セル2b内には、それぞれ電極として正極6および負
極7が配置されている。タンク3,4にはたとえば鉄イ
オン、クロムイオンのような原子価が変化するイオンの
塩酸溶液が蓄えられ、セル2内に送液される。
FIG. 1 is a schematic configuration diagram showing an example of a redox flow battery according to an embodiment. This redox flow battery 1 includes a cell 2, a positive electrode liquid tank 3, and a negative electrode liquid tank 4. The inside of the cell 2 is partitioned by a diaphragm 5 made of, for example, an ion exchange membrane, with the -blade side forming a positive electrode cell 2a and the other side forming a negative electrode cell 2b. A positive electrode 6 and a negative electrode 7 are arranged as electrodes in the positive electrode cell 2a and the negative electrode cell 2b, respectively. A hydrochloric acid solution of ions whose valences change, such as iron ions and chromium ions, is stored in the tanks 3 and 4, and is fed into the cell 2.

セル2の正極セル2aと正極液タンク3とは、第1の導
管11および第2の導管12により連結されている。他
方、負極液タンク4についても同様に、第3の導管13
および第4の導管14により連結されている。正極液タ
ンク3および負極液タンク4には、それぞれ、反応液と
して正極液および負極液が貯留されており、第1の導管
11および第3の導管13に設けられた反応液給送手段
としてのポンプP、、P2によりセル2内に供給される
。供給された正極液および負極液は、正極セル2および
負極セル2b内で反応し、反応の終了した液は、それぞ
れ、第2の導管12および第の導管14を経て正極液タ
ンク3および負極液タンク4内に戻される。
The positive electrode cell 2a of the cell 2 and the positive electrode liquid tank 3 are connected by a first conduit 11 and a second conduit 12. On the other hand, similarly for the negative electrode liquid tank 4, the third conduit 13
and a fourth conduit 14. The positive electrode liquid tank 3 and the negative electrode liquid tank 4 each store a positive electrode liquid and a negative electrode liquid as reaction liquids, and the reaction liquid feeding means provided in the first conduit 11 and the third conduit 13 serve as reaction liquid feeding means. It is supplied into the cell 2 by pumps P, , P2. The supplied catholyte and anode liquid react in the cathode cell 2 and anode cell 2b, and the reacted liquid passes through the second conduit 12 and the second conduit 14 to the cathode liquid tank 3 and the anode liquid, respectively. It is returned to the tank 4.

以上の構成は、第3図に示した従来のレドックスフロー
電池の構成と同じであるが、当該レドックスフロー電池
は以下の点で異なる。すなわち、第1の導管11と第3
の導管13のそれぞれに、圧力計15が設けられ、第2
の導管12と第4の導管14に圧力計15が設けられて
いる。また、当該レドックスフロー電池は、ポンプP、
の出力を調整する第1の電解液送液圧力調節手段17と
ポンプP2の出力を調節する第2の電解液送液圧力調節
手段18を備えている。さらに、タンク3はタンク3内
の電解液の量を自動測定する第1の液面計19を備え、
タンク4はタンク4内の電解液の量を自動測定する第2
の液面計20を備えている。第1の液面計19と第2の
液面計20はマイクロコンピュータ21に連絡され、マ
イクロコンピュータ21は第1の電解液送液圧力調節手
段17および第2の電解液圧力調節手段18に連絡され
ている。
The above configuration is the same as the configuration of the conventional redox flow battery shown in FIG. 3, but the redox flow battery differs in the following points. That is, the first conduit 11 and the third
A pressure gauge 15 is provided in each of the conduits 13, and the second
A pressure gauge 15 is provided in the conduit 12 and the fourth conduit 14. The redox flow battery also includes a pump P,
The pump P2 includes a first electrolytic solution feeding pressure adjusting means 17 that adjusts the output of the pump P2, and a second electrolytic solution feeding pressure adjusting means 18 that adjusts the output of the pump P2. Furthermore, the tank 3 is equipped with a first liquid level gauge 19 that automatically measures the amount of electrolyte in the tank 3,
Tank 4 is a second tank that automatically measures the amount of electrolyte in tank 4.
It is equipped with a liquid level gauge 20. The first liquid level gauge 19 and the second liquid level gauge 20 are connected to a microcomputer 21, and the microcomputer 21 is connected to the first electrolytic solution feeding pressure regulating means 17 and the second electrolytic solution pressure regulating means 18. has been done.

