[go: up one dir, main page]

JPH02188966A - Mos semiconductor device - Google Patents

Mos semiconductor device

Info

Publication number
JPH02188966A
JPH02188966A JP1008008A JP800889A JPH02188966A JP H02188966 A JPH02188966 A JP H02188966A JP 1008008 A JP1008008 A JP 1008008A JP 800889 A JP800889 A JP 800889A JP H02188966 A JPH02188966 A JP H02188966A
Authority
JP
Japan
Prior art keywords
layers
columnar semiconductor
columnar
gate electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1008008A
Other languages
Japanese (ja)
Other versions
JP2703970B2 (en
Inventor
Fumio Horiguchi
文男 堀口
Akihiro Nitayama
仁田山 晃寛
Hiroshi Takatou
高東 宏
Fujio Masuoka
富士雄 舛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1008008A priority Critical patent/JP2703970B2/en
Priority to KR1019890012863A priority patent/KR900005603A/en
Publication of JPH02188966A publication Critical patent/JPH02188966A/en
Priority to US07/754,191 priority patent/US5258635A/en
Application granted granted Critical
Publication of JP2703970B2 publication Critical patent/JP2703970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To realize a circuit which is small in occupying area and large in resistance against a hot carrier effect and can reduce the consumption of the standby current and make high-speed switching operations because of a reduction in signal delay by using a MOS transistor having a longitudinal structure in which side walls of a plurality of columnar semiconductor layers are used is channels, and so on. CONSTITUTION:This MOS semiconductor device is constituted of a semiconductor substrate 1, a plurality of columnar semiconductor layers 5 and 6 formed and arranged on the substrate 1 in such a state that they are separated from each other by prescribed intervals by means of grooves 4, gate insulating films 7 respectively formed on outer peripheral surfaces of the layers 5 and 6, gate electrodes 8 continuously installed along the grooves 4 so as to surround the layers 5 and 6 on which the insulating films 7 are formed, diffused layers 9-12 which are respectively formed on tops of the layers 5 and 6 and bottom sections of the grooves surrounding the layers 5 and 6 and become sources and drains, first main electrodes 14 and 15 commonly connected to the diffused layers 9 and 11 on the tops of the layers 5 and 6, and second main electrodes 16 and 17 connected to the diffused layers 10 and 12 in the bottom sections of the grooves 4.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明はMOS型半導体装置に係り、特に基板面積を有
効利用することを可能としたMOSトランジスタ構造お
よびこれを用いた集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Purpose of the Invention (Industrial Application Field) The present invention relates to a MOS type semiconductor device, and in particular to a MOS transistor structure that makes it possible to effectively utilize the substrate area and an integrated circuit using the same. Regarding circuits.

(従来の技術) 半導体集積回路、なかでもMOSトランジスタを用いた
集積回路は、高集積化の一途を辿っている。この高集積
化に伴って、その中で用いられているMOSトランジス
タはサブミクロン領域まで微細化が進んでいる。ディジ
タル回路の基本回路はインバータ回路であるが、このイ
ンバータ回路を構成するMOSトランジスタの微細化が
進むと様々な弊害が出てくる。第1に、MOSトランジ
スタのゲート寸法が小さくなると、いわゆる短チヤネル
効果によってソース夢ドレイン間にバンチスルーが生じ
、リーク電流を抑制することが困難になる。その結果イ
ンバータ回路のスタンバイ電流は増加する。第2に、M
OSトランジスタの内部電界が高くなり、ホット・キャ
リア効果によってトランジスタのしきい値や相互コンダ
クタンスの変動が生じ、トランジスタ特性の劣化、そし
て回路特性(動作速度、動作マージンなど)の劣化が生
じる。第3に、微細化によりゲート長が短くなったとし
ても、必要な電流量を確保するためにはゲート幅はある
程度以上とらなくてはならず。
(Prior Art) Semiconductor integrated circuits, especially integrated circuits using MOS transistors, are becoming increasingly highly integrated. With this increase in integration, the MOS transistors used therein are being miniaturized to the submicron region. The basic circuit of a digital circuit is an inverter circuit, but as the MOS transistors that make up this inverter circuit become smaller, various problems arise. First, as the gate size of a MOS transistor becomes smaller, bunch-through occurs between the source and drain due to the so-called short channel effect, making it difficult to suppress leakage current. As a result, the standby current of the inverter circuit increases. Second, M
The internal electric field of the OS transistor becomes high, and the hot carrier effect causes variations in the transistor's threshold value and mutual conductance, resulting in deterioration of transistor characteristics and deterioration of circuit characteristics (operating speed, operating margin, etc.). Third, even if the gate length becomes shorter due to miniaturization, the gate width must be greater than a certain level in order to secure the necessary amount of current.

その結果インバータ回路の占有面積を十分に小さくする
ことが難しい。例えばダイナミックRA M(DRAM
)において、メモリセルの微細化技術が目覚ましく進ん
でいるが1周辺回路では必要な電流量を確保する上でゲ
ート幅を小さくする訳にはいかない部分が多く、これが
DRAMチップ全体としての小型化を阻害している。
As a result, it is difficult to sufficiently reduce the area occupied by the inverter circuit. For example, dynamic RAM (DRAM)
), although memory cell miniaturization technology has progressed at a remarkable pace, there are many parts in which the gate width cannot be made small in order to secure the necessary amount of current in one peripheral circuit, and this makes it difficult to miniaturize the entire DRAM chip. It's hindering.

また、ゲート電極を多結晶シリコン膜で形成した場合、
この多結晶シリコン膜抵抗とゲート・キャパシタで構成
されるCR時定数によりゲート電極への信号伝搬に遅れ
が生じる。素子の微細化により、ゲート酸化膜厚みが減
少し、スイッチング速度が向上することによって、この
ゲート電極での信号遅延がインバータのスイッチング時
間の大部分を占めるようになっている。更にソース、ド
レインの接合容量も微細化に伴って基板濃度の増加によ
り増大しており、スイッチング速度の低下をもたらす原
因となっている。
In addition, when the gate electrode is formed with a polycrystalline silicon film,
A CR time constant composed of this polycrystalline silicon film resistor and gate capacitor causes a delay in signal propagation to the gate electrode. Due to the miniaturization of devices, the thickness of the gate oxide film is reduced and the switching speed is improved, so that the signal delay at the gate electrode now occupies most of the switching time of the inverter. Furthermore, the junction capacitance of the source and drain is also increasing due to the increase in substrate concentration with miniaturization, which causes a decrease in the switching speed.

(発明が解決しようとする課題) 以上のように従来のMOS集積回路技術では。(Problem to be solved by the invention) As mentioned above, with conventional MOS integrated circuit technology.

インバータ回路のリーク電流の抑制が困難であり。It is difficult to suppress leakage current in the inverter circuit.

ホット・キャリア効果による信頼性の低下が生じ。Reliability decreases due to hot carrier effect.

また必要な電流量確保の要請から回路の占有面積をなか
なか小さくできない、またゲート電極での遅延が大きく
、ゲート幅を長くできない、といった問題があった。同
様の問題は、インバータ回路に限らず、フリップフロッ
プ回路を構成した場合にも存在する。
There are also problems in that it is difficult to reduce the area occupied by the circuit due to the need to secure the necessary amount of current, and the delay at the gate electrode is large, making it impossible to increase the gate width. Similar problems exist not only in inverter circuits but also in flip-flop circuits.

本発明は、この様な問題を解決したMOS型半導体装置
を提供することを目的とする。
An object of the present invention is to provide a MOS type semiconductor device that solves these problems.

