[go: up one dir, main page]

JPH02190431A - Copper alloy for connecting apparatus - Google Patents

Copper alloy for connecting apparatus

Info

Publication number
JPH02190431A
JPH02190431A JP1061189A JP1061189A JPH02190431A JP H02190431 A JPH02190431 A JP H02190431A JP 1061189 A JP1061189 A JP 1061189A JP 1061189 A JP1061189 A JP 1061189A JP H02190431 A JPH02190431 A JP H02190431A
Authority
JP
Japan
Prior art keywords
less
alloy
properties
copper alloy
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1061189A
Other languages
Japanese (ja)
Inventor
Masato Asai
真人 浅井
Satoru Sasaki
覚 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1061189A priority Critical patent/JPH02190431A/en
Publication of JPH02190431A publication Critical patent/JPH02190431A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain the copper alloy having excellent strength, electrical conductivity, platability, solderability, stress relaxation properties, fatigue properties, bendability, corrosion resistance, etc., by specifying the compsn. constituted of Ni, Si, P, O2, S and Cu. CONSTITUTION:The copper alloy for a connecting apparatus contains, by weight, 1.5 to 6.0% Ni, 0.1 to 3.0% Si, 0.12 to 1.0% P, <=20ppm O2 and <=10ppm S, furthermore contains, at need, <=5.0% Zn and total <=1.0% of one or more kinds among <=0.6% Mg, <=0.6% Mn, <=0.35% Cr, <=0.1% V, <=0.35% Ti and <=0.6% Co and the balance Cu with inevitable impurities. The alloy has excellent practical properties as connecting parts. The above alloy can be obtd. by subjecting a copper alloy having prescribed compsn. to hot working, to rapid cooling, thereafter combinedly repeating cold working and aging treatment to the alloy and finely and dispersedly precipitating intermetallic compounds or the like therein.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子、電気機器内外の接続部品、特にICソケ
ット、コネクター、コンセント、スイッチ、リレー、接
点ばね、端子等として強度。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is suitable for use as connecting parts inside and outside electronic and electrical equipment, particularly IC sockets, connectors, outlets, switches, relays, contact springs, terminals, etc.

導電性、メツキ性、半田付は性、応力緩和特性。Conductivity, plating properties, solderability, and stress relaxation properties.

疲労特性等の実用特性に優れた接続機器用銅合金に関す
るものである。
This invention relates to a copper alloy for connecting devices that has excellent practical properties such as fatigue properties.

〔従来の技術〕[Conventional technology]

電子、電気機器の部品や部材にはCu合金が多用されて
いるが、近時小型化、高密度化、高精度化に加えて経済
性も指向され、従来の純銅。
Cu alloys are often used in the parts and materials of electronic and electrical equipment, but in recent years there has been an emphasis on miniaturization, higher density, and higher precision, as well as economic efficiency, and traditional pure copper has been used.

黄銅、りん青銅に替ってより高い性能と経済性の両立が
要求されるようになった。例えば黄銅に比べてはるかに
機械的特性が優れたりん青銅でも、応力緩和特性や応力
腐食割れ(SCC)感受性に加えて、電子、電気機器の
部品の接続に普遍的な半田合金との接合の信頼性の問題
が大きい。
In place of brass and phosphor bronze, there is now a demand for materials that have both higher performance and economic efficiency. For example, even though phosphor bronze has far better mechanical properties than brass, in addition to its stress relaxation properties and susceptibility to stress corrosion cracking (SCC), it is also difficult to join with solder alloys, which are common in connecting parts of electronic and electrical equipment. Reliability is a big problem.

これと同種の欠陥として電気接点や接続部に貴金属に代
えてSnやpb金合金半田)メツキを用いる場合経時的
に密着性が失なわれ、前記半田接合部と同様に剥離現象
を超す。これはCuとSnとの拡散反応に起因する現象
で、100℃以下の低温でも進行するため、特公昭51
41222号公報や特開昭49−108562号公報に
例示されている如く、厚いCuやNiのバリヤー層をメ
ツキ等により予め形成する等余分の工程を必要とする。
A similar type of defect occurs when Sn or PB gold alloy solder plating is used instead of precious metals for electrical contacts and connections, and the adhesiveness is lost over time, resulting in a peeling phenomenon similar to the solder joints described above. This is a phenomenon caused by the diffusion reaction between Cu and Sn, and it progresses even at low temperatures below 100°C.
As exemplified in Japanese Patent Application Laid-open No. 41222 and Japanese Patent Application Laid-open No. 108562/1987, extra steps are required, such as forming a thick Cu or Ni barrier layer in advance by plating or the like.