この装置によると、たとえば負極7から正極6へ隔膜5
を通って電解液が移動した場合、第1の液面計19が正
極液タンク3の液量の増加を検知する。第1の液面計1
9の検知した情報はマイクロコンピュータ21に送られ
、このとき、マイクロコンピュータ21はポンプP、の
出力を上げるように第1の電解液送液圧力調節手段17
に指示する。ポンプP、の出力が上がると、正極6がら
負極7へ隔膜5を通って電解液が移動する。したがって
、両液量は初期量を維持できる。なお、この場合、マイ
クロコンピュータ21が、ポンプP2の出力を下げるよ
うに第2の電解液送液圧力調節手段18に指示するよう
にしてもよい。
According to this device, for example, a diaphragm 5 is connected from the negative electrode 7 to the positive electrode 6.
When the electrolyte moves through the positive electrode liquid tank 3, the first liquid level gauge 19 detects an increase in the amount of liquid in the positive electrode liquid tank 3. First liquid level gauge 1
The information detected by 9 is sent to the microcomputer 21, and at this time, the microcomputer 21 controls the first electrolyte feeding pressure regulating means 17 to increase the output of the pump P.
instruct. When the output of the pump P increases, the electrolyte moves from the positive electrode 6 to the negative electrode 7 through the diaphragm 5. Therefore, the amounts of both liquids can be maintained at the initial amounts. In this case, the microcomputer 21 may instruct the second electrolyte feeding pressure adjusting means 18 to lower the output of the pump P2.

また、正極6から負極7へ隔膜5を通って電解液が移動
した場合にも同様、第2の液面計20が負極液タンク4
の液量の増加を検知する。第2の液面計20の上方はマ
イクロコンピュータ21に送られ、このとき、マイクロ
コンピュータ21はポンプP2の出力を上げるように第
2の電解液送液圧力調節手段18に指示する。ポンプP
2の出力が上がると、負極7から正極6へ隔膜5を通っ
て電解液が移動する。したがって、両液量は初期量を維
持できる。この場合にも、マイクロコンピュータ21が
、ポンプP、の出力を下げるよう第1の電解液送液圧力
調節手段17に指示するようにしてもよい。
Similarly, when the electrolyte moves from the positive electrode 6 to the negative electrode 7 through the diaphragm 5, the second liquid level gauge 20 detects the negative electrode liquid tank 4.
Detects an increase in the amount of liquid. The upper part of the second liquid level gauge 20 is sent to the microcomputer 21, and at this time, the microcomputer 21 instructs the second electrolytic solution feeding pressure adjusting means 18 to increase the output of the pump P2. Pump P
When the output of 2 increases, the electrolyte moves from the negative electrode 7 to the positive electrode 6 through the diaphragm 5. Therefore, the amounts of both liquids can be maintained at the initial amounts. In this case as well, the microcomputer 21 may instruct the first electrolytic solution feeding pressure adjusting means 17 to lower the output of the pump P.

具体的に、電極面積1500cm2のセルを10セル積
層し、出力500Wの電池を構成し、第1図に示すレド
ックスフロー電池を作製した。流量はいずれの極も4〜
5fL/分程度、圧力0.5〜0.6kg/cm2程度
であったが、両タンク液面のバランスに応じて、圧力が
0.05〜0゜1kg/cm2程度差が出てくるのが観
察された。
Specifically, 10 cells each having an electrode area of 1500 cm2 were stacked to form a battery with an output of 500 W, and the redox flow battery shown in FIG. 1 was fabricated. The flow rate is 4~ for both poles.
The pressure was about 5 fL/min and the pressure was about 0.5 to 0.6 kg/cm2, but depending on the balance of the liquid levels in both tanks, the pressure would differ by about 0.05 to 0.1 kg/cm2. observed.

1力月程度、継続運転させた結果、両タンク液面は初期
と比べ、はとんど差異が認められなかった。
As a result of continuous operation for about a month, there was almost no difference in the liquid levels of both tanks compared to the initial state.