[発明の構成] (課題を解決するための手段) 本発明によるMOSトランジスタは、半導体基板上に溝
によって分離されて配列形成された複数の柱状半導体層
を用いて構成する。これら複数の柱状半導体層の側面に
はゲート絶縁膜が形成され、かつこれらの柱状半導体層
を取囲むように溝に連続的にゲート電極が配設される。
[Structure of the Invention] (Means for Solving the Problems) A MOS transistor according to the present invention is constructed using a plurality of columnar semiconductor layers arranged and separated by grooves on a semiconductor substrate. A gate insulating film is formed on the side surfaces of the plurality of columnar semiconductor layers, and a gate electrode is continuously provided in the groove so as to surround these columnar semiconductor layers.

各柱状半導体層の上面および溝底部にはそれぞれソース
、ドレイン拡散層が形成され、第1の主電極が複数の柱
状半導体層の上面拡散層に共通接続され、第2の主電極
が溝底部の拡散層に接続される。
Source and drain diffusion layers are formed on the top surface of each columnar semiconductor layer and at the bottom of the groove, respectively, a first main electrode is commonly connected to the top diffusion layer of the plurality of columnar semiconductor layers, and a second main electrode is formed at the bottom of the groove. Connected to the diffusion layer.

一つのMOSトランジスタを構成する複数の柱状半導体
層は、好ましくはそのパターン寸法を最小加工寸法程度
とし、また柱状半導体層間の距離を最小加工寸法の2〜
3倍程度以下とする。
Preferably, the pattern dimensions of the plurality of columnar semiconductor layers constituting one MOS transistor are approximately the minimum processing dimension, and the distance between the columnar semiconductor layers is approximately 2 to 2 of the minimum processing dimension.
It should be about 3 times or less.

本発明においてはまた、上述のようなMOSトランジス
タを用いてインバータやフリップフロップ等の集積回路
の基本回路が構成される。
In the present invention, the basic circuits of integrated circuits such as inverters and flip-flops are constructed using the above-described MOS transistors.

(作用) 本発明の構造においては、MOSトランジスタのサブス
レッショルド特性が急峻で、サブスレッショルド−スイ
ングが極めて小さい。これは後に詳細に説明するように
、ゲートのチャネルに対する制御性が強いことによる。
(Function) In the structure of the present invention, the subthreshold characteristic of the MOS transistor is steep, and the subthreshold swing is extremely small. This is due to the strong controllability of the gate over the channel, as will be explained in detail later.

このためインバータ回路等のリーク電流は効果的に抑制
される。
Therefore, leakage current from the inverter circuit, etc. is effectively suppressed.

また柱状半導体層の側壁がチャネル領域となり。In addition, the side walls of the columnar semiconductor layer become channel regions.

チャネル領域が通常の平面構造のMOSトランジスタの
ようにフィールド領域に接する部分がない。
Unlike a normal planar MOS transistor, there is no part where the channel region contacts the field region.

従ってフィールド端の高電界のチャネル領域への影響と
いうことがなく、ホット・キャリア効果が抑制される。
Therefore, the high electric field at the edge of the field does not affect the channel region, and the hot carrier effect is suppressed.

また、占有面積を大きくすることなく、柱状半導体層の
高さ、即ち溝の深さを大きくしてチャネル長を長くする
ことができ、これもホット・キャリア効果の抑制に有効
となる。そしてこのホット・キャリア効果の抑制により
、高信頼性のインバータ回路やフリップフロップ回路が
得られる。
Further, the channel length can be increased by increasing the height of the columnar semiconductor layer, that is, the depth of the groove, without increasing the occupied area, which is also effective in suppressing the hot carrier effect. By suppressing this hot carrier effect, highly reliable inverter circuits and flip-flop circuits can be obtained.

更に、複数の柱状半導体層の周囲を取り囲むようにチャ
ネル領域を設けるため、大きいゲート幅を小さいチップ
占有面積で実現することができ。
Furthermore, since the channel region is provided to surround the plurality of columnar semiconductor layers, a large gate width can be realized with a small chip occupation area.

ある程度大きい電流量を必要とする部分で特に占有面積
縮小に大きい効果が得られる。更に、一つの柱状半導体
層のパターン寸法を例えば最小加工寸法程度の小さい矩
形とすれば(実際には加工上の丸まりにより丸型形状と
なるが)、動作時に容易に溝底部のドレイン層から伸び
る空乏層が柱状半導体層領域をその下の半導体層領域か
ら電気的に分離する状態、或いは側面から伸びる空乏層
で柱状半導体層が内部が空乏化する状態が得られる。
This is especially effective in reducing the occupied area in parts that require a certain amount of current. Furthermore, if the pattern size of one columnar semiconductor layer is, for example, a small rectangle with the minimum processing size (in reality, it will have a round shape due to rounding during processing), it will easily extend from the drain layer at the bottom of the groove during operation. A state is obtained in which the depletion layer electrically isolates the columnar semiconductor layer region from the semiconductor layer region below it, or a state in which the interior of the columnar semiconductor layer is depleted due to the depletion layer extending from the side surface.

これも、サブスレッシシルト特性の改善につながり、ま
た、基板バイアス依存性が極めて小さい特性を得ること
を可能とする。
This also leads to an improvement in subthreshold silt characteristics, and also makes it possible to obtain characteristics with extremely low substrate bias dependence.

また、基板の単位面積当りのゲート幅利用率が高いから
、同じゲート幅で比較した時に通常の平坦構造のMOS
トランジスタに比べてソース、ドレインの接合面積を極
めて小さいものとすることができる。これにより動作速
度の向上が図られる。
In addition, since the gate width utilization rate per unit area of the substrate is high, when compared with the same gate width, it is
The junction area of the source and drain can be made extremely small compared to a transistor. This improves the operating speed.

ゲート電極が複数の柱状半導体層を取囲むように配設さ
れるからゲート電極での信号遅延も小さくなり、これも
動作速度の向上に寄与する。
Since the gate electrode is arranged so as to surround the plurality of columnar semiconductor layers, the signal delay at the gate electrode is also reduced, which also contributes to improving the operating speed.

(実施例) 以下1本発明の実施例を図面を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第1図(a)(b)は、一実施例のCMOSインバータ
回路の平面図と等価回路図である。第2図(a)、(b
)、(C)および(d)はそれぞれ、第1図(a)のA
−A’B−B’c−c’およびD−D’断面図である。
FIGS. 1(a) and 1(b) are a plan view and an equivalent circuit diagram of a CMOS inverter circuit according to an embodiment. Figure 2 (a), (b)
), (C) and (d) are respectively A in Fig. 1(a).
-A'B-B'c-c' and DD' cross-sectional views.

シリコン基板1にn型ウェル2およびn型ウェル3が形
成され、それぞれのウェル領域に溝4に囲まれて島状に
突起する複数の柱状シリコン層5および6が配列形成さ
れている。2行×4列の柱状シリコン層5によりMOS
トランジスタQpが形成され、2行×2列の柱状シリコ
ン層6によりnチャネルMOSトランジスタQNが形成
されている。
An n-type well 2 and an n-type well 3 are formed in a silicon substrate 1, and a plurality of columnar silicon layers 5 and 6 that are surrounded by a groove 4 and project like an island are arranged in each well region. MOS by columnar silicon layer 5 arranged in 2 rows x 4 columns
A transistor Qp is formed, and an n-channel MOS transistor QN is formed by columnar silicon layers 6 arranged in two rows and two columns.