このため一部ではCu−Fe合金、例えばC194(2
,3wt%F e、 Q、l2wt%Zn、θ、 03
wt%P、残部CuH以下W1%を%と略記)やC19
5(1,5%Fe、0.6%Sn、0.2%Co、0.
03%P、残部Cu)等が用いられている。これ等の合
金は多量のFe分をリン化合物や金属単体状に析出分散
させたもので、強度や導電性をあるレベルで合せ持つが
、電子、電気機器の高性能化に対処するには、不充分な
性能であり、また磁性の面でも問題があり、更に前記半
田接合の信頼性に劣る問題がある。
For this reason, some Cu-Fe alloys, such as C194 (2
,3wt%Fe,Q,l2wt%Zn,θ,03
wt%P, W1% below the balance CuH is abbreviated as %) and C19
5 (1.5% Fe, 0.6% Sn, 0.2% Co, 0.
03% P, balance Cu), etc. are used. These alloys are made by precipitating and dispersing a large amount of Fe in the form of phosphorous compounds or elemental metals, and have a certain level of strength and conductivity, but in order to cope with the high performance of electronic and electrical equipment, The performance is insufficient, there are also problems in terms of magnetism, and there is also a problem that the reliability of the solder joint is poor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような状況下において、電子、電気機器の小型、高
密度、高精度化による高性能化をはかるため、下記のよ
うな特性を有する銅合金が強く望まれている。
Under these circumstances, copper alloys having the following properties are strongly desired in order to improve the performance of electronic and electrical equipment by increasing their size, density, and precision.

(1)小型、高密度化をはかるために、強度と導電性は
相反する関係にあるがこれをより高い値で両立させるこ
と。
(1) In order to achieve smaller size and higher density, strength and conductivity, which have a contradictory relationship, should be balanced at a higher value.

(2)応力緩和特性が良いこと。(2) Good stress relaxation properties.

(3) SCCを起さないこと。(3) Do not cause SCC.

(4)半田接合やSn、5n−Pb合金メツキの経時剥
離を起さないこと。
(4) Solder joints and Sn, 5n-Pb alloy plating should not peel off over time.

(5)磁性の影響が少ないこと。(5) Less influence of magnetism.

(6)熱間加工において、割れなどの欠陥を起さない製
造上有利な組成であること。
(6) The composition must be advantageous for manufacturing without causing defects such as cracks during hot working.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれに鑑み種々検討の結果、電子。 In view of this, the present invention was developed as a result of various studies.

電気機器内外の接続部品、特にICソケットコネクター
 コンセント スイッチ、リレー接点ばね、端子等とし
て、強度、導電性、メツキ性、半田付は性、応力緩和特
性、疲労特性等の実用特性に優れた接続機器用銅合金を
開発したものである。
Connecting devices for internal and external electrical equipment, especially IC socket connectors, outlet switches, relay contact springs, terminals, etc., with excellent practical properties such as strength, conductivity, plating properties, solderability, stress relaxation properties, fatigue properties, etc. This is a copper alloy developed for use in copper alloys.

即ち本発明銅合金の一つは、Ni1.5〜6.0%、5
i(1,1〜3.0%、PO,+2〜1.0%を含み、
O2含有量が20ppm以下、S含有量がl0ppn以
下、残部Cuと不可避的不純物からなることを特徴とす
るものである。
That is, one of the copper alloys of the present invention contains 1.5 to 6.0% Ni, 5
i (1, including 1 to 3.0%, PO, +2 to 1.0%,
It is characterized in that the O2 content is 20 ppm or less, the S content is 10 ppn or less, and the balance consists of Cu and inevitable impurities.

また本発明銅合金の他の一つのは、Ni1.5〜6.0
%,Si0.I〜3.0%、PO,12〜1.0%。
Another copper alloy of the present invention has Ni1.5 to 6.0
%, Si0. I~3.0%, PO, 12~1.0%.

