[go: up one dir, main page]

JPH02191904A - Phase difference film and its production - Google Patents

Phase difference film and its production

Info

Publication number
JPH02191904A
JPH02191904A JP21083589A JP21083589A JPH02191904A JP H02191904 A JPH02191904 A JP H02191904A JP 21083589 A JP21083589 A JP 21083589A JP 21083589 A JP21083589 A JP 21083589A JP H02191904 A JPH02191904 A JP H02191904A
Authority
JP
Japan
Prior art keywords
film
stretching
retardation
incident
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21083589A
Other languages
Japanese (ja)
Inventor
Kohei Arakawa
公平 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP21083589A priority Critical patent/JPH02191904A/en
Publication of JPH02191904A publication Critical patent/JPH02191904A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

PURPOSE:To obtain a phase difference film of good visual angle characteristic by setting a ratio of retardation values, which are obtained at the time of setting the angle formed between a plane orthogonal to the stretching direction of a polarized film, which is formed by stretching a high polymer film, and the normal and the angle formed between the axis of stretching of this film and the normal to 40 deg. and 0 deg. respectively, to a prescribed value. CONSTITUTION:When an incident monochromatic light beam having 632.8nm wavelength is on a plane orthogonal to the stretching direction of the polarized film, Re(40)/Re(O) is expressed with an inequality I where Re(40) is the retardation value of this film for 40 deg. incidence angle and Re(O) is the retardation value for perpendicular incidence to the film surface at the time of setting the angle formed between the incident monochromatic light beam and the normal of the polarized film surface to 40 deg.. When the incident light is on an orthogonal plane including the axis of stretching of the film, Re(40)/Re(O) is expressed with an inequality II at the time of setting the angle formed between the incident monochromatic light beam and the normal of the film to 40 deg.. This phase difference film has these characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学用途に利用される新規な位相差フィルム及
びその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel retardation film used in optical applications and a method for producing the same.

〔従来の技術〕[Conventional technology]

光の透過性及び複屈折性を有するフィルム又はシートは
、テレビブラウン管、陰極線管表面の反射光をカットす
る防眩用途として、又、液晶表示の鮮明化を目的とする
材料として応用が広がっている。
Films or sheets with light transmittance and birefringence are increasingly being used as anti-glare applications to cut reflected light from the surfaces of television cathode ray tubes and cathode ray tubes, and as materials for the purpose of sharpening liquid crystal displays. .

フィルムの光学的特性の一つであるレターデーションは
複屈折値とフィルムの厚みの積として定義されるもので
あり、その要求値は目的によって異なる1例えば防眩機
能を目的とする位相差フィルムは、円偏光板、1/4λ
(ラムダ)板と称されるものであり、一軸延伸によって
位相差を1/4λとしたものである。この種の技術とし
て既にセルロース系樹脂、塩化ビニル系樹脂、ポリカー
ボネート系樹脂、アクリロニトリル系樹脂、スチレン系
樹脂、ポリオレフィン系樹脂等の素材を一軸延伸によっ
て製造する方法が知られている。
Retardation, which is one of the optical properties of a film, is defined as the product of birefringence value and film thickness, and its required value varies depending on the purpose.For example, a retardation film for anti-glare function is , circularly polarizing plate, 1/4λ
This is called a (lambda) plate, and the retardation is set to 1/4λ by uniaxial stretching. As this type of technology, methods are already known in which materials such as cellulose resins, vinyl chloride resins, polycarbonate resins, acrylonitrile resins, styrene resins, and polyolefin resins are produced by uniaxial stretching.