MOSトランジスタQP、QNは、各柱状シリコン層5
,6の側壁全体をチャネル領域として、縦型構造をもっ
て構成されている。即ち、溝4内の素子分離領域には素
子分離酸化膜が形成され、シリコン層5,6の外周面に
はゲート酸化膜7が形成され、この外周を取り囲むよう
にゲート電極8が溝4に埋め込まれて連続的に配設され
ている。
MOS transistors QP and QN are connected to each columnar silicon layer 5.
, 6 as a channel region, and has a vertical structure. That is, an element isolation oxide film is formed in the element isolation region within the trench 4, a gate oxide film 7 is formed on the outer peripheral surface of the silicon layers 5 and 6, and a gate electrode 8 is formed in the trench 4 so as to surround this outer periphery. embedded and arranged continuously.

このゲート電極8は例えば、p串型またはn串型多結晶
シリコン膜を堆積し、これをレジストプロセスと反応性
イオンエッ、チング等の異方性エツチングにより柱状シ
リコン層5および6の側面部と。
This gate electrode 8 is formed by depositing a p-type or n-type polycrystalline silicon film, for example, and etching it on the side surfaces of the columnar silicon layers 5 and 6 by a resist process and anisotropic etching such as reactive ion etching.

両トランジスタのゲート電極の結合部となる平坦部に残
すことにより得られる。このゲート電極8の形成後、p
型不純物のイオン注入によって複数の柱状シリコン層5
の各上面にソース拡散層9゜溝底部にドレイン拡散層1
0が形成され、同様にn型不純物のイオン注入によりn
チャネル側のソース、ドレイン層11.12が形成され
る。なお複数の柱状シリコン層5のそれぞれの間、およ
び複数の柱状シリコン層6のそれぞれの間の溝領域には
、ゲート電極形成前にそれぞれ予めドレイン拡散層10
.12の一部が形成される。こうして素子形成された基
板は、CVD酸化膜13により覆われ、これにコンタク
ト孔が開けられてAll膜の蒸着、パターニングにより
、必要な端子配線、即ちVCC配線14.Vss配線、
入力端子(V in)配線16.出力端子(Vout)
配線17が形成されている。
This can be achieved by leaving it in a flat area that becomes the joining area of the gate electrodes of both transistors. After forming this gate electrode 8, p
A plurality of columnar silicon layers 5 are formed by ion implantation of type impurities.
Source diffusion layer 9 on each top surface and drain diffusion layer 1 on the bottom of each groove.
0 is formed, and similarly by ion implantation of n-type impurities, n
Source and drain layers 11 and 12 on the channel side are formed. Note that in the groove regions between each of the plurality of columnar silicon layers 5 and between each of the plurality of columnar silicon layers 6, drain diffusion layers 10 are formed in advance, respectively, before forming the gate electrode.
.. 12 is formed. The substrate on which the elements have been formed is covered with a CVD oxide film 13, contact holes are opened in this, and necessary terminal wiring, that is, VCC wiring 14. Vss wiring,
Input terminal (V in) wiring 16. Output terminal (Vout)
A wiring 17 is formed.

この実施例ではインバータ回路の動作における各トラン
ジスタのチャネル反転時に、それぞれの柱状シリコン層
領域がドレイン層から伸びる空乏層により、それ以下の
領域から電気的に分離される状態となるように、素子パ
ラメータが設定される。特に好ましくは、一つの柱状シ
リコン層のパターン寸法が最小加工寸法程度に設定され
る。具体的にnチャネルMOSトランジスタQp側の一
つのシリコン層についてその様子を第3図に示す。
In this example, the device parameters are set such that when the channel of each transistor is inverted during the operation of the inverter circuit, each columnar silicon layer region is electrically isolated from the regions below it by a depletion layer extending from the drain layer. is set. Particularly preferably, the pattern size of one columnar silicon layer is set to about the minimum processing size. Specifically, FIG. 3 shows the state of one silicon layer on the n-channel MOS transistor Qp side.

溝底部に形成されたドレイン12から挟み込むように伸
びる空乏層19が互いに接触する状態になると、柱状シ
リコン層6はその下の基板領域からは分離されてフロー
ティング状態になる。例えばこのような条件を満たすた
めには、p型ウェル3の不純物濃度を3 X 10 ”
/cm3.柱状シリコン層3の幅を1μm、ゲート酸化
膜厚を120人とすればよい。nチャネル側についても
同様の条件を満たすようにする。
When the depletion layers 19 extending from the drain 12 formed at the bottom of the trench come into contact with each other, the columnar silicon layer 6 is separated from the substrate region below and becomes a floating state. For example, in order to satisfy such conditions, the impurity concentration of the p-type well 3 should be 3 x 10''
/cm3. The width of the columnar silicon layer 3 may be 1 μm, and the thickness of the gate oxide film may be 120 μm. Similar conditions are satisfied on the n-channel side as well.

この実施例によるインバータ回路の利点を、従来構造と
比較しながら具体的に明らかにする。この実施例の構造
では、MOSトランジスタのチャネル長はほぼ、溝4の
深さである。いま必要なチャネル幅が、pチャネルMO
SトランジスタQpで38.4μm、nチャネルMOS
トランジスタで19.2μmとする。柱状シリコン層5
および6の矩形平面の1辺を1μmとすると1 nチャ
ネルMOSトランジスタQpおよびnチャネルMOSト
ランジスタQNの柱状シリコン層5および6の数を第1
図(a)に示すようにそれぞれ8個および4個とするこ
とにより、希望するチャネル幅が得られる。このとき第
1図(a)のパターンでの占有面積はほぼ+ 5.4 
X L2.3m H,4μm 2である。比較のため、
従来の平面構造で同様の電流駆動能力をもつCMOSイ
ンバータ回路を構成した場合のパターンを、第23図に
示す。チャネル長はpチャネル、nチャネル共に0.5
μmとし、チャネル幅は、pチャネル側が38.4μm
nチャネル側が19.2μmである。このときインバー
タ回路の占有面積はほぼ、 a xeo、e−181,
8Bm2となる。
The advantages of the inverter circuit according to this embodiment will be specifically clarified while comparing with the conventional structure. In the structure of this embodiment, the channel length of the MOS transistor is approximately the depth of the trench 4. The channel width required now is p-channel MO
38.4μm with S transistor Qp, n-channel MOS
The thickness of the transistor is 19.2 μm. Columnar silicon layer 5
If one side of the rectangular planes of and 6 is 1 μm, then 1 is the number of columnar silicon layers 5 and 6 of n-channel MOS transistor Qp and n-channel MOS transistor QN.
The desired channel width can be obtained by setting the number of channels to 8 and 4, respectively, as shown in Figure (a). At this time, the area occupied by the pattern in Figure 1(a) is approximately +5.4
XL2.3mH, 4μm2. For comparison,
FIG. 23 shows a pattern when a CMOS inverter circuit having a conventional planar structure and a similar current driving ability is constructed. Channel length is 0.5 for both p channel and n channel
μm, and the channel width is 38.4 μm on the p-channel side.
The n-channel side is 19.2 μm. At this time, the area occupied by the inverter circuit is approximately a xeo, e-181,
It becomes 8Bm2.

以上の比較結果から明らかなように、この実施例によれ
ば5回路占有面積を大幅に低減することができる。必要
な電流量が小さい部分即ち、チャネル幅が小さくてもよ
い部分では、もともと回路占有面積に占めるコンタクト
孔面積の割合いが大きい。そしてこのコンタクト孔面積
は本発明でも従来構造でも異ならない。従って本発明に
よる占有面積の縮小という効果が大きく発揮されるのは
As is clear from the above comparison results, according to this embodiment, the area occupied by the five circuits can be significantly reduced. In a portion where the required amount of current is small, that is, in a portion where the channel width may be small, the contact hole area occupies a large proportion of the circuit occupation area. The area of this contact hole is the same between the present invention and the conventional structure. Therefore, the effect of the present invention in reducing the occupied area is greatly exhibited.