Z n 5.0%以下を含み、更にMg0.6%以下。Contains 5.0% or less of Zn, and further contains 0.6% or less of Mg.

M n 0.6%以下、Cr0.35%以下、VQ、1
%以下、Ti0J5以下、Co0.6%以下の範囲内で
何れか1種又は2種以上を合計1.[1%以下を含み、
02含有量が20ppm以下、S含有量が10ppi以
下、残部Cuと不可避的不純物からなることを特徴とす
ものである。
Mn 0.6% or less, Cr 0.35% or less, VQ, 1
% or less, Ti0J5 or less, Co0.6% or less, a total of 1. [Contains 1% or less,
It is characterized by having a 02 content of 20 ppm or less, an S content of 10 ppi or less, and the remainder consisting of Cu and inevitable impurities.

〔作 用〕[For production]

本発明銅合金は、上記の如<Ni含有量を1.5〜6.
0%、Si含有量を0.1〜3.0%、P含有量を0.
12〜1.0%としたものであり、これらNi、St、
Pは互いに共感しあう事により、高い強度と優れた導電
性及び応力緩和特性やぼね特性を良好にするものである
。即ちこれらは合金中おいてNj−Si化合物やNj−
P化合物、或いは(Ni、P)−3ia元化合物を形成
し、前記特性を飛躍的に高める働きを示す。
The copper alloy of the present invention has a Ni content of 1.5 to 6.
0%, Si content 0.1-3.0%, P content 0.
12 to 1.0%, and these Ni, St,
By sympathizing with each other, P provides high strength, excellent conductivity, stress relaxation characteristics, and good spring characteristics. That is, these are Nj-Si compounds and Nj-
It forms a P compound or a (Ni, P)-3ia base compound, and exhibits the function of dramatically improving the above-mentioned properties.

しかしてNi、Si、Pの各含有量が下限未満では、こ
れらの共感による効果が薄く、十分な強度を得ることが
難しい。また上限を越えると共感効果に対してNi、S
i、Pの各々若しくは一部元素が過剰となって、未結合
のNi。
However, if the content of each of Ni, Si, and P is below the lower limit, the effects due to these effects will be weak, and it will be difficult to obtain sufficient strength. Moreover, if the upper limit is exceeded, Ni and S will be affected by the empathy effect.
Each or some of the elements i and P are in excess, resulting in unbonded Ni.

Si、Pが鋼中に存在するようになり、熱間加工性、半
田付は性、磁性、導電性等を著しく損なうためである。
This is because Si and P are present in the steel, significantly impairing hot workability, soldering properties, magnetism, electrical conductivity, etc.

次に02含有量を29ppm以下と限定したのは、02
はメツキ密着性を害し、上記化合物を粗大化せしめてし
まう働きを示すもので、範囲内においては良好な特性を
有するも、これを越えて含有すると化合物による強度向
上の効果が薄れると共に、メツキ密着性が低下し、膨れ
やハガレの原因となり、信頼性を劣化させるためである
。またS含有量をIQppn以下と限定したのは、その
含有量が熱間加工性に大きく寄与するも、範囲を越えて
含有すると熱間加工における条件、特に熱間加工温度範
囲が著しく狭まくなり、生産性を低下すると共に熱間割
れが発生し易くなるためである。
Next, the 02 content was limited to 29 ppm or less.
This substance has a function of impairing plating adhesion and making the above compound coarser. Although it has good properties within this range, if it is contained beyond this range, the strength-improving effect of the compound is weakened and the plating adhesion becomes worse. This is because the properties are reduced, causing blistering and peeling, and deteriorating reliability. In addition, the S content is limited to IQppn or less because the content greatly contributes to hot workability, but if it is contained beyond this range, the hot working conditions, especially the hot working temperature range, will be significantly narrowed. This is because productivity is reduced and hot cracking is more likely to occur.

更に、Znを5.0%以下含有せしめるのは、Znは半
田付は性、特に半田と合金基材との接合性を高め、信頼
性を良好にする働きを示すと共に、耐マイグレーション
性を改善するが、この範囲を越えて含有せしめると、こ
れ等の効果は維持されるが、導電性を損ない、接続に伴
う発熱の放熱性が不充分となるためである。
Furthermore, containing 5.0% or less of Zn is because Zn improves soldering properties, especially the bonding properties between the solder and the alloy base material, improves reliability, and improves migration resistance. However, if the content exceeds this range, although these effects are maintained, the conductivity will be impaired and the heat dissipation of heat generated during connection will become insufficient.

