[go: up one dir, main page]

JPH02192622A - Manufacture of superconductive wire material - Google Patents

Manufacture of superconductive wire material

Info

Publication number
JPH02192622A
JPH02192622A JP1011443A JP1144389A JPH02192622A JP H02192622 A JPH02192622 A JP H02192622A JP 1011443 A JP1011443 A JP 1011443A JP 1144389 A JP1144389 A JP 1144389A JP H02192622 A JPH02192622 A JP H02192622A
Authority
JP
Japan
Prior art keywords
coil mold
magnetic field
coil
axis
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1011443A
Other languages
Japanese (ja)
Inventor
Hiroshi Suzuki
博 鈴木
Maruo Jinno
丸男 神野
Kazuhiko Takahashi
和彦 高橋
Toshiaki Yokoo
横尾 敏昭
Masanobu Yoshisato
善里 順信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1011443A priority Critical patent/JPH02192622A/en
Publication of JPH02192622A publication Critical patent/JPH02192622A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To intend poly-crystallization of high orientation and density by rotating a coil mold filled with material around an axis while applying magnetic field in an axial-length direction to manufacture a wire material. CONSTITUTION:A coil mold 1 in which material is housed is mounted in an electric oven 2 to apply magnetic field of 10-200kOe to the coil mold 1 in an axial-length direction, and while performing annealing treatment at about 960-1050 deg.C by a heater 3 the coil mold 1 is rotated in rotating speed of 1000-10000rpm or so around the axis in an arrow mark direction. As a result, because of the magnetic field applied to the coil mold 1 in an axial-length direction, a (c) axis grows in an axial-length direction and (a) and (b) axes grow in a circular direction to the coil mold 1, so that polycrystals can be deposited to manufacture a coil wire material with superconductive property. At this time, centrifugal force applied in a non-white arrow mark direction realizes crystals of higher density, and 211-phase fine crystals in this crystal structure with pinning force on increase makes current density higher.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高ピンニングな多結晶構造をなし、高い磁場環
境にあっても高電流密度特性を有するような超電導線材
を製造する方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for producing a superconducting wire having a highly pinning polycrystalline structure and having high current density characteristics even in a high magnetic field environment. be.

〔従来の技術〕[Conventional technology]

酸化物系の超電導材料において、高い電流密度(Jc 
)を得るためには、その電流方向が結晶配向のC軸と平
行であることが必要である。そして高密度、高配向性で
あってしかも高ピンニングな多結晶は、−殻内に電流密
度は数千〜1万A / CIA(0磁場)と高く、数十
koe程度の高磁場な環境にあっても、その電流密度は
数%程度しか下降しないという優れた特性を有している
In oxide-based superconducting materials, high current density (Jc
), it is necessary that the current direction be parallel to the C axis of the crystal orientation. Polycrystals with high density, high orientation, and high pinning have a high current density in the shell of several thousand to 10,000 A/CIA (0 magnetic field), and are exposed to a high magnetic field environment of several tens of koe. Even if there is a current density, the current density decreases by only a few percent, which is an excellent characteristic.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上述したような特性を有する多結晶からなる
コイル等の線材を製造するための有効な方法は、未だに
提案されていない。
However, an effective method for manufacturing wire rods such as coils made of polycrystals having the above-mentioned characteristics has not yet been proposed.