チャネル幅が大きい回路部分である。この意味で本発明
は例えばDRAM等の周辺回路部に適用して大きい効果
が得られる。DRAMにおいては。
This is a circuit portion with a large channel width. In this sense, the present invention can be applied to peripheral circuits such as DRAMs to obtain great effects. In DRAM.

メモリセルに溝掘りキャパシタ構造を導入して高集積化
する技術が今後有望であるが、このメモリセル領域での
溝掘りと同時に1周辺回路のインバータ部分の溝掘りを
行えば、工程的にも有利である。
Technology to increase integration by introducing a trenched capacitor structure into memory cells is promising in the future, but if trenches are dug in the inverter part of one peripheral circuit at the same time as trenching in the memory cell area, it will be possible to improve the process efficiency. It's advantageous.

第19図(a)(b)は、それぞれ従来の平面構造pチ
ャネルMOSトランジスタと実施例のpチャネルMOS
トランジスタのサブスレッショルド特性を示している。
FIGS. 19(a) and 19(b) show a conventional planar structure p-channel MOS transistor and an example p-channel MOS transistor, respectively.
This shows the subthreshold characteristics of the transistor.

チャネル幅/チャネル長はいずれも、 W/ L =8
.Ou rnlo、8 tt mである。
Channel width/channel length are both W/L = 8
.. Ournlo, 8 tt m.

この実施例でのチャネル幅Wとチャネル長しの関係を第
18図に判り易く示した。ゲート酸化膜も等しく200
人であり、測定条件はドレイン電圧Vd−0,05Vと
し、基板バイアスはVsub −0,2,4,6[V]
と変化させた。この実施例のトランジスタでは従来構造
と比較して明らかにサブスレッショルド特性が急峻であ
る。またそのスイングS (−dVg /d (log
 Id ) )が、従来構造では98m V / de
cadeであるのに対し、この実施例では、 72m 
V / decadeと非常に小さい。これはこの実施
例の場合、ゲートのチャネルに対する制御性が強いこと
を示している。特に単位シリコン層の寸法が小さい場合
には、ゲート電圧印加時にシリコン層が容易に完全空乏
化し、ゲート電圧に対するチャネル電位の変化が大きく
なるため、その効果が顕著に現れる。そしてこのサブス
レッショルド特性のため、この実施例ではインバータ回
路のスタンバイ電流を抑制することができるという利点
が得られる。第19図(a)(b)の比較から明らかな
ようにこの実施例においては、ドレイン電流が立上がる
領域即ちチャネル反転を生じる領域での基板バイアスV
 subによるバラツキがない。これは、第3図で説明
したようにこの実施例の場合、チャネル反転時には、ド
レイン層からの空乏層によりトランジスタ部分が実質的
にそれ以下の基板領域から電気的に分離されるからであ
る。この結果、基板ノイズに対してもこの実施例の回路
は強い耐性を示す。
The relationship between channel width W and channel length in this embodiment is clearly shown in FIG. 18. The gate oxide film is also 200
The measurement conditions are drain voltage Vd - 0.05V, and substrate bias Vsub -0, 2, 4, 6 [V].
and changed it. The transistor of this embodiment clearly has a steeper subthreshold characteristic than the conventional structure. Also, the swing S (-dVg /d (log
Id)) is 98mV/de in the conventional structure.
cade, whereas in this example, 72m
Very small V/decade. This shows that in this example, the controllability of the gate over the channel is strong. In particular, when the dimensions of the unit silicon layer are small, the silicon layer is easily completely depleted when a gate voltage is applied, and the change in channel potential with respect to the gate voltage becomes large, so that this effect becomes noticeable. Because of this subthreshold characteristic, this embodiment has the advantage that the standby current of the inverter circuit can be suppressed. As is clear from the comparison of FIGS. 19(a) and 19(b), in this embodiment, the substrate bias V in the region where the drain current rises, that is, the region where channel inversion occurs.
There is no variation depending on the sub. This is because, as explained in FIG. 3, in this embodiment, during channel inversion, the transistor portion is substantially electrically isolated from the substrate region below it by the depletion layer from the drain layer. As a result, the circuit of this embodiment exhibits strong resistance to substrate noise.

第20図(a)(b)は、この実施例のインバータ回路
におけるnチャネルMO8トランジスタについて、ホッ
トキャリア効果ストレスをかけた時の相互コンダクタン
スの劣化量ΔGm/Gmoおよびドレイン電流の劣化量
ΔI ds/ I dsoのストレス時間依存性を、従
来構造のnチャネルMOSトランジスタと比較して示し
ている。このデータから、この実施例の構造では特性の
劣化量が少なく、信頼性が向上していることが分る。そ
してこのような高信頼性のトランジスタを用いたインバ
ータ回路は、動作速度や動作マージンの点で有利である
FIGS. 20(a) and 20(b) show the mutual conductance deterioration amount ΔGm/Gmo and the drain current deterioration amount ΔI ds/ when hot carrier effect stress is applied to the n-channel MO8 transistor in the inverter circuit of this example. The stress time dependence of I dso is shown in comparison with that of an n-channel MOS transistor with a conventional structure. From this data, it can be seen that in the structure of this example, the amount of deterioration in characteristics is small and reliability is improved. An inverter circuit using such highly reliable transistors is advantageous in terms of operating speed and operating margin.

第22図(a)(b)は、従来構造と本発明の構造での
トランジスタの静特性を比較して示している。チャネル
幅Wとチャネル長しが、W/L−4,0μm10.8 
p m、ゲート酸化膜厚がTox −200人、基板バ
イアス電圧がVsub=OVであり、第21図に示すよ
うに従来構造ではこれが占有面積5X6−30μm2に
形成され1本発明においては5 X2.4−12μm2
に形成されている。以上のように本発明のものではトラ
ンジスタ面積が1/2以下であっても、従来構造と等し
いドレイン電流が得られており、高い駆動能力をもって
いる。従って本発明の実施例により、各種集積回路の高
集積化を図ることができる。
FIGS. 22(a) and 22(b) compare and show the static characteristics of transistors with a conventional structure and a structure of the present invention. Channel width W and channel length are W/L-4.0μm10.8
pm, the gate oxide film thickness is Tox -200, and the substrate bias voltage is Vsub=OV.As shown in FIG. 21, in the conventional structure, this is formed with an occupied area of 5×6-30 μm2, and in the present invention, it is formed with an occupied area of 5×2. 4-12μm2
is formed. As described above, even if the transistor area of the present invention is 1/2 or less, the same drain current as that of the conventional structure can be obtained, and the device has high driving ability. Therefore, according to the embodiments of the present invention, it is possible to increase the degree of integration of various integrated circuits.

上記実施例では、nチャネルMO8トランジスタとpチ
ャネルMOSトランジスタのゲート電極8を連続的に共
通に形成しているが、チャネルの構成の仕方によってこ
れらを異ならせる場合もある。その場合の実施例のパタ
ーンを第1図(a)に対応させて第4図に示す。pチャ
ネル側のゲート電極81とnチャネル側のゲート電極8
2を別々に形成して、これらを入力配線16で共通接続
している。これにより、僅かに面積は増加するが。
In the embodiment described above, the gate electrodes 8 of the n-channel MO8 transistor and the p-channel MOS transistor are continuously formed in common, but these may be made different depending on how the channels are configured. The pattern of the embodiment in that case is shown in FIG. 4 in correspondence with FIG. 1(a). Gate electrode 81 on the p-channel side and gate electrode 8 on the n-channel side
2 are formed separately, and these are commonly connected by an input wiring 16. This will increase the area slightly.

各トランジスタの特性の最適化が可能になる。It becomes possible to optimize the characteristics of each transistor.