近年、液晶デイスプレィの用途拡大に伴い、液晶の複屈
折性に起因した種々の問題点の改善が望まれている。当
初、液晶デイスプレィの面に垂直な方向については着色
の除去が達成されるものの斜めからデイスプレィを見た
場合には、わずかな角度変化によってかなりの着色変化
又は画面表示内容が消失するという視角特性の問題点が
露見し、位相差フィルム利用に関する重大な課題となっ
ている。
In recent years, as the applications of liquid crystal displays have expanded, there has been a desire to improve various problems caused by the birefringence of liquid crystals. Initially, coloring was removed in the direction perpendicular to the surface of the liquid crystal display, but when viewing the display from an angle, a slight change in angle caused a significant change in coloring or the content displayed on the screen disappeared due to viewing angle characteristics. The problems have been exposed and have become a serious issue regarding the use of retardation films.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従って、本発明の目的は、視角特性を向上できる位相差
フィルム及びその製造法を提供することにある。
Therefore, an object of the present invention is to provide a retardation film that can improve viewing angle characteristics and a method for manufacturing the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記問題点を除去し、新規な位相差フィルム
を得るために、研究を重ねた結果完成されたものである
The present invention was completed as a result of repeated research in order to eliminate the above problems and obtain a new retardation film.

より詳細には、本発明は、上記問題点の原因がレターデ
ーシランの視角依存性にあることに着眼し、鋭意研究を
重ねた結果、高分子フィルムを延伸して形成される複屈
折フィルムであって、波長632.8nmの入射単色光
ビームが複屈折フィルムの延伸方向に直交する面上にあ
る場合(α方向と称する)、入射単色光ビームと該複屈
折フィルム面の法線との為す角度を40°とし、入射角
度40℃における該フィルムのレターデージジン値をR
e (40) 、フィルム面に垂直に入射したときのレ
ターデーション値をRe (0)とするとき、入射光が
該フィルムの延伸軸を含む直交面上にある場合(β方向
と称する)、入射単色光ビームと該フィルムの法線との
為す角度を40°とし、入射角度40@における該フィ
ルムのレターデーション値をRe (40)  とする
とき、0.85≦位相差フィルムにより目的が達成でき
ることが判明した。
More specifically, the present invention focuses on the fact that the cause of the above problem lies in the viewing angle dependence of retarded silane, and as a result of extensive research, the present invention has developed a birefringent film formed by stretching a polymer film. If the incident monochromatic light beam with a wavelength of 632.8 nm is on a plane perpendicular to the stretching direction of the birefringent film (referred to as the α direction), the relationship between the incident monochromatic light beam and the normal to the birefringent film surface is The angle is 40°, and the retardage gin value of the film at an incident angle of 40°C is R
e (40), and when the retardation value when incident perpendicularly to the film surface is Re (0), if the incident light is on the orthogonal plane containing the stretching axis of the film (referred to as the β direction), the incident light When the angle between the monochromatic light beam and the normal line of the film is 40°, and the retardation value of the film at an incident angle of 40@ is Re (40), the objective can be achieved with 0.85≦retardation film. There was found.

又、上記フィルムの製法として、フィルムの一軸延伸過
程において幅方向の収縮をある程度許すことによって面
質が優れ且つ幅方向の収縮を許さないものと比較し、大
幅に視野角が改善できることを突き止め本発明の完成に
至ったものである。
In addition, we have found that by allowing some shrinkage in the width direction during the uniaxial stretching process of the above film, we have found that the viewing angle can be significantly improved compared to a film that has excellent surface quality and does not allow shrinkage in the width direction. This led to the completion of the invention.