またM g 0.6%以下、Mn0.6%以下、Cr0
.35%以下、VO,1%以下,Ti0.35%以下。
Also, Mg 0.6% or less, Mn 0.6% or less, Cr0
.. 35% or less, VO, 1% or less, Ti 0.35% or less.

Co O,6%以下の範囲内で何れか1種又は2種以上
を合計1.0%以下含有せしめるのは、これ等は何れも
上記範囲で製造工程における加工性を向上する。特にM
gとMnは半田付は性、熱間加工性及び強度の向上に寄
与し、Cr、V。
The reason why one or more of Co 2 O is contained in a total amount of 1.0% or less within the range of 6% or less improves workability in the manufacturing process within the above range. Especially M
g and Mn contribute to improving solderability, hot workability and strength, while Cr and V.

Ti、及びCOは製造工程の中間における熱処理時の結
晶粒の粗大化を著しく抑制しこれにより、曲げ加工時の
表面性状を平滑にし、表面割れを予防し、曲げ加工性を
良くする働きを示すと共に、鋼中に固溶している過剰な
N i、  S I。
Ti and CO significantly suppress the coarsening of crystal grains during heat treatment in the middle of the manufacturing process, thereby smoothing the surface texture during bending, preventing surface cracks, and improving bending workability. In addition, there is excess Ni and Si dissolved in the steel.

Pと化合物を構成し、導電性を高める。しかしてこれ等
添加元素は、各々上限を越えて含有せしめると、鋳造性
を悪化し、健全な鋳塊を得ることが困難となるばかりか
、熱間加工性についても悪影響を与えるようになり、更
にメツキの密着性や電導性を損なうためである。
Forms a compound with P and increases conductivity. However, if these additive elements are contained in excess of their respective upper limits, they not only deteriorate castability and make it difficult to obtain a sound ingot, but also have an adverse effect on hot workability. This is also because it impairs the adhesion and conductivity of the plating.

次に本発明合金の製造は、熱間加工後の急冷、例えば水
冷処理を経た後に、冷間加工と時効処理を組み合せて繰
り返し行って製造する方法や、熱間加工後、中間工程に
おける溶体化処理を行い、構成元素を固溶せしめた後、
冷間加工や時効処理を組み合せ、上記化合物を微細に分
散析出させて性能を高める製造方法等によって主に製造
される。また最終の冷間加工後に200〜550℃の調
質焼鈍、テンションレベラー、400〜850℃の温度
範囲でのテンションレベラーアニーリング等を組み合せ
ることにより、より高い特性を得ることができる。
Next, the alloy of the present invention can be produced by rapidly cooling after hot working, for example, after passing through water cooling treatment, and then repeatedly performing a combination of cold working and aging treatment, or by solution treatment in an intermediate process after hot working. After processing and solid solution of the constituent elements,
It is mainly manufactured by a manufacturing method that combines cold working and aging treatment to finely disperse and precipitate the above compounds to improve performance. Further, higher properties can be obtained by combining temper annealing at 200 to 550°C, tension leveler, tension leveler annealing in the temperature range of 400 to 850°C, etc. after the final cold working.

〔実施例〕〔Example〕

以下本発明を実施例について説明する。 The present invention will be described below with reference to Examples.