本発明はかかる事情に鑑みてなされたものであり、原料
に遠心力と一定方向の磁場とをかけることにより、高密
度、高配向性であってしかも高ピンニングな多結晶から
なる線材を容易に製造することができる超電導線材の製
造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and by applying centrifugal force and a magnetic field in a certain direction to the raw material, it is possible to easily produce a wire made of polycrystals with high density, high orientation, and high pinning. An object of the present invention is to provide a method for manufacturing a superconducting wire that can be manufactured.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る第1の製造方法は、磁場環境の如何に拘わ
らずに高電流密度特性を有する超電導線材を製造する方
法であって、内周面が螺旋面をなす円筒状のコイル型に
原料を入れ、該コイル型の軸長方向に磁界を印加し、前
記原料をアニール処理しながら前記コイル型を軸中心に
回転させることを特徴とし、本発明に係る第2の製造方
法は、磁場環境の如何に拘わらずに高電流密度特性を有
する超電導線材を製造する方法であって、内周面が螺旋
面をなす円筒状のコイル型に溶融原料を入れ、該コイル
型の軸長方向に磁界を印加し、前記溶融原料を徐冷処理
しながら前記コイル型を軸中心に回転させることを特徴
とする。
A first manufacturing method according to the present invention is a method for manufacturing a superconducting wire material having high current density characteristics regardless of the magnetic field environment, in which a raw material is formed into a cylindrical coil shape with a spiral inner surface. A second manufacturing method according to the present invention is characterized in that a magnetic field is applied in the axial direction of the coil mold, and the coil mold is rotated about the axis while annealing the raw material. A method for manufacturing a superconducting wire having high current density characteristics regardless of the method, in which a molten raw material is placed in a cylindrical coil mold whose inner peripheral surface forms a spiral surface, and a magnetic field is applied in the axial direction of the coil mold. is applied, and the coil mold is rotated around its axis while slowly cooling the molten raw material.

〔作用〕[Effect]

本発明の製造方法にあっては、まず円筒形をなすコイル
型に原料を入れる。次に、原料の材質に応じてアニール
処理または徐冷処理を施しながら、このコイル型の軸長
方向に磁界を印加すると共に、このコイル型をその軸を
中心として回転させる。
In the manufacturing method of the present invention, a raw material is first placed in a cylindrical coil mold. Next, while annealing or slow cooling is performed depending on the material of the raw material, a magnetic field is applied in the axial direction of the coil mold, and the coil mold is rotated about the axis.

そうするとコイル型の軸長方向にC軸が成長し、コイル
型の円周方向にa、b軸が高密度に成長し、各a、b、
c軸を一定方向としてそろった多結晶が高密度に析出す
る。
Then, the C axis grows in the axial direction of the coil mold, and the a, b axes grow densely in the circumferential direction of the coil mold, and each a, b,
Polycrystals aligned with the c-axis in a fixed direction are precipitated at high density.

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づいて具体的
に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on drawings showing embodiments thereof.

本発明における超電導線材の製造方法にあっては、使用
する原材料の種類に応じて、製造工程に若干の差異があ
る。つまり、有機物にて練ったアモルファス粉または超
微粒子を原料として使用する場合と、高温状態において
溶融している材料を原料として使用する場合とにおいて
、製造工程に少しの違いがある。
In the method for manufacturing a superconducting wire according to the present invention, there are some differences in the manufacturing process depending on the type of raw material used. In other words, there is a slight difference in the manufacturing process between when amorphous powder or ultrafine particles kneaded with organic matter is used as a raw material and when a material molten at a high temperature is used as a raw material.

まず、有機物にて練ったアモルファス粉または超微粒子
を原料として使用する場合の製造方法について説明する
。第1図はこの製造方法の実施状態を示す模式図、第2
図はこの製造方法において使用するコイル型1の正面図
及び断面図である。
First, a manufacturing method using amorphous powder or ultrafine particles kneaded with an organic substance as a raw material will be described. Figure 1 is a schematic diagram showing the implementation state of this manufacturing method, Figure 2 is a schematic diagram showing the implementation state of this manufacturing method.
The figures are a front view and a sectional view of a coil mold 1 used in this manufacturing method.

コイル型1は、Pt+ Ag+ Zr0z等からなる円
筒形状をなし、その内周面には超電導コイル線材を製造
するための螺旋面が形成されている。
The coil mold 1 has a cylindrical shape made of Pt+Ag+Zr0z or the like, and a spiral surface for manufacturing a superconducting coil wire is formed on its inner peripheral surface.