本発明は、CMOSインバータ以外のインバータ回路に
も同様に適用することが可能である。そのような他の実
施例を次に説明する。なお以下の図面で、第1図、第2
図と対応する部分にはそれらと同一符号を付して詳細な
説明は省略する。
The present invention can be similarly applied to inverter circuits other than CMOS inverters. Other such embodiments will now be described. In addition, in the drawings below, Figures 1 and 2
Portions corresponding to those in the figures are given the same reference numerals and detailed explanations will be omitted.

第5図(a)(b)は、E/R型インバータ回路の実施
例を示す平面図とその等価回路である。
FIGS. 5(a) and 5(b) are a plan view showing an embodiment of an E/R type inverter circuit and its equivalent circuit.

第6図(a)、(b)はそれぞれ、第5図(a)のA−
A’、B−B’断面図である。p型シリコン層3(ウェ
ルでも、基板そのものでもよい)に先の実施例と同様に
溝4により複数の(図では2個の)柱状シリコン層6を
形成し、この柱状シリコン層6に先の実施例と同様にn
チャネル、EタイプのMOSトランジスタQNを形成し
ている。
Figures 6(a) and (b) are A- in Figure 5(a), respectively.
A', BB' sectional view. A plurality of (two in the figure) columnar silicon layers 6 are formed in the p-type silicon layer 3 (which may be a well or the substrate itself) by grooves 4 as in the previous embodiment, and the columnar silicon layers 6 are covered with the previous layer. As in the example, n
A channel and E type MOS transistor QN are formed.

そして、このトランジスタに隣接して、負荷素子Rとし
て1例えば多結晶シリコン膜による抵抗体20を形成し
ている。
Adjacent to this transistor, a resistor 20 made of, for example, a polycrystalline silicon film is formed as a load element R.

この実施例によれば、第1図と比較して明らかなように
更に占有面積の縮小が可能になる。
According to this embodiment, the occupied area can be further reduced as is clear from the comparison with FIG.

第7図(a)(b)は、E/D型インバータの実施例を
示す平面図とその等価回路である。第8図(a)、(b
)はそれぞれ、第7図(a)のA−A’B−B’断面図
である。この実施例では、p型シリコン層3に二つずつ
の柱状シリコン層6.,62を形成し、それぞれにやは
り先の実施例と同様にしてドライバ用のnチャネル、E
りイブのMOSトランジスタQNEと負荷用のnチャネ
ル、DタイプのMOSトランジスタQNDを形成してい
る。この場合、負荷側のMOSトランジスタはDタイプ
であるから、柱状シリコン層62の側壁にはn型層21
を形成する工程が必要である。
FIGS. 7(a) and 7(b) are a plan view showing an embodiment of an E/D type inverter and its equivalent circuit. Figure 8(a),(b)
) are respectively AA'B-B' cross-sectional views of FIG. 7(a). In this embodiment, each p-type silicon layer 3 has two columnar silicon layers 6. , 62 for the driver, respectively, in the same manner as in the previous embodiment.
A live MOS transistor QNE and a load n-channel, D-type MOS transistor QND are formed. In this case, since the MOS transistor on the load side is of the D type, the n-type layer 21 is formed on the side wall of the columnar silicon layer 62.
A process of forming is necessary.

第9図(a)(b)は、E/E型インバータ回路の実施
例の平面図とその等価回路である。第10図(a)、(
b)はそれぞれ、第9図(a)のA−A’B−B’断面
図である。この実施例は、ドライバ、負荷共にEタイプ
、nチャネルMOSトランジスタQNE11QNE2と
している点、および負荷側のゲートをVCC配線14に
接続している点を除き、先の実施例と同様である。
FIGS. 9(a) and 9(b) are a plan view of an embodiment of an E/E type inverter circuit and its equivalent circuit. Figure 10(a), (
b) is a sectional view taken along line A-A'B-B' in FIG. 9(a). This embodiment is similar to the previous embodiment except that both the driver and the load are E-type n-channel MOS transistors QNE11QNE2, and the gate on the load side is connected to the VCC wiring 14.

第11図(a)(b)は、ダイナミ・ツク型インバータ
回路の実施例の平面図とその等価回路である。第12図
(、a)、(b)はそれぞれ、第11図(a)のA−A
’、B−B’断面図である。この実施例は、負荷側のゲ
ート端子に対して独立の端子配線22を設けて、入力端
子V1nの反転増幅された信号φBが入るようにしてい
る点を除き。
FIGS. 11(a) and 11(b) are a plan view of an embodiment of a dynamic inverter circuit and its equivalent circuit. Figures 12 (, a) and (b) are A-A in Figure 11 (a), respectively.
', BB' sectional view. This embodiment has the exception that an independent terminal wiring 22 is provided for the gate terminal on the load side so that the inverted and amplified signal φB of the input terminal V1n is input thereto.

基本的に先の実施例と同じである。This is basically the same as the previous embodiment.

以上のE/R型インバータ、E/D型インバータ、E/
E型インバータ、ダイナミック型インバータは、nチャ
ネルMO8トランジスタのみで構成されており、ウェル
分離領域を必要とせず、それだけ工程が簡単であり、ま
た占有面積の縮小も図られる。同様の構成は、pチャネ
ルMOSトランジスタのみを用いて構成することが可能
である。
E/R type inverter, E/D type inverter, E/
The E type inverter and the dynamic type inverter are composed of only n-channel MO8 transistors and do not require a well isolation region, which simplifies the process and reduces the occupied area. A similar configuration can be constructed using only p-channel MOS transistors.

以上の説明では、ゲート電極が柱状半導体層の外周を完
全に取囲む場合のみ示したが、ゲート電極が完全な閉路
を構成しない場合も本発明は有効である。
In the above description, only the case where the gate electrode completely surrounds the outer periphery of the columnar semiconductor layer is shown, but the present invention is also effective when the gate electrode does not constitute a complete closed circuit.

以上では、複数のシリコン層を用いて構成されるMOS
トランジスタをインバータ回路に適用した実施例を説明
したが、他の回路にも同様に本発明を適用することがで
きる。例えば、各種集積回路の基本回路としてフリップ
フロップがある。そこで次にフリップフロップ回路に本
発明を適用した実施例を説明する。
In the above, a MOS constructed using multiple silicon layers is described.
Although an embodiment in which transistors are applied to an inverter circuit has been described, the present invention can be similarly applied to other circuits. For example, a flip-flop is a basic circuit of various integrated circuits. Next, an embodiment in which the present invention is applied to a flip-flop circuit will be described.

第13図(a)(b)は、本発明をDRAMのビット線
センスアンプに適用した実施例の平面図とそのA−A’
断面図である。第14図はその等価回路を示している。
FIGS. 13(a) and 13(b) are plan views of an embodiment in which the present invention is applied to a DRAM bit line sense amplifier, and its A-A'
FIG. FIG. 14 shows its equivalent circuit.

第13図(a)(b)に示しているのは、二つのnチャ
ネルMOSトランジスタQ1.Q2からなるフリップフ
ロップにより構成したNMOSセンスアンプ部である。
FIGS. 13(a) and 13(b) show two n-channel MOS transistors Q1. This is an NMOS sense amplifier section composed of a flip-flop consisting of Q2.