なお、上記実施例では、液面計と電解液送液圧力調節手
段を正極側と負極側の双方に設ける場合を例示したが、
この発明はこれに限られるものでなく、一方だけに設け
てもよい。
In addition, in the above embodiment, the case where the liquid level gauge and the electrolytic solution feeding pressure adjusting means are provided on both the positive electrode side and the negative electrode side is illustrated, but
This invention is not limited to this, and may be provided only on one side.

また、上記実施例では、レドックスフロー型二次電池に
本発明を適用した場合について例示したが、この発明は
これに限られるものでない。
Further, in the above embodiments, the case where the present invention is applied to a redox flow type secondary battery is illustrated, but the present invention is not limited to this.

また、上記実施例では、正極液が正極活物質のみを含み
、負極液が負極活物質のみを含むレドックスフロー型二
次電池について例示したが、この発明はこれに限られる
ものでなく、正極液および負極液のそれぞれに、対極活
物質イオンを含むレドックスフロー型二次電池であって
も実施例と同様の効果を実現する。
Further, in the above embodiments, a redox flow type secondary battery is exemplified in which the positive electrode liquid contains only the positive electrode active material and the negative electrode liquid contains only the negative electrode active material, but the present invention is not limited to this. Even in the case of a redox flow type secondary battery containing counter electrode active material ions in each of the negative electrode liquid and the negative electrode liquid, the same effects as in the example can be achieved.

以上、具体的な実施例を挙げてこの発明を説明したが、
本明細書に記載した好ましい実施例は例示的なものであ
り、限定的なものでない。本発明の範囲は特許請求の範
囲によって示されており、その特許請求の範囲の意味の
中に含まれるすべての変形は本願発明に含まれるもので
ある。
This invention has been described above with reference to specific examples, but
The preferred embodiments described herein are illustrative and not restrictive. The scope of the present invention is indicated by the claims, and all modifications that come within the meaning of the claims are intended to be included in the present invention.

[発明の効果] 以上説明したとおり、この発明によれば、正極電解液と
負極電解液が電池セルへ送液される際、両極の送液圧力
差等により一方の極から他方の極へ隔膜を通って液が移
動することがあっても、この液の移動量は、循環してい
る正極電解液および負極電解液の少なくとも一方の液量
を電解液量検知手段で検知することによって求められる
。そして、この電解液量検知手段の得た情報に基づいて
、正極電解液の正極への送液圧力および負極電解液の負
極への送液圧力の少なくとも一方を電解液送液圧力調節
手段によって調節することにより、液を隔膜を通して逆
向きに移動させることができる。
[Effects of the Invention] As explained above, according to the present invention, when the positive electrode electrolyte and the negative electrode electrolyte are fed to the battery cell, the diaphragm is transferred from one electrode to the other due to the liquid feeding pressure difference between the two electrodes. Even if the liquid may move through the electrode, the amount of movement of this liquid can be determined by detecting the amount of at least one of the circulating positive electrode electrolyte and negative electrode electrolyte with an electrolyte amount detection means. . Based on the information obtained by the electrolyte amount detection means, at least one of the pressure for feeding the positive electrolyte to the positive electrode and the pressure for feeding the negative electrolyte to the negative electrode is adjusted by the electrolyte feeding pressure adjusting means. This allows liquid to move in the opposite direction through the diaphragm.