まず、このコイル型1内に有機物にて練ったアモルファ
ス(例えばYfla2Cu30t)、または0.1μm
程度の超微粒子を収納する。次いで、原料を収納したコ
イル型1を電気炉2内に装入し、10〜200kOeの
磁界をコイル型1の軸長方向に印加し、ヒータ3にて9
60〜1050℃程度にアニール処理しながら、その軸
を中心にしてコイル型Iを矢符方向に1000〜110
000rp程度の回転数にて回転させる。
First, in this coil mold 1, an amorphous (for example, Yfla2Cu30t) kneaded with an organic material or a 0.1 μm
Contains ultrafine particles. Next, the coil mold 1 containing the raw material is placed in the electric furnace 2, a magnetic field of 10 to 200 kOe is applied in the axial direction of the coil mold 1, and the heater 3
While annealing at a temperature of about 60 to 1050°C, the coil type I is heated to 1000 to 110°C in the direction of the arrow, centering on the axis.
Rotate at a rotation speed of about 000 rpm.

そうすると、コイル型1の軸長方向(図中■方向)に磁
界を印加しているので、その軸長方向にC軸が成長し、
コイル型1の円周方向にはa、  b軸が成長して、多
結晶体が析出し、超電導特性を有するコイル線材を製造
することができる。この際、遠心力が図中白抜矢符方向
にかかるので、結晶の高密度化を図ることができ、また
、この結晶体中には、(211)相の微結晶がピンニン
グ力を増加させているので、電流密度の高度化を図るこ
とができる。
Then, since a magnetic field is applied in the axial direction (■ direction in the figure) of the coil type 1, the C-axis grows in the axial direction,
The a and b axes grow in the circumferential direction of the coil mold 1, and polycrystals are precipitated, making it possible to manufacture a coil wire having superconducting properties. At this time, since centrifugal force is applied in the direction of the white arrow in the figure, it is possible to increase the density of the crystal, and in this crystal, (211) phase microcrystals increase the pinning force. Therefore, the current density can be improved.

次に原料として、高温状態の溶融材料を用いる場合につ
いて説明する。まず、1360°C程度にて溶融してい
るLnBazCu=0+系原料物(LnはY主原料物ン
タン系元素)をコイル型l内に注入する。次いでこの原
料を注入したコイル型1を電気炉2内に装入し、10〜
200 k Oeの磁界をコイル型1の軸長方向に印加
し、溶融状態から1分に1℃程度の割合にて徐冷しなが
ら、その軸を中心にしてコイル型1を矢符方向に100
0〜110000rp程度の回転数にて回転させる。
Next, a case will be described in which a molten material in a high temperature state is used as the raw material. First, a LnBazCu=0+ series raw material (Ln is a tantanium-based element of the Y main raw material) melted at about 1360°C is injected into the coil mold l. Next, the coil mold 1 injected with this raw material is charged into the electric furnace 2, and
A magnetic field of 200 kOe was applied in the axial direction of the coil mold 1, and while the coil mold 1 was slowly cooled from the molten state at a rate of about 1°C per minute, the coil mold 1 was rotated 100 kOe in the direction of the arrow around the axis.
Rotate at a rotation speed of about 0 to 110,000 rpm.

そうすると前述した製造例と同様に、コイル型lの軸長
方向にC軸が成長し、コイル型1の円周方向にはa、b
軸が成長して、多結晶体が析出し、超電導特性を有する
コイル線材を製造することができる。この際、結晶の高
密度化及び電流密度の高度化を図れることも、前述の製
造例と同様である。
Then, as in the manufacturing example described above, the C axis grows in the axial direction of coil mold 1, and a and b grow in the circumferential direction of coil mold 1.
The shaft grows, polycrystals precipitate, and a coil wire having superconducting properties can be manufactured. At this time, it is possible to achieve higher crystal density and higher current density, as in the above-mentioned manufacturing example.