シリコン基板31にp型ウェル32が形成され、このp
型ウェル32内に溝33に囲まれて島状に突起する複数
の柱状シリコン層34 (34,,342,・・・)が
形成されている。MOS)−ランジスタQlはその、な
かの二つのシリコン層3431. 3432を用いて、
またもう−方のMOSトランジスタQ2は他の二つのシ
リコン層34□1,34□2を用いてそれぞれ構成され
ている。即ちそれぞれ二つずつのシリコン層342゜3
43の外周面にゲート絶縁膜35が形成され、この外周
面を取囲むように多結晶シリコン膜からなるゲート電極
36が溝内に埋込み形成されている。シリコン層342
1 342の上面および溝33にドレイン、ソースとな
るn中型拡散層37゜38が形成されている。対をなす
ビット線391゜392は、多結晶シリコン膜によって
それぞれMOSトランジスタQ□lQ2のドレイン即ち
シリコン層342,343の上面のn中型拡散層37に
コンタクトさせて配設されている。MOSトランジスタ
Q1のゲート電極36は、第・13図(a)のレイアウ
トで右斜め下にあるシリコン層344上まで取出され、
ビット線392はここでこのゲート電極36にコンタク
トさせている。
A p-type well 32 is formed in a silicon substrate 31.
A plurality of columnar silicon layers 34 (34, 342, . . . ) protruding like islands are formed in the mold well 32 surrounded by the groove 33. MOS)-transistor Ql has two silicon layers 3431. Using 3432,
The other MOS transistor Q2 is constructed using the other two silicon layers 34□1 and 34□2. That is, two silicon layers 342°3 each.
A gate insulating film 35 is formed on the outer peripheral surface of 43, and a gate electrode 36 made of a polycrystalline silicon film is embedded in the groove so as to surround this outer peripheral surface. silicon layer 342
1 342 and the groove 33 are formed with n medium-sized diffusion layers 37 and 38 that will serve as a drain and a source. The paired bit lines 391 and 392 are arranged by polycrystalline silicon films in contact with the drains of the MOS transistors Q□lQ2, that is, the n medium type diffusion layers 37 on the upper surfaces of the silicon layers 342 and 343, respectively. The gate electrode 36 of the MOS transistor Q1 is taken out to the top of the silicon layer 344 diagonally below the right side in the layout shown in FIG. 13(a).
Bit line 392 is now in contact with this gate electrode 36.

MOSトランジスタQ2のゲート電極36は、第13図
(a)のレイアウトで左斜め上にあるシリコン層341
上まで取出され、ビット線391はここでこのゲート電
極36にコンタクトさせている。即ち柱状シリコン層3
41,344はMOSトランジスタを形成するために設
けられている訳ではなく、ビット線をゲート電極に接続
する際のビット線コンタクトを確実にするための台座と
して設けられている。これらのシリコン層341゜34
4上にゲート電極を取出すことにより、ドレイン層とゲ
ート電極コンタクト部がほぼ同じ平面になり、ビット線
のコンタクト孔の深さが均一にできるからである。溝3
3の底に形成されたソース拡散層38は共通のソースψ
ノードであり、これにはAl配線40をコンタクトさせ
ている。この共通ソース・ノードは第13図には示して
いないが、第14図の等価回路に示したように活性化用
MO5トランジスタQ3を介して接地電位VSSに接続
されるようになっている。
The gate electrode 36 of the MOS transistor Q2 is located on the silicon layer 341 located diagonally upward to the left in the layout shown in FIG. 13(a).
It is taken out to the top, and the bit line 391 is brought into contact with this gate electrode 36 here. That is, the columnar silicon layer 3
41 and 344 are not provided to form a MOS transistor, but are provided as pedestals to ensure bit line contact when connecting the bit line to the gate electrode. These silicon layers 341°34
This is because by taking out the gate electrode on top of the gate electrode 4, the drain layer and the gate electrode contact portion become substantially on the same plane, and the depth of the contact hole of the bit line can be made uniform. Groove 3
The source diffusion layer 38 formed at the bottom of 3 is a common source ψ
This is a node, and the Al wiring 40 is in contact with this node. Although this common source node is not shown in FIG. 13, it is connected to the ground potential VSS via the activation MO5 transistor Q3, as shown in the equivalent circuit of FIG.

また図には示さなかったが、同じビット線に沿ってpチ
ャネルMOSトランジスタによるP M OSセンスア
ンプが同様の構造とレイアウトをもって形成される。
Although not shown in the figure, a PMOS sense amplifier using a p-channel MOS transistor is formed along the same bit line with a similar structure and layout.

この実施例によるビット線センスアンプも先のインバー
タ回路の実施例で説明したように、平面構造のMOSト
ランジスタを用いた場合に比べてゲート幅によるチップ
占有面積が非常に小さいものとなる。またMOSトラン
ジスタのサブスレッショルド特性が急峻であり、ゲート
電極での信号遅延が小さく、高速動作が可能になる。
As explained in the previous embodiment of the inverter circuit, the bit line sense amplifier according to this embodiment also occupies a much smaller chip area due to the gate width than when a planar MOS transistor is used. Furthermore, the subthreshold characteristic of the MOS transistor is steep, the signal delay at the gate electrode is small, and high-speed operation is possible.

またこの実施例の場合、センスアンプMOSトランジス
タでは動作時、第15図に示すように空乏層がシリコン
層34の側面から中心部に向かって伸びる。従ってシリ
コン層34の寸法、不純物濃度を選べば、例えば一つの
シリコン層を最小加工寸法程度の大きさにすれば、シリ
コン層34の中心部まで容易に空乏化し、シリコン層3
4の縦方向に見た抵抗が十分大きいものとなる。この結
果、基板ノイズに強いフリップフロップ動作が得られる
。また空乏層の伸びが制限されることは、先の実施例で
も説明したようにゲートのチャネルに対する制御性が強
いことを意味し、これにより優れた特性が得られる。
Further, in this embodiment, during operation of the sense amplifier MOS transistor, the depletion layer extends from the side surface of the silicon layer 34 toward the center, as shown in FIG. Therefore, if the dimensions and impurity concentration of the silicon layer 34 are selected, for example, if one silicon layer is made as large as the minimum processing dimension, the center of the silicon layer 34 can be easily depleted.
4, the resistance seen in the vertical direction is sufficiently large. As a result, a flip-flop operation that is resistant to substrate noise can be obtained. Furthermore, restricting the extension of the depletion layer means that the controllability of the gate channel is strong, as explained in the previous embodiment, and thereby excellent characteristics can be obtained.

本発明をSRAMに適用した実施例を次に説明する。M
OSトランジスタを用いた典型的なSRAMは、メモリ
セルをフリップフロップにより構成するものであり、こ
のフリップフロップを上記実施例と同様に複数の柱状シ
リコン層を用いた縦型構造とすることができる。
An embodiment in which the present invention is applied to an SRAM will be described below. M
In a typical SRAM using an OS transistor, a memory cell is constructed by a flip-flop, and this flip-flop can have a vertical structure using a plurality of columnar silicon layers as in the above embodiment.

第16図はその実施例のSRAMセル部の平面図であり
、第17図はその等価回路である。先の実施例と同様に
してシリコン基板に溝を形成することにより、柱状シリ
コン層41(411゜412、・・・)が配列形成され
る。トランスファゲート用MOSトランジスタT1とT
2は、それぞれ一つずつのシリコン層411と412を
用いて形成されている。その構造は先の実施例と基本的
に同様であり、シリコン層の上面にドレイン拡散層、溝
部にソース拡散層が形成され、これらシリコン層411
.412を囲むように多結晶シリコン膜によるゲート電
極42.が形成されている。
FIG. 16 is a plan view of the SRAM cell portion of this embodiment, and FIG. 17 is its equivalent circuit. By forming grooves in the silicon substrate in the same manner as in the previous embodiment, columnar silicon layers 41 (411°, 412, . . . ) are formed in an array. Transfer gate MOS transistors T1 and T
2 are formed using one silicon layer 411 and one silicon layer 412, respectively. Its structure is basically the same as that of the previous embodiment, and a drain diffusion layer is formed on the upper surface of the silicon layer and a source diffusion layer is formed in the groove.
.. A gate electrode 42.412 made of a polycrystalline silicon film surrounds the gate electrode 412. is formed.