更に詳細には、一軸延伸において延伸倍率をaとしたと
き、延伸軸と直交する方向の幅と延伸前とを特徴とする
位相差フィルムの製造法に関するものである。もし、延
伸後の幅と延伸前の幅の比より大きいと視野角増大の効
果が少なくなる。フィルムを延伸すると同時に幅方向に
均一な収縮を与える手段はフィルムの幅方向に一定率の
収縮を行い得る二輪延伸装置によって達成できる。又、
周速の異なるロールを利用する縦一軸延伸によっても特
定な条件下で達成できる。例えば両サイドを固定せず完
全な自由収縮を許すとフィルムが幅方向に波板状となる
。又、ロール間の間隔とフィルムの幅との比が小さい場
合には幅方向の複屈折値が不均一となりやすい、従つて
好ましいamはロール間の間隔とフィルムの幅との比を
5以上、更に好ましくは10以上にする。又、延伸前後
の延伸温度、フィルムの分子量等によって影響を受は簡
単に規定できるものではないが、上記条件以外に延伸倍
率を規定するロール間にニップしない中間ロールを設け
ることによってその制御が容易となる。
More specifically, the present invention relates to a method for producing a retardation film characterized by a width in a direction orthogonal to the stretching axis and before stretching, when the stretching ratio is a in uniaxial stretching. If the ratio is greater than the ratio of the width after stretching to the width before stretching, the effect of increasing the viewing angle will be reduced. Means for stretching the film and simultaneously applying uniform shrinkage in the width direction can be achieved by a two-wheeled stretching device capable of shrinking the film at a constant rate in the width direction. or,
It can also be achieved under specific conditions by longitudinal uniaxial stretching using rolls with different circumferential speeds. For example, if both sides are not fixed and allowed to completely shrink freely, the film becomes corrugated in the width direction. Furthermore, if the ratio between the distance between the rolls and the width of the film is small, the birefringence value in the width direction tends to become non-uniform. Therefore, the preferable am is a ratio of the distance between the rolls and the width of the film of 5 or more. More preferably, the number is 10 or more. In addition, although the influence cannot be easily determined by the stretching temperature before and after stretching, the molecular weight of the film, etc., it can be easily controlled by providing an intermediate roll that does not nip between the rolls that determine the stretching ratio in addition to the above conditions. becomes.

さて延伸軸と直交する方向に収縮を許すことによって視
野角が増大する理由については延伸条件による分子の配
向に差が生じることによると考えられる。ネッキングを
自由に許す理想的一軸延伸においてはフィルムの延伸方
向に対して直交する方向についてはどの方向からも複屈
折値が一定となるが、幅方向の収縮を制限した場合には
、純粋な一軸延伸ではなく厚み収縮による分子の面配向
が起こる。この面配向によってフィルム端部からの複屈
折値が面方向からの複屈折値に比較し増大する。従って
斜入射におけるレターデージタンは厚み増大だけでなく
複屈折値の増大が相乗されて急激レターデージタンの変
化を引き起こし結果として視野角を狭小にするものと思
われる。
Now, the reason why the viewing angle increases by allowing contraction in the direction perpendicular to the stretching axis is thought to be due to differences in the orientation of molecules depending on the stretching conditions. In ideal uniaxial stretching that allows necking freely, the birefringence value is constant from any direction perpendicular to the stretching direction of the film, but when shrinkage in the width direction is restricted, pure uniaxial stretching occurs. Planar orientation of molecules occurs due to thickness contraction rather than stretching. Due to this plane orientation, the birefringence value from the edge of the film increases compared to the birefringence value from the plane direction. Therefore, it is thought that the retardation tan at oblique incidence is caused not only by an increase in thickness but also by an increase in birefringence value, causing a sudden change in retardation tan, resulting in a narrowing of the viewing angle.

又、本発明における高分子フィルムとは、光の透過性が
70%以上の実質的に透明なフィルムであって、分子の
固を複屈折値の絶対値が0.02以上の素材ならば全て
対象となるものであり、特別な制限はないが、とりわけ
ポリカーボネート、ポリエチレンテレフタレート、ポリ
アクリレート、ポリエーテルスルホン、ポリフェニレン
サルファイド、ポリフェニレンオキサイド、ポリアリル
スルホン、ポリアミドイミド、ポリイミド、ポリスチレ
ン、ポリオレフィン、ポリアクリロニトリル、セルロー
ス、ポリエステル等が好ましく特にポリカーボネート系
の高分子フィルムが好ましい、又これらのポリマー間の
ポリマーブレンドやこれらのポリマーから選択される少
くも1種類を含むポリマーブレンドも本発明の対象とな
る。
In addition, the polymer film in the present invention refers to any material that is substantially transparent with a light transmittance of 70% or more, and whose molecular stiffness has an absolute value of birefringence of 0.02 or more. These include, but are not limited to, polycarbonate, polyethylene terephthalate, polyacrylate, polyether sulfone, polyphenylene sulfide, polyphenylene oxide, polyallyl sulfone, polyamideimide, polyimide, polystyrene, polyolefin, polyacrylonitrile, cellulose, among others. , polyester, etc. are preferred, and polycarbonate-based polymer films are particularly preferred, and polymer blends between these polymers and polymer blends containing at least one selected from these polymers are also objects of the present invention.