第3図の実線にて示すグラフは、本発明の製造方法を用
いて製造されたコイル線材の電流密度磁界特性を示すも
のであり、縦軸は電流密度Jc(A/CIA)、横軸は
外部磁界H(kOe)を示している。なお、グラフは温
度77Kにおける特性を示しており、また参考例として
従来例のコイル線材の特性変化を破線にて示す。外部磁
界が高くなるにつれて大幅にその電流密度特性が劣化す
る従来例に比して、本発明の製造方法によるコイル線材
は、外部磁界が100 k Oe以上になっても、数%
程度の劣化しか見られない。この結果本発明の製造方法
により、高磁場環境にあっても高電流密度特性を有する
ような超電導線材を製造できることが、立証される。
The graph shown by the solid line in FIG. 3 shows the current density magnetic field characteristics of the coil wire manufactured using the manufacturing method of the present invention, where the vertical axis is the current density Jc (A/CIA) and the horizontal axis is the current density Jc (A/CIA). The external magnetic field H (kOe) is shown. The graph shows the characteristics at a temperature of 77K, and as a reference example, the change in characteristics of a conventional coil wire is shown by a broken line. Compared to conventional examples in which the current density characteristics deteriorate significantly as the external magnetic field increases, the coil wire produced by the manufacturing method of the present invention has a current density characteristic of only a few percent even when the external magnetic field increases to 100 k Oe or more.
Only moderate deterioration can be seen. As a result, it is proven that the manufacturing method of the present invention can manufacture a superconducting wire having high current density characteristics even in a high magnetic field environment.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明の製造方法では、原料を入れた
コイル型を、その軸長方向に磁界を印加しながら軸中心
に回転させて、線材を製造するので、C軸をコイル型の
軸長方向に、a、b軸をコイル型の円周方向に夫々成長
させて、高配向な多結晶を析出させることができ、また
、回転に伴う遠心力によって、高密度な多結晶を析出さ
せることができる。
As detailed above, in the manufacturing method of the present invention, the wire rod is manufactured by rotating the coil mold containing the raw material around the axis while applying a magnetic field in the longitudinal direction of the axis, so that the C-axis is the axis of the coil mold. Highly oriented polycrystals can be precipitated by growing the a and b axes in the circumferential direction of the coil shape in the longitudinal direction, and high-density polycrystals can be precipitated by centrifugal force accompanying rotation. be able to.

また、高磁場環境にあっても電流密度特性の劣化が少な
い超電導線材を容易に製造することができる等、本発明
は優れた効果を奏する。
Further, the present invention has excellent effects such as being able to easily manufacture a superconducting wire with little deterioration in current density characteristics even in a high magnetic field environment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る超電導線材の製造方法の実施状態
を示す模式図、第2図は同しくその製造方法の実施に使
用するコイル型の正面図及び断面図、第3図は同じくそ
の製造方法にて製造されたコイル線材の電流密度−磁界
特性を示すグラフである。 ■・・・コイル型 2・・・電気炉 3・・・ヒータ特
 許 出願人   三洋電機株式会社代理人 弁理士 
  河 野  登 人手 図 図 弔 図
FIG. 1 is a schematic diagram showing the state of implementation of the method for manufacturing a superconducting wire according to the present invention, FIG. 2 is a front view and a cross-sectional view of a coil mold used to implement the manufacturing method, and FIG. It is a graph which shows the current density-magnetic field characteristic of the coil wire manufactured by the manufacturing method. ■...Coil type 2...Electric furnace 3...Heater patent Applicant Sanyo Electric Co., Ltd. agent Patent attorney
Noboru Kono Funeral map with human hands

Claims (1)