ゲート電極421は二つのMOSトランジスタTl、T
2について連続的に形成されてワード線WLを構成する
。一方のドライバ用MOSトランジスタT3は二つのシ
リコン層4131.4132を用いて、他方のドライバ
用MO8トランジスタT4は他の二つのシリコン層41
 bl、 4162を用いてそれぞれ形成されている。
The gate electrode 421 is connected to two MOS transistors Tl and T.
2 are continuously formed to constitute a word line WL. One driver MOS transistor T3 uses two silicon layers 4131 and 4132, and the other driver MOS transistor T4 uses the other two silicon layers 41
bl, 4162, respectively.

これらのMOSトランジスタも先の実施例と同様の構造
を有する。
These MOS transistors also have the same structure as in the previous embodiment.

MOSトランジスタT3のゲート電極422は、台座と
してのシリコン層414まで延在させ、MOSトランジ
スタT2とT4のドレイン間を接続する多結晶シリコン
膜配線432をここでゲート電極422にコンタクトさ
せている。同様に、MOSトランジスタT4のゲート電
極423は、台座としてのシリコン層415まで延在さ
せ、MOSトランジスタT1とT3のドレイン間を接続
する多結晶シリコン膜配線43、をここでゲート電極4
23にコンタクトさせている。ドレイン配線431,4
32はそれぞれ、負荷抵抗としての高抵抗多結晶シリコ
ン膜44.,442を介して多結晶シリコン膜による電
源(Vc c )配線433に接続されている。Al膜
からなるデータ線45..452および接地(Vs s
 )線453は、途中を切断して示している。データ線
451゜452はそれぞれMOSトランジスタT 1 
+ 72の溝部に形成されたソース拡散層に対してコン
タクト部461+ 462でコンタクトして配設されて
いる。接地線453は、MOSトランジスタT 3 *
 T 4に共通のソース拡散層に対してコンタクト部4
63でコンタクトして配設されている。
The gate electrode 422 of the MOS transistor T3 extends to the silicon layer 414 serving as a pedestal, and a polycrystalline silicon film wiring 432 connecting the drains of the MOS transistors T2 and T4 is brought into contact with the gate electrode 422 here. Similarly, the gate electrode 423 of the MOS transistor T4 extends to the silicon layer 415 serving as a pedestal, and the polycrystalline silicon film wiring 43 connecting the drains of the MOS transistors T1 and T3 is connected to the gate electrode 423.
I have contacted 23. Drain wiring 431, 4
32 are high-resistance polycrystalline silicon films 44 as load resistors, respectively. , 442 to a power supply (Vcc) wiring 433 made of a polycrystalline silicon film. Data line 45 made of Al film. .. 452 and ground (Vs s
) line 453 is shown cut in the middle. Data lines 451 and 452 are each connected to a MOS transistor T1.
The contact portions 461+462 are arranged in contact with the source diffusion layer formed in the +72 groove portion. The ground line 453 is a MOS transistor T 3 *
Contact portion 4 to the source diffusion layer common to T 4
They are arranged in contact with each other at 63.

図の一点鎖線で囲まれた領域47が素子領域を示してい
る。
A region 47 surrounded by a dashed line in the figure indicates an element region.

この実施例によっても、先の実施例と同様の効果が得ら
れる。ただ、SRAMセルの場合、もともとDRAMの
ビット線センスアンプのように大きいゲート幅を必要と
しない。従って占有面積の縮小という効果はそれ程大き
いものではないが、ドライバMOSトランジスタを複数
の小さいシリコン層を用いて構成することによる特性改
善の効果は大きい。
This embodiment also provides the same effects as the previous embodiment. However, in the case of an SRAM cell, it does not originally require a large gate width like a DRAM bit line sense amplifier. Therefore, although the effect of reducing the occupied area is not so great, the effect of improving characteristics by configuring the driver MOS transistor using a plurality of small silicon layers is large.

第16図では、高抵抗多結晶シリコン負荷を用いたSR
AMの実施例を挙げたが、完全CMOS型のフリップフ
ロップ、E/E型フリップフロップ或いはE/D型フリ
フリップフロップいたSRAMにも同様に本発明を適用
することができる。
In Figure 16, an SR using a high resistance polycrystalline silicon load is shown.
Although an AM embodiment has been given, the present invention can be similarly applied to an SRAM including a complete CMOS type flip-flop, an E/E type flip-flop, or an E/D type flip-flop.

[発明の効果] 以上述べたように本発明によれば、複数の柱状半導体層
の側壁をチャネルとする縦構造のMOSトランジスタを
用いることにより、占有面積を大幅に小さくした各種M
OS集積回路を得ることができる。またチャネル領域が
フィールドに接していないために、ホットキャリア効果
に対する耐性が強く、優れた回路特性が得られる。更に
、サブスレッショルド特性の改善によって、スタンバイ
時の消費電流も大きく低減できる。特に単位シリコン層
の寸法を最小加工寸法程度の小さいものとすることによ
り、必要なゲート幅に対してソース。
[Effects of the Invention] As described above, according to the present invention, by using a vertically structured MOS transistor in which the side walls of a plurality of columnar semiconductor layers serve as channels, various M
An OS integrated circuit can be obtained. Furthermore, since the channel region is not in contact with the field, it has strong resistance to hot carrier effects, and excellent circuit characteristics can be obtained. Furthermore, by improving the subthreshold characteristics, current consumption during standby can be significantly reduced. In particular, by making the dimensions of the unit silicon layer as small as the minimum processing dimensions, the source width can be reduced to the required gate width.