実施例1 以下実施例によって本発明の詳細な説明する。Example 1 The present invention will be described in detail below with reference to Examples.

実施例 ホスゲンとビスフェノールAの縮合により得られた分子
量8.0万のポリカーボネートを二塩化メチレンに溶解
し、10%溶液とした。該溶液をスチールドラム上に流
延し連続的に剥ぎとって厚さ50μm1幅500■のフ
ィルムを得た。該フィルムをT、 M、  Long 
Co、 Inc製二輪延伸機フィルムストレッチ中−に
よって165℃の温度下で35%の延伸をすると共に、
それと直角方向には13%の収縮を行った。該延伸フィ
ルムを島津制作所■製複屈折計ARP−100によって
レターデーション値の角度依存性を測定したところ表−
1のような結果が得られた。且つ該フィルムを液晶デバ
イス用位相差フィルムとして使用したところ視角特性は
良好で40°傾けて見ても画像を十分に観察できた。
Example A polycarbonate having a molecular weight of 80,000 obtained by condensation of phosgene and bisphenol A was dissolved in methylene dichloride to form a 10% solution. The solution was cast onto a steel drum and continuously peeled off to obtain a film with a thickness of 50 μm and a width of 500 μm. The film is T, M, Long
The film was stretched by 35% at a temperature of 165°C using a two-wheel stretching machine manufactured by Co., Ltd.
In the direction perpendicular to this, a contraction of 13% was performed. The angular dependence of the retardation value of the stretched film was measured using a birefringence meter ARP-100 manufactured by Shimadzu Corporation.
A result similar to 1 was obtained. When the film was used as a retardation film for a liquid crystal device, the viewing angle characteristics were good and images could be observed satisfactorily even when viewed at an angle of 40 degrees.

実施例2 実施例1によって得られた幅500■のポリカーボネー
トフィルムを延伸倍率を規定する2組のニップロール間
の間隔を10mとし中間にニップしない2組のフリーロ
ールを配設した。延伸温度を175℃とフィルムの送り
速度を2m/sinとし、巻き取り速度を2.5m/w
inとした。このときフィルムの幅は445■となった
。該延伸フィルムを実施例1と同様の方法でレターデー
シリン値の角度依存性及び幅方向のレターデージタンの
標準偏差を求めた結果を表−1に示す、且つ該フィルム
を液晶デバイス用位相差フィルムとして使用したところ
視角特性は良好で40″″傾けて見ても画像を十分に観
察できた。
Example 2 A polycarbonate film having a width of 500 cm obtained in Example 1 was stretched with a distance of 10 m between two sets of nip rolls that determined the stretching ratio, and two sets of free rolls that did not nip were placed in the middle. The stretching temperature was 175°C, the film feeding speed was 2 m/sin, and the winding speed was 2.5 m/w.
It was set as in. At this time, the width of the film was 445 square meters. Table 1 shows the results of determining the angular dependence of the retardation cylindrical value and the standard deviation of the retardation tan in the width direction using the same method as in Example 1. When used as a film, the viewing angle characteristics were good and the image could be observed satisfactorily even when viewed at an angle of 40''.

比較例1 実施例1で流延によって得たフィルムをテンター法で3
1%延伸したフィルムを実施例1と同様の方法でレター
デージタン値を測定したところ表=1の結果が得られた
。且つ該フィルムを液晶デバイス用位相差フィルムとし
て使用したところ20°程度斜めに傾けたところで画像
が見えにくくなった。
Comparative Example 1 The film obtained by casting in Example 1 was
When the retardation tan value of the 1% stretched film was measured in the same manner as in Example 1, the results shown in Table 1 were obtained. When the film was used as a retardation film for a liquid crystal device, the image became difficult to see when tilted at an angle of about 20 degrees.