【特許請求の範囲】 1、磁場環境の如何に拘わらずに高電流密度特性を有す
る超電導線材を製造する方法であって、 内周面が螺旋面をなす円筒状のコイル型に 原料を入れ、該コイル型の軸長方向に磁界を印加し、前
記原料をアニール処理しながら前記コイル型を軸中心に
回転させることを特徴とする超電導線材の製造方法。 2、磁場環境の如何に拘わらずに高電流密度特性を有す
る超電導線材を製造する方法であって、 内周面が螺旋面をなす円筒状のコイル型に 溶融原料を入れ、該コイル型の軸長方向に磁界を印加し
、前記溶融原料を徐冷処理しながら前記コイル型を軸中
心に回転させることを特徴とする超電導線材の製造方法
[Claims] 1. A method for manufacturing a superconducting wire having high current density characteristics regardless of the magnetic field environment, which comprises: placing a raw material in a cylindrical coil mold whose inner peripheral surface forms a spiral surface; A method for manufacturing a superconducting wire, comprising: applying a magnetic field in the axial direction of the coil mold, and rotating the coil mold around the axis while annealing the raw material. 2. A method for manufacturing a superconducting wire having high current density characteristics regardless of the magnetic field environment, which involves placing a molten raw material into a cylindrical coil mold whose inner peripheral surface forms a spiral surface, and A method for manufacturing a superconducting wire, comprising applying a magnetic field in the longitudinal direction and rotating the coil mold around its axis while slowly cooling the molten raw material.
JP1011443A 1989-01-19 1989-01-19 Manufacture of superconductive wire material Pending JPH02192622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1011443A JPH02192622A (en) 1989-01-19 1989-01-19 Manufacture of superconductive wire material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1011443A JPH02192622A (en) 1989-01-19 1989-01-19 Manufacture of superconductive wire material

Publications (1)

Publication Number Publication Date
JPH02192622A true JPH02192622A (en) 1990-07-30

Family

ID=11778240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1011443A Pending JPH02192622A (en) 1989-01-19 1989-01-19 Manufacture of superconductive wire material

Country Status (1)

Country Link
JP (1) JPH02192622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280011A (en) * 1992-04-30 1994-01-18 Northeastern University Alignment technique for anisotropicly conductive crystals utilizing a non-static magnetic field

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280011A (en) * 1992-04-30 1994-01-18 Northeastern University Alignment technique for anisotropicly conductive crystals utilizing a non-static magnetic field

Similar Documents

Publication Publication Date Title
CN103541011B (en) The method of the accurate single crystal of a kind of growing RE BCO high-temperature superconductor
JPH02192622A (en) Manufacture of superconductive wire material
US3206337A (en) Cobalt-platinum alloy and magnets made therefrom
JP3290191B2 (en) Method for preparing textured polycrystalline material
CN109972198A (en) A kind of preparation method of flaky erbium manganate single crystal
JPH027309A (en) Manufacture of oxide type superconductive wire
JPS6270296A (en) Bi↓2↓4Si↓2O↓4↓0 single crystal manufacturing method
JP3411048B2 (en) Manufacturing method of oxide superconductor
JPH03276705A (en) Manufacture of superconducting coil
JPH059059A (en) Production of oxide superconductor
JPH0243717B2 (en) BAPBO3KEISANKABUTSUCHODENDOTAITANKETSUSHONOYOEKIHIKIAGEHONYORUSEIZOHOHO
JPH06162843A (en) Manufacture of bi oxide superconductor
JPH02185003A (en) Superconducting coil manufacturing method
JPH0360497A (en) Production of superconducting pseudo single crystal
JP2685951B2 (en) Method for manufacturing bismuth-based superconductor
JPH0312313A (en) Manufacturing method of superconducting ceramic fiber
JPH01203257A (en) Production of superconductor
JP3548795B2 (en) Method for producing triaxially oriented oxide superconducting composite
JPH06223650A (en) Manufacture of bi oxide superconducting wire
JPH02263726A (en) Production of superconducting ceramic fiber
JPH03250509A (en) Manufacture of superconducting oxide wire
JPH05298946A (en) Manufacture of oxide superconductive wire rod
JP2000264788A (en) Oxide superconducting film body, electric element using the film body, and methods for manufacturing the same
JPH02188463A (en) Production of oxide superconductor
JPH03295208A (en) Manufacture of oxide superconducting coil wire material