ドレインの接合容量を非常に小さいものとすることがで
き、同時にゲート電極における信号遅延を著しく低減し
て高速スイッチング動作が可能な回路を実現することが
できる。
The junction capacitance of the drain can be made very small, and at the same time, the signal delay at the gate electrode can be significantly reduced, thereby realizing a circuit capable of high-speed switching operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)は1本発明の一実施例のCMOSイ
ンバータ回路を示す平面図とその等価回路図、第2図(
a)〜(d)はその各部所面図。 第3図は上記実施例のトランジスタの動作時の特性を説
明するための図、第4図は第1図(a)の二つのトラン
ジスタのゲート電極を独立にした実施例を示す平面図、
第5図(a)(b)はE/R型インバータ回路の実施例
を示す平面図とその等価回路図、第6図(a)(b)は
その各部所面図。 第7図はE/E型イレインバー2回路施例を示す平面図
とその等価回路図、第8図(a)(b)はその各部所面
図、第9図(a)(b)はE/E型イレインバー2回路
施例、を示す平面図とその等価回路図、第10図(a)
(b)はその各部所面図。 第11図(a)(b)はダイナミック型インバータ回路
の実施例の平面図とその等価回路図、第12図(a)(
b)はその各部所面図、第13図(a)(b)はDRA
Mセンスアンプの実施例の平面図とその断面図、第14
図はそのセンスアンプの等価回路図、第15図はこの実
施例のMOSトランジスタでの動作時の特性を説明する
ための図、第16図はSRAMの実施例の平面図、第1
7図はその等価回路図、第18図(a)(b)は第1図
の実施例のpチャネルMOSトランジスタ構造を模式的
に示す図、第19図(a)(b)は第1図の実施例のp
チャネルMOSトランジスタのサブスレッショルド特性
を従来構造と比較して示す図、第20図(a)(b)は
同じくホットキャリア効果ストレスによる特性変化を従
来構造と比較して示す図、第21図は試験のため試作し
た本発明でのトランジスタ面積を従来構造と比較して示
す図、第22図(a)(b)は同じく静特性を従来構造
と比較して示す図、第23図は、第1図(a)に対応す
る素子パラメータをもつ従来のMOSトランジスタ構造
を示す平面図である。 1・・・シリコン基板、2・・・n型ウェル、3・・・
p型ウェル、4・・・溝、5,6・・・柱状シリコン層
。 7・・・ゲート酸化膜、8・・・ゲート電極、9.10
・・・p型ソース2 ドレイン拡散層、11.12・・
・n型ソース、ドレイン拡散層113・・・CVD酸化
膜。 14〜17・・−A、9配線、19・・・空乏層。 出願人代理人 弁理士 鈴江武彦 (a) 第3 図 第1 図 第4図 ■CC (b) (a) 第7図 (a) (b) 第8図 (a) (b) 図 (b) 第10図 第14図 第15図 第16 図
1(a) and 1(b) are a plan view and an equivalent circuit diagram showing a CMOS inverter circuit according to an embodiment of the present invention, and FIG.
a) to (d) are plan views of each part thereof. FIG. 3 is a diagram for explaining the operating characteristics of the transistor of the above embodiment, and FIG. 4 is a plan view showing an embodiment in which the gate electrodes of the two transistors of FIG. 1(a) are made independent.
FIGS. 5(a) and 5(b) are a plan view and an equivalent circuit diagram showing an embodiment of an E/R type inverter circuit, and FIGS. 6(a) and 6(b) are plan views of various parts thereof. Fig. 7 is a plan view and its equivalent circuit diagram showing an example of an E/E type eraser dual circuit, Figs. / Plan view and equivalent circuit diagram showing the E-type element 2 circuit embodiment, FIG. 10(a)
(b) is a plan view of each part. FIGS. 11(a) and 11(b) are a plan view and an equivalent circuit diagram of an embodiment of a dynamic inverter circuit, and FIG. 12(a)(
b) is a plan view of each part, and Figures 13(a) and (b) are DRA
Plan view and cross-sectional view of an embodiment of M sense amplifier, No. 14
The figure is an equivalent circuit diagram of the sense amplifier, FIG. 15 is a diagram for explaining the operating characteristics of the MOS transistor of this embodiment, FIG. 16 is a plan view of the SRAM embodiment, and FIG.
7 is its equivalent circuit diagram, FIGS. 18(a) and 18(b) are diagrams schematically showing the p-channel MOS transistor structure of the embodiment shown in FIG. p of the example of
A diagram showing the subthreshold characteristics of a channel MOS transistor in comparison with a conventional structure. FIGS. 20(a) and 20(b) are also diagrams showing characteristic changes due to hot carrier effect stress in comparison with a conventional structure. FIG. 21 is a diagram showing test results. Figures 22(a) and 22(b) are diagrams showing the static characteristics compared with the conventional structure, and Figure 23 is FIG. 3 is a plan view showing a conventional MOS transistor structure having device parameters corresponding to FIG. 1... Silicon substrate, 2... N-type well, 3...
P-type well, 4...groove, 5, 6... columnar silicon layer. 7... Gate oxide film, 8... Gate electrode, 9.10
...p-type source 2 drain diffusion layer, 11.12...
- N-type source and drain diffusion layer 113...CVD oxide film. 14 to 17...-A, 9 wiring, 19... depletion layer. Applicant's representative Patent attorney Takehiko Suzue (a) Figure 3 Figure 1 Figure 4 ■CC (b) (a) Figure 7 (a) (b) Figure 8 (a) (b) Figure (b) Figure 10 Figure 14 Figure 15 Figure 16

Claims (5)

【特許請求の範囲】[Claims] (1)半導体基板と、この基板上に溝により所定間隔分
離された配列形成された複数の柱状半導体層と、これら
複数の柱状半導体層のそれぞれの外周面に形成されたゲ
ート絶縁膜と、これらゲート絶縁膜が形成された複数の
柱状半導体層をそれぞれ取囲むように前記溝に沿って連
続的に配設されたゲート電極と、前記複数の柱状半導体
層の各上面および各半導体層を取囲む溝底部にそれぞれ
形成されたソース、ドレインとなる拡散層と、前記複数
の柱状半導体層の上面の拡散層に共通接続される第1の
主電極と、前記溝底部の拡散層に接続される第2の主電
極とを有することを特徴とするMOS型半導体装置。
(1) A semiconductor substrate, a plurality of columnar semiconductor layers formed on the substrate in an array separated by grooves at predetermined intervals, a gate insulating film formed on the outer peripheral surface of each of the plurality of columnar semiconductor layers, and A gate electrode is continuously disposed along the groove so as to surround each of the plurality of columnar semiconductor layers on which a gate insulating film is formed, and the gate electrode surrounds each top surface of the plurality of columnar semiconductor layers and each semiconductor layer. Diffusion layers forming sources and drains formed at the bottom of the trench, a first main electrode commonly connected to the diffusion layer on the top surface of the plurality of columnar semiconductor layers, and a first main electrode connected to the diffusion layer at the bottom of the trench. A MOS type semiconductor device characterized by having two main electrodes.
(2)MOSトランジスタを用いて構成されたインバー
タ回路を含む半導体装置において、前記インバータ回路
を構成するMOSトランジスタは、半導体基板上に溝に
より分離されて複数の柱状半導体層が配列形成され、各
柱状半導体層の外周面にゲート絶縁膜が形成され、これ
ら複数の柱状半導体層を取囲むように前記溝内に連続的
にゲート電極が配設され、各柱状半導体層の上面および
各柱状半導体層を取囲む溝底部にそれぞれソース、ドレ
イン拡散層が形成された構造を有することを特徴とする
MOS型半導体装置。
(2) In a semiconductor device including an inverter circuit configured using MOS transistors, the MOS transistors constituting the inverter circuit are formed by arraying a plurality of columnar semiconductor layers separated by grooves on a semiconductor substrate, and each columnar semiconductor layer is separated by a groove. A gate insulating film is formed on the outer circumferential surface of the semiconductor layer, and a gate electrode is continuously disposed in the groove so as to surround the plurality of columnar semiconductor layers, and the gate electrode is disposed continuously in the groove to surround the plurality of columnar semiconductor layers. A MOS type semiconductor device characterized in that it has a structure in which source and drain diffusion layers are formed at the bottom of a surrounding groove.
(3)MOSトランジスタを用いて構成されたフリップ
フロップ回路を含む半導体装置において、前記フリップ
フロップ回路を構成するMOSトランジスタは、半導体
基板上に溝により分離されて複数の柱状半導体層が配列
形成され、各柱状半導体層の外周面にゲート絶縁膜が形
成され、これら複数の柱状半導体層を取囲むように前記
溝内に連続的にゲート電極が配設され、各柱状半導体層
の上面および各柱状半導体層を取囲む溝底部にそれぞれ
ソース、ドレイン拡散層が形成された構造を有すること
を特徴とするMOS型半導体装置。
(3) In a semiconductor device including a flip-flop circuit configured using MOS transistors, the MOS transistors constituting the flip-flop circuit are formed by arraying a plurality of columnar semiconductor layers separated by grooves on a semiconductor substrate; A gate insulating film is formed on the outer circumferential surface of each columnar semiconductor layer, a gate electrode is continuously disposed in the groove so as to surround the plurality of columnar semiconductor layers, and a gate electrode is continuously provided on the upper surface of each columnar semiconductor layer and each columnar semiconductor layer. A MOS type semiconductor device characterized in that it has a structure in which source and drain diffusion layers are formed at the bottom of a trench surrounding the layers.
(4)前記柱状半導体層は、動作時に外周面から伸びる
空乏層によってその下の半導体領域から電気的に分離さ
れるかまたは内部が空乏化することを特徴とする請求項