こうした操作を繰返すことにより、常に両極液量は初期
量を維持できるようになる。その結果、従来のレドック
スフロー電池に見られたような現象、すなわち液量のア
ンバランスによる電池容量の減少や電池性能の劣化を回
避できるという効果を奏する。また、自動的に液量のバ
ランスを保つことができるので、操作が簡単となる。
By repeating these operations, the amount of bipolar fluid can always be maintained at the initial amount. As a result, it is possible to avoid the phenomena observed in conventional redox flow batteries, that is, the decrease in battery capacity and the deterioration of battery performance due to imbalance in liquid volume. In addition, since the liquid volume can be automatically balanced, the operation becomes easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例に係る電解液循環型二次電
池の概略構成図である。第2図は、電力需要曲線を示す
図である。第3図は、従来のレドックスフロー電池の一
例を示す概略構成図である。 第4A図および第4B図は、第3図に示した従来のレド
ックスフロー電池のセル内の充電動作時および放電動作
時の反応状態を示す略図的部分切欠正面図である。第5
A図および第5B図は、−成型電解液系を採用した電池
の、セル内の充電動作時および放電動作時の反応状態を
示す図である。 図において、1はレドックスフロー電池、2aは正極セ
ル、2bは負極セル、3は正極液タンク、4は負極液タ
ンク、5は隔膜、6は正極、7は負極、17は第1の電
解液送液圧力調節手段、18は第2の電解液送液圧力調
節手段、19は第1の液面計、20は第2の液面計、2
1はマイクロコンピュータである。 なお、各図中、同一符号は同一または相当部分を示す。 第2回 第3の 第4A(2) 85A刀 第4B回 第5B図
FIG. 1 is a schematic diagram of an electrolyte circulation type secondary battery according to an embodiment of the present invention. FIG. 2 is a diagram showing a power demand curve. FIG. 3 is a schematic configuration diagram showing an example of a conventional redox flow battery. 4A and 4B are schematic partially cutaway front views showing reaction states during charging and discharging operations in the cells of the conventional redox flow battery shown in FIG. 3. FIG. Fifth
FIG. A and FIG. 5B are diagrams showing reaction states during charging and discharging operations in the cell of a battery employing a -molded electrolyte system. In the figure, 1 is a redox flow battery, 2a is a positive electrode cell, 2b is a negative electrode cell, 3 is a positive electrode liquid tank, 4 is a negative electrode liquid tank, 5 is a diaphragm, 6 is a positive electrode, 7 is a negative electrode, and 17 is a first electrolyte. Liquid feeding pressure adjustment means, 18 is a second electrolyte liquid feeding pressure adjustment means, 19 is a first liquid level gauge, 20 is a second liquid level gauge, 2
1 is a microcomputer. In each figure, the same reference numerals indicate the same or corresponding parts. 2nd 3rd 4A (2) 85A sword 4B 5B

Claims (3)

【特許請求の範囲】[Claims] (1)隔膜で分離された正極と負極と、主極活物質を含
む正極電解液を蓄える正極液タンクと、負極活物質を含
む負極電解液を蓄える負極液タンクと、を備え、前記正
極と前記正極液タンクとの間で前記正極電解液を循環さ
せながら、前記正極に前記正極電解液を送り込み、一方
で前記負極と前記負極液タンクとの間で前記負極電解液
を循環させながら、前記負極に前記負極電解液を送り込
み、充放電を行なわせる電解液循環型二次電池において
、 前記循環している正極電解液および負極電解液の少なく
とも一方の液量を検知する電解液量検知手段と、 前記電解液量検知手段の得た情報に基づいて前記正極電
解液の正極への送液圧力および前記負極電解液の負極へ
の送液圧力の少なくとも一方を調節する電解液送液圧力
調節手段と、 を備えたことを特徴とする、電解液循環型二次電池。
(1) A positive electrode and a negative electrode separated by a diaphragm, a positive electrode liquid tank for storing a positive electrode electrolyte containing a main electrode active material, and a negative electrode liquid tank for storing a negative electrode electrolyte containing a negative electrode active material; The positive electrode electrolyte is fed to the positive electrode while circulating the positive electrode electrolyte between the positive electrode tank and the negative electrode electrolyte while circulating the negative electrode electrolyte between the negative electrode and the negative electrode tank. In an electrolyte circulation type secondary battery in which the negative electrode electrolyte is fed to the negative electrode for charging and discharging, the electrolyte amount detection means detects the amount of at least one of the circulating positive electrode electrolyte and the negative electrode electrolyte; , an electrolytic solution feeding pressure adjusting means for adjusting at least one of the feeding pressure of the positive electrode electrolyte to the positive electrode and the liquid feeding pressure of the negative electrode electrolyte to the negative electrode based on the information obtained by the electrolytic solution amount detecting means; An electrolyte circulation type secondary battery comprising: and.
(2)前記電池はレドックスフロー型二次電池である、
特許請求の範囲第1項記載の電解液循環型二次電池。
(2) the battery is a redox flow type secondary battery;
An electrolyte circulation type secondary battery according to claim 1.
(3)前記正極電解液および負極電解液はそれぞれ対極
活物質イオンを含む、特許請求の範囲第2項記載の電解
液循環型二次電池。
(3) The electrolyte circulation type secondary battery according to claim 2, wherein the positive electrode electrolyte and the negative electrode electrolyte each contain counter electrode active material ions.
JP1013686A 1989-01-23 1989-01-23 Electrolyte recycling secondary battery Expired - Lifetime JP2815112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1013686A JP2815112B2 (en) 1989-01-23 1989-01-23 Electrolyte recycling secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1013686A JP2815112B2 (en) 1989-01-23 1989-01-23 Electrolyte recycling secondary battery