実施例1 第1表に示す組成の銅合金を木炭被覆中で溶解鋳造し、
900℃で熱間圧延を施し、その直後に水中に没入して
冷却した。これを面側して厚さ8mの板にした。この板
に冷間加工と520℃の熱処理を繰り返し行い、厚さ0
.5Mの板とした後、850℃の温度で80秒間加熱保
持した後急冷し、溶体化処理を施した。これに表面酸洗
研削を施した後、加工率40%の冷間加工を行い、厚さ
0.3mmの板に仕上げ、400℃の温度で1時間調質
焼鈍を加え供試材とした。この供試材を用いて、機械的
性質、導電率、加工性、耐熱半田剥離性、応力腐食割れ
性、応力緩和特性、メツキ性を調べた。その結果を第2
表に示す。
Example 1 A copper alloy having the composition shown in Table 1 was melted and cast in a charcoal coating,
Hot rolling was performed at 900° C., and immediately after that, it was immersed in water to cool it down. This was turned into a plate with a thickness of 8 m. This plate was repeatedly subjected to cold working and heat treatment at 520℃, resulting in a thickness of 0.
.. After forming a 5M plate, it was heated and held at a temperature of 850°C for 80 seconds, then rapidly cooled and subjected to solution treatment. After subjecting the surface to pickling and grinding, cold working was performed at a working rate of 40%, the plate was finished to a thickness of 0.3 mm, and temper annealed at a temperature of 400° C. for 1 hour to obtain a test material. Using this test material, mechanical properties, electrical conductivity, workability, heat-resistant solder peelability, stress corrosion cracking resistance, stress relaxation properties, and plating properties were investigated. The result is the second
Shown in the table.

機械的性質(引張強さ及び伸び)は月S−7224+ 
+、:基づイテ測定し、伝導率はJIS−Ho2O3に
基づいて測定した。曲げ加工性はIts−X2248に
基づきVブロック法により試験を行い、試験片表面に割
れを生じる最小曲げ率(R)を同試験片の厚さ(1)で
割った値(R/ t )で示した。耐熱半田剥離性は、
幅5mmの短冊状に切り出し、これに60/40共品半
田をロジン系フラックスを用いて半田浸漬した後、17
0℃の温度で700時間加速試験を行ってから、180
度の密着曲げを行い、半田剥離の有無を観察した。応力
腐食割れ性はIts−C8306に準じ、3 vo1%
NH,蒸気中の定荷重法により割れ時間を求めた。荷重
は引張強さの50%とした。応力緩和特性は、初期応力
を0.2%耐力の50%として、150℃の恒温槽中で
1000時間の試験を行った後の応力緩和率を測定し、
10%以内をO印、10%以上をX印で表わした。メツ
キ性はシアン化合浴を用いてAgを5.0μmの厚さに
メツキしてから450℃で10分間加熱した後、テープ
剥離試験を行い、その剥離の有無を検鏡した。
Mechanical properties (tensile strength and elongation) are Tsuki S-7224+
+: The conductivity was measured based on JIS-Ho2O3. Bending workability is tested using the V-block method based on Its-X2248, and is calculated by dividing the minimum bending rate (R) that causes cracks on the surface of the test piece by the thickness (1) of the test piece (R/t). Indicated. Heat resistant solder removability is
After cutting out a strip with a width of 5 mm and soaking it in 60/40 solder using rosin-based flux,
After 700 hours of accelerated testing at a temperature of 0°C, 180
The sample was bent closely and the presence or absence of solder peeling was observed. Stress corrosion cracking resistance is according to Its-C8306, 3 vo1%
The cracking time was determined by the constant load method in NH and steam. The load was 50% of the tensile strength. The stress relaxation properties were determined by measuring the stress relaxation rate after conducting a test for 1000 hours in a constant temperature bath at 150°C, with the initial stress being 50% of the 0.2% proof stress.
Less than 10% is indicated by an O mark, and 10% or more is indicated by an X mark. The plating property was determined by plating Ag to a thickness of 5.0 μm using a cyanide bath, heating it at 450° C. for 10 minutes, performing a tape peeling test, and examining the presence or absence of peeling using a microscope.

実施例2 実施例1における厚さ8 mmの熱間圧延板に93.8
%の加工率で冷間加工を行い、厚さ0.5閣の板とした
。これに450℃の温度で2時間の熱処理を施してから
、40%の加工率で冷間加工を行い、厚さ0.3+nm
の板とし、更に400℃の温度で1時間調質焼鈍を施し
たものを供試材とし、実施例1と同様な試験を行ない、
その結果を第3表に示す。
Example 2 The hot rolled plate with a thickness of 8 mm in Example 1 had a thickness of 93.8 mm.
Cold working was performed at a processing rate of 0.5% to form a board with a thickness of 0.5 mm. This was heat treated at a temperature of 450℃ for 2 hours, and then cold worked at a processing rate of 40% to a thickness of 0.3+nm.
A test similar to that of Example 1 was conducted using a plate that had been subjected to temper annealing at a temperature of 400°C for 1 hour as a test material.
The results are shown in Table 3.