比較例2 実施例2において2組のニップロール間(7) M F
iを200−とした、それ以外は全て実施例2と同様に
行ったところ、レターデージタン幅方向の変動が大きく
、光学用途として不適であった。
Comparative Example 2 Between two sets of nip rolls in Example 2 (7) M F
When i was set to 200- and everything else was carried out in the same manner as in Example 2, the variation in the retardation tongue width direction was large, making it unsuitable for optical use.

比較例3 実施例2において中間のフリーロールを取りはずしたと
ころ、フィルムの巻き取り幅は430−となり、且つ、
フィルムは波板状となり又、レターデーションの幅方向
の変動が大きく光学用途として不適であった。
Comparative Example 3 When the intermediate free roll was removed in Example 2, the winding width of the film was 430-, and
The film was corrugated, and the retardation varied widely in the width direction, making it unsuitable for optical applications.

実施例1.2はα方向及びβ方向共にRe(40)/R
e (0)の比が1に近いが、比較例1ではlよりはず
れて差が大きくなる。比較例2.3はReの標準差が大
きく、すなわちバラツキが大きい。
Example 1.2 has Re(40)/R in both α and β directions.
Although the ratio of e (0) is close to 1, in Comparative Example 1, it deviates from l and the difference becomes large. In Comparative Examples 2.3, the standard difference in Re is large, that is, the variation is large.

Claims (4)

【特許請求の範囲】[Claims] (1)高分子フィルムを延伸して形成される複屈折フィ
ルムであって、波長632.8nmの入射単色光ビーム
が複屈折フィルムの延伸方向に直交する面上にある場合
、入射単色光ビームと該複屈折フィルム面の法線との為
す角度を40℃とし、入射角度40℃における該フィル
ムのレターデーション値をRe(40)、フィルム面に
垂直に入射したときのレターデーション値をRe(0)
とするとき、0.98≦Re(40)/Re(0)≦1
.15であり、且つ入射光が該フィルムの延伸軸を含む
直交面上にある場合、入射単色光ビームと該フィルムの
法線との為す角度を40°とし、入射角度40°におけ
る該フィルムのレターデーション値をRe(40)とす
るとき、0.85≦Re(40)/Re(0)≦1.0
2であることを特徴とする位相差フィルム。
(1) In a birefringent film formed by stretching a polymer film, when an incident monochromatic light beam with a wavelength of 632.8 nm is on a plane perpendicular to the stretching direction of the birefringent film, the incident monochromatic light beam and The angle formed with the normal to the birefringent film surface is 40°C, the retardation value of the film at an incident angle of 40°C is Re (40), and the retardation value when the film is incident perpendicularly to the film surface is Re (0 )
When 0.98≦Re(40)/Re(0)≦1
.. 15 and the incident light is on an orthogonal plane containing the stretching axis of the film, the angle between the incident monochromatic light beam and the normal to the film is 40°, and the letter of the film at the incident angle of 40° is When the dation value is Re(40), 0.85≦Re(40)/Re(0)≦1.0
A retardation film characterized by being 2.
(2)一軸延伸において、延伸軸と直角方向に収縮せさ
たことを特徴とする位相差フィルムの製造法。
(2) A method for producing a retardation film, which is characterized by shrinking in a direction perpendicular to the stretching axis during uniaxial stretching.
(3)一軸延伸における延伸倍率をaとしたとき、延伸
軸と直交する方向の長さと延伸前の長さの比が1/√a
〜1/2√aであるように制御することを特徴とする請
求項(2)記載の位相差フィルムの製造法。
(3) When the stretching ratio in uniaxial stretching is a, the ratio of the length in the direction perpendicular to the stretching axis and the length before stretching is 1/√a
3. The method for producing a retardation film according to claim 2, wherein the retardation film is controlled to be .about.1/2√a.
(4)周速の異なるロールを利用する縦一軸延伸法にお
いて、ロール間距離とフィルム幅の比を5以上とするよ
うにロール間距離を定めることを特徴とする請求項(2
)〜(3)記載の位相差フィルムの製造法。
(4) In the longitudinal uniaxial stretching method using rolls with different circumferential speeds, the distance between the rolls is determined so that the ratio of the distance between the rolls and the film width is 5 or more.
) to (3), the method for producing a retardation film.
JP21083589A 1988-09-26 1989-08-16 Phase difference film and its production Pending JPH02191904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21083589A JPH02191904A (en) 1988-09-26 1989-08-16 Phase difference film and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-240356 1988-09-26
JP24035688 1988-09-26
JP21083589A JPH02191904A (en) 1988-09-26 1989-08-16 Phase difference film and its production