Publications (2)

Publication Number Publication Date
JPH02195657A true JPH02195657A (en) 1990-08-02
JP2815112B2 JP2815112B2 (en) 1998-10-27

Family

ID=11840073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1013686A Expired - Lifetime JP2815112B2 (en) 1989-01-23 1989-01-23 Electrolyte recycling secondary battery

Country Status (1)

Country Link
JP (1) JP2815112B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143546A4 (en) * 1999-09-27 2006-12-27 Sumitomo Electric Industries OXYDOREDUCTIVE CIRCULATION BATTERY
WO2014045337A1 (en) * 2012-09-18 2014-03-27 住友電気工業株式会社 Redox flow battery
CN103779588A (en) * 2012-10-19 2014-05-07 住友电气工业株式会社 Redox flow battery
WO2015099728A1 (en) 2013-12-26 2015-07-02 United Technologies Corporation Rebalancing electrolyte concentration in flow battery using pressure differential
WO2016117262A1 (en) * 2015-01-23 2016-07-28 住友電気工業株式会社 Redox-flow battery operation method and redox-flow battery
WO2016117265A1 (en) * 2015-01-23 2016-07-28 住友電気工業株式会社 Redox-flow battery operation method and redox-flow battery
WO2016117263A1 (en) * 2015-01-23 2016-07-28 住友電気工業株式会社 Redox-flow battery operation method and redox-flow battery
WO2016117264A1 (en) * 2015-01-23 2016-07-28 住友電気工業株式会社 Redox-flow battery
WO2019166970A1 (en) * 2018-03-01 2019-09-06 REDT Limited (Dublin, Ireland) Means for maintaining desired liquid level between inter-connected tanks
US11056698B2 (en) 2018-08-02 2021-07-06 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
US11271226B1 (en) 2020-12-11 2022-03-08 Raytheon Technologies Corporation Redox flow battery with improved efficiency
CN116666717A (en) * 2023-08-02 2023-08-29 北京普能世纪科技有限公司 Flow battery cleaning device, cleaning method and system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101586349B1 (en) * 2013-12-02 2016-01-21 전자부품연구원 Battery management system for redox flow battery and method for controlling the same
KR101772274B1 (en) * 2015-08-14 2017-08-29 오씨아이 주식회사 Method and apparatus for controlling flow of electrolytic solution in redox flow battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982250A (en) * 1983-08-03 1984-05-12 Canon Inc Paper feed device of copying machine and the like
JPS5987140A (en) * 1982-11-11 1984-05-19 Unitika Ltd Rubber product reinforced by fiber
JPS62276762A (en) * 1986-05-24 1987-12-01 Sumitomo Electric Ind Ltd Electrolyte circulation type secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987140A (en) * 1982-11-11 1984-05-19 Unitika Ltd Rubber product reinforced by fiber
JPS5982250A (en) * 1983-08-03 1984-05-12 Canon Inc Paper feed device of copying machine and the like
JPS62276762A (en) * 1986-05-24 1987-12-01 Sumitomo Electric Ind Ltd Electrolyte circulation type secondary battery