第1表、第2表及び第3表から明らかなように、本発明
合金Nα1〜13は何れも従来合金阻20〜22と比較
し、各特性においてまんべんなく優れている。
As is clear from Tables 1, 2, and 3, all of the alloys Nα1-13 of the present invention are uniformly superior in each property as compared to the conventional alloys Nα20-22.

これに対し本発明合金の組成範囲より外れる比較合金N
α14〜19では特性の一つ以上が劣っていることが判
る。即ちNi、P量の少ない比較合金1!114では満
足すべき強度が得られず、Si又はP含有量の多い比較
合金k15. +6では伝導率が著しく低く、更に半田
耐熱剥離性やメツキ密着性が大きく劣化していることが
判る。またO2含有量の多い比較合金Nα18では強度
やメツキ密着性が損なわれており、副成分(Mg。
On the other hand, comparative alloy N, which is outside the composition range of the alloy of the present invention,
It can be seen that one or more of the characteristics are inferior for α14 to α19. That is, comparative alloy 1!114, which has a small amount of Ni and P, does not provide satisfactory strength, while comparative alloy k15. which has a large content of Si or P. It can be seen that at +6, the conductivity is extremely low, and furthermore, the solder heat resistance and plating adhesion are greatly deteriorated. In addition, the strength and plating adhesion of the comparative alloy Nα18, which has a high O2 content, was impaired, and the subcomponent (Mg).

Mn、Cr、V、Ti、Co)の多い比較合金Nα17
では鋳造性が悪く、S含有量の多い比較合金NCL19
では熱間圧延で著しい割れが、生じてしまい、各々供試
片を作ることができなかった。
Comparative alloy Nα17 with a large amount of Mn, Cr, V, Ti, Co)
Comparative alloy NCL19 has poor castability and high S content.
However, severe cracking occurred during hot rolling, and test pieces could not be made.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、優れた導電性と強度を合せ
て有しており、同時に良好な曲げ加工性やメツキ性、半
田付は性、応力緩和特性、疲労特性、耐食性等の実用特
性に優れ、電子、電気機器の接続機器への使用に際し、
その小型化、高密度化、高精度化を可能にする等、工業
上顕著な効果を奏するものである。
As described above, according to the present invention, it has both excellent conductivity and strength, and at the same time has practical properties such as good bending workability, plating property, solderability, stress relaxation property, fatigue property, and corrosion resistance. Excellent for use in connection equipment for electronic and electrical equipment.
It has remarkable industrial effects, such as enabling miniaturization, higher density, and higher precision.

Claims (2)

【特許請求の範囲】[Claims] (1)Ni1.5〜6.0wt%,Si0.1〜3.0
wt%,P0.12〜1.0wt%を含み、O_2含有
量が20ppm以下、S含有量が10ppm以下、残部
Cuと不可避的不純物からなる接続機器用銅合金。
(1) Ni1.5-6.0wt%, Si0.1-3.0
A copper alloy for connecting devices, which contains 0.12 to 1.0 wt% of P0.12 to 1.0 wt%, an O_2 content of 20 ppm or less, a S content of 10 ppm or less, and the balance being Cu and inevitable impurities.
(2)Ni1.5〜6.0wt%,Si0.1〜3.0
wt%,P0.12〜1.0wt%,Zn5.0wt%
以下を含み、更にMg0.6wt%以下,Mn0.6w
t%以下,Cr0.35wt%以下,V0.1wt%以
下,Ti0.35wt%以下,Co0.6wt%以下の
範囲内で何れか1種又は2種以上を合計1.0wt%以
下含み、O_2含有量が20ppm以下,S含有量が1
0ppm以下、残部Cuと不可避的不純物からなる接続
機器用銅合金。
(2) Ni1.5-6.0wt%, Si0.1-3.0
wt%, P0.12-1.0wt%, Zn5.0wt%
Contains the following, and further includes Mg0.6wt% or less, Mn0.6w
t% or less, Cr 0.35wt% or less, V 0.1wt% or less, Ti 0.35wt% or less, Co 0.6wt% or less, and contains any one or more of two or more types in the range of 1.0wt% or less in total, O_2 content The amount is 20 ppm or less, the S content is 1
Copper alloy for connecting devices consisting of 0 ppm or less, the balance being Cu and unavoidable impurities.
JP1061189A 1989-01-19 1989-01-19 Copper alloy for connecting apparatus Pending JPH02190431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1061189A JPH02190431A (en) 1989-01-19 1989-01-19 Copper alloy for connecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1061189A JPH02190431A (en) 1989-01-19 1989-01-19 Copper alloy for connecting apparatus