Publications (1)

Publication Number Publication Date
JPH02191904A true JPH02191904A (en) 1990-07-27

Family

ID=26518296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21083589A Pending JPH02191904A (en) 1988-09-26 1989-08-16 Phase difference film and its production

Country Status (1)

Country Link
JP (1) JPH02191904A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05150115A (en) * 1991-11-28 1993-06-18 Sekisui Chem Co Ltd Production of phase difference plate
JPH05157911A (en) * 1990-10-24 1993-06-25 Nitto Denko Corp Birefringent film and its manufacture, phase difference plate, elliptic polarizing plate and liquid crystal display device
JPH06130228A (en) * 1992-10-21 1994-05-13 Fuji Photo Film Co Ltd Production of film sheet and liquid crystal display device using the same
US5366682A (en) * 1991-12-09 1994-11-22 Sumitomo Chemical Company, Limited Process for producing phase retarder
US5430566A (en) * 1991-11-08 1995-07-04 Sumitomo Chemical Company, Limited Liquid crystal device with phase retarder having layered inorganic compound
US5472538A (en) * 1993-12-22 1995-12-05 Sumitomo Chemical Co., Ltd. Process for producing phase retarder film
US5474731A (en) * 1993-04-12 1995-12-12 Sumitomo Chemical Company, Ltd. Process for producing phase retarder film
WO2005059609A1 (en) * 2003-12-16 2005-06-30 Nitto Denko Corporation Method for producing birefringent film, optical film and image display device using the same
JP2007163570A (en) * 2005-12-09 2007-06-28 Tsutsunaka Plast Ind Co Ltd Polarizing plate for lens
WO2008062986A1 (en) 2006-11-20 2008-05-29 Lg Chem, Ltd. Optical film and method of manufacturing the same
CN100460950C (en) * 2004-10-07 2009-02-11 日东电工株式会社 Method of manufacturing of birefringent film and application of the film
US7867414B2 (en) 2004-10-07 2011-01-11 Nitto Denko Corporation Method of manufacturing a birefringent film, optical film using the same, liquid crystal panel, liquid crystal display device and imaged display device
WO2016114006A1 (en) * 2015-01-14 2016-07-21 日東電工株式会社 Polarizing film production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189804A (en) * 1987-02-02 1988-08-05 Sumitomo Chem Co Ltd retardation plate
JPS63261302A (en) * 1987-04-20 1988-10-28 Sumitomo Chem Co Ltd retardation plate
JPH01118805A (en) * 1987-11-02 1989-05-11 Sumitomo Chem Co Ltd retardation plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189804A (en) * 1987-02-02 1988-08-05 Sumitomo Chem Co Ltd retardation plate
JPS63261302A (en) * 1987-04-20 1988-10-28 Sumitomo Chem Co Ltd retardation plate
JPH01118805A (en) * 1987-11-02 1989-05-11 Sumitomo Chem Co Ltd retardation plate