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143546A4 (en) * 1999-09-27 2006-12-27 Sumitomo Electric Industries OXYDOREDUCTIVE CIRCULATION BATTERY
WO2014045337A1 (en) * 2012-09-18 2014-03-27 住友電気工業株式会社 Redox flow battery
AU2012390548B2 (en) * 2012-09-18 2016-03-03 Sumitomo Electric Industries, Ltd. Redox flow battery
US10090541B2 (en) 2012-09-18 2018-10-02 Sumitomo Electric Industries, Ltd. Redox flow battery
CN103779588A (en) * 2012-10-19 2014-05-07 住友电气工业株式会社 Redox flow battery
JP2017505514A (en) * 2013-12-26 2017-02-16 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Rebalance of electrolyte concentration in flow battery using pressure difference
WO2015099728A1 (en) 2013-12-26 2015-07-02 United Technologies Corporation Rebalancing electrolyte concentration in flow battery using pressure differential
US10050290B2 (en) 2013-12-26 2018-08-14 United Technologies Corporation Rebalancing electrolyte concentration in flow battery using pressure differential
EP3087633A4 (en) * 2013-12-26 2017-08-16 United Technologies Corporation Rebalancing electrolyte concentration in flow battery using pressure differential
WO2016117262A1 (en) * 2015-01-23 2016-07-28 住友電気工業株式会社 Redox-flow battery operation method and redox-flow battery
WO2016117264A1 (en) * 2015-01-23 2016-07-28 住友電気工業株式会社 Redox-flow battery
JPWO2016117264A1 (en) * 2015-01-23 2017-11-02 住友電気工業株式会社 Redox flow battery
WO2016117263A1 (en) * 2015-01-23 2016-07-28 住友電気工業株式会社 Redox-flow battery operation method and redox-flow battery
WO2016117265A1 (en) * 2015-01-23 2016-07-28 住友電気工業株式会社 Redox-flow battery operation method and redox-flow battery
WO2019166970A1 (en) * 2018-03-01 2019-09-06 REDT Limited (Dublin, Ireland) Means for maintaining desired liquid level between inter-connected tanks
US11508975B2 (en) 2018-03-01 2022-11-22 Invinity Energy Systems (Ireland) Limited Means for maintaining desired liquid level between inter-connected tanks
US11056698B2 (en) 2018-08-02 2021-07-06 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
US11637298B2 (en) 2018-08-02 2023-04-25 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
US11271226B1 (en) 2020-12-11 2022-03-08 Raytheon Technologies Corporation Redox flow battery with improved efficiency
CN116666717A (en) * 2023-08-02 2023-08-29 北京普能世纪科技有限公司 Flow battery cleaning device, cleaning method and system
CN116666717B (en) * 2023-08-02 2024-03-22 北京普能世纪科技有限公司 Flow battery cleaning device, cleaning method and system

Also Published As

Publication number Publication date
JP2815112B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
US20070072067A1 (en) Vanadium redox battery cell stack
US4956244A (en) Apparatus and method for regenerating electrolyte of a redox flow battery
AU2011225262B2 (en) Redox flow battery
CN103733409B (en) System and method for sensing and mitigating hydrogen evolution within a flow battery system
EP1385226A1 (en) Secondary cell and method of operating the secondary cell
JPH02195657A (en) Electrolyte circulation type secondary battery
JP5769071B2 (en) Redox flow battery
JP2003303611A (en) How to operate a redox flow battery
JP2011233372A (en) Redox flow battery
JPH0534784B2 (en)
JPH0411340Y2 (en)
CN107946617B (en) A four-tank liquid flow battery structure and method for improving electrolyte utilization
US20160226118A1 (en) Sodium-based hybrid flow batteries with ultrahigh energy densities
JP2528100Y2 (en) Electrolyte flow battery
JP3078186B2 (en) Electrolyte for redox flow battery and method of operation
JPH0412464A (en) Redox flow battery and operating method thereof
JPH01146265A (en) Rebalancing device of electrolyte flow type cell
JPS6122575A (en) Cell construction
JPH044569A (en) electrolyte storage tank
JPH044568A (en) Redox flow battery
JP2557947Y2 (en) Electrolyte circulation battery
KR20130055855A (en) Redox flow battery system for storage of renewable energy
CN117276614B (en) Energy storage system with hydrogen peroxide as electronic energy carrier
JPS6286667A (en) Electrolyte flowing type cell system and operating method thereof
JPH0364863A (en) Redox-flow cell with electrolyte regeneration unit