Publications (1)

Publication Number Publication Date
JPH02190431A true JPH02190431A (en) 1990-07-26

Family

ID=11755038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1061189A Pending JPH02190431A (en) 1989-01-19 1989-01-19 Copper alloy for connecting apparatus

Country Status (1)

Country Link
JP (1) JPH02190431A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282441A (en) * 1989-04-22 1990-11-20 Mitsubishi Electric Corp Copper alloy for electronic equipment
JPH0499139A (en) * 1990-08-02 1992-03-31 Mitsubishi Electric Corp Copper-base alloy
JPH0559468A (en) * 1991-04-24 1993-03-09 Nikko Kyodo Co Ltd Copper alloy for conductive spring
JPH0559505A (en) * 1991-08-30 1993-03-09 Kobe Steel Ltd Manufacture of high strength copper alloy less in anisotropy
JPH0741887A (en) * 1992-09-24 1995-02-10 Poongsan Corp Copper alloy for electric and electronic part and its preparation
KR100267810B1 (en) * 1998-05-11 2000-10-16 손인국 The manufacturing method of cu-alloy with lead frame material
CN110205570A (en) * 2019-04-15 2019-09-06 深圳万佳互动科技有限公司 A kind of heat treatment method of electrical and electronic parts copper alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282441A (en) * 1989-04-22 1990-11-20 Mitsubishi Electric Corp Copper alloy for electronic equipment
JPH0499139A (en) * 1990-08-02 1992-03-31 Mitsubishi Electric Corp Copper-base alloy
JPH0559468A (en) * 1991-04-24 1993-03-09 Nikko Kyodo Co Ltd Copper alloy for conductive spring
JPH0559505A (en) * 1991-08-30 1993-03-09 Kobe Steel Ltd Manufacture of high strength copper alloy less in anisotropy
JPH0741887A (en) * 1992-09-24 1995-02-10 Poongsan Corp Copper alloy for electric and electronic part and its preparation
KR100267810B1 (en) * 1998-05-11 2000-10-16 손인국 The manufacturing method of cu-alloy with lead frame material
CN110205570A (en) * 2019-04-15 2019-09-06 深圳万佳互动科技有限公司 A kind of heat treatment method of electrical and electronic parts copper alloy

Similar Documents

Publication Publication Date Title
KR930005072B1 (en) Copper alloy for electronic instrument and method of manufacturing the same
JP3550233B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP4154100B2 (en) Copper alloy for electronic materials having excellent surface characteristics and method for producing the same
JPS58124254A (en) Copper alloy for lead material of semiconductor equipment
JP2521879B2 (en) Copper alloy for electronic and electrical equipment and its manufacturing method
JPH03162553A (en) Manufacture of high strength and high conductivity copper alloy having good bendability
JPH02190431A (en) Copper alloy for connecting apparatus
JP3049137B2 (en) High strength copper alloy excellent in bending workability and method for producing the same
JPS59145745A (en) Copper alloy for lead material of semiconductor equipment
JPH0440417B2 (en)
JPH11323463A (en) Copper alloy for electrical and electronic parts
JPS6338547A (en) High strength conductive copper alloy
JPH02197543A (en) Copper alloy for connecting apparatus
JP4570948B2 (en) Sn-plated strip of Cu-Zn alloy with reduced whisker generation and method for producing the same
JPS5939492B2 (en) High strength copper alloy for conductive use with softening resistance
JPH0356294B2 (en)
JP2001032028A (en) Copper alloy for electronic parts, and its manufacture
JPH01240A (en) High strength and conductive copper alloy
JPH0542488B2 (en)
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPH02129326A (en) High strength copper alloy
JPH0325495B2 (en)
JPH0331776B2 (en)
JPH04285137A (en) Spring constituted of beryllium copper alloy and its manufacture
JPS59145748A (en) Copper alloy for lead material of semiconductor equipment