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157911A (en) * 1990-10-24 1993-06-25 Nitto Denko Corp Birefringent film and its manufacture, phase difference plate, elliptic polarizing plate and liquid crystal display device
US5430566A (en) * 1991-11-08 1995-07-04 Sumitomo Chemical Company, Limited Liquid crystal device with phase retarder having layered inorganic compound
US5631755A (en) * 1991-11-08 1997-05-20 Sumitomo Chemical Company, Limited Layered inorganic compound-containing phase retarder
JPH05150115A (en) * 1991-11-28 1993-06-18 Sekisui Chem Co Ltd Production of phase difference plate
US5366682A (en) * 1991-12-09 1994-11-22 Sumitomo Chemical Company, Limited Process for producing phase retarder
JPH06130228A (en) * 1992-10-21 1994-05-13 Fuji Photo Film Co Ltd Production of film sheet and liquid crystal display device using the same
US5474731A (en) * 1993-04-12 1995-12-12 Sumitomo Chemical Company, Ltd. Process for producing phase retarder film
US5472538A (en) * 1993-12-22 1995-12-05 Sumitomo Chemical Co., Ltd. Process for producing phase retarder film
WO2005059609A1 (en) * 2003-12-16 2005-06-30 Nitto Denko Corporation Method for producing birefringent film, optical film and image display device using the same
CN100419474C (en) * 2003-12-16 2008-09-17 日东电工株式会社 Method for producing birefringent film, optical film and image display device using the same
US7833457B2 (en) 2003-12-16 2010-11-16 Nitto Denko Corporation Method for producing birefringent film, optical film and image display device using the same
CN100460950C (en) * 2004-10-07 2009-02-11 日东电工株式会社 Method of manufacturing of birefringent film and application of the film
US7867414B2 (en) 2004-10-07 2011-01-11 Nitto Denko Corporation Method of manufacturing a birefringent film, optical film using the same, liquid crystal panel, liquid crystal display device and imaged display device
JP2007163570A (en) * 2005-12-09 2007-06-28 Tsutsunaka Plast Ind Co Ltd Polarizing plate for lens
WO2008062986A1 (en) 2006-11-20 2008-05-29 Lg Chem, Ltd. Optical film and method of manufacturing the same
US8120729B2 (en) 2006-11-20 2012-02-21 Lg Chem, Ltd. Optical film and method of manufacturing the same
WO2016114006A1 (en) * 2015-01-14 2016-07-21 日東電工株式会社 Polarizing film production method
JP2016130782A (en) * 2015-01-14 2016-07-21 日東電工株式会社 Production method of polarizing film

Similar Documents

Publication Publication Date Title
JP2857889B2 (en) Liquid crystal display
JP4790890B2 (en) Retardation film and continuous production method thereof
EP0650079B1 (en) Optical compensatory sheet and liquid crystal display having the same
JP3342517B2 (en) Method for producing PVA-based film and optical film
KR100519883B1 (en) A wide angle optical retarder
TWI429993B (en) Optical compensating film, producing method thereof, polarizing plate, producing method thereof, and liquid crystal display device
JPH02191904A (en) Phase difference film and its production
JP2612196B2 (en) Phase difference film and method of manufacturing the same
US20070196592A1 (en) Stretched Film, Process For The Production Thereof And Laminated Material
JP2002187960A (en) Cellulose ester film, process for manufacturing the same polarizing plate and liquid crystal display device
JPH0511114A (en) Production of phase difference plate
JPH0289006A (en) Production of phase difference film
JPH03141303A (en) Film laminate
JP2003232922A (en) Polarizing plate and liquid crystal display
JPH0323405A (en) Production of phase difference plate
JP2841376B2 (en) Phase difference plate
JP2592697B2 (en) Method for manufacturing retardation film
KR101452542B1 (en) Liquid crystal display
JP4719402B2 (en) Image display device
JPH04173844A (en) Production of polyvinyl alcohol phase-difference film having improved property
JPH05150115A (en) Production of phase difference plate
US20050266159A1 (en) Method for improving birefringence of optical film
JPH04245202A (en) Phase difference plate
JP2000111732A (en) Production of three-dimensional double refractive film
JPH05288930A (en) Phase difference plate having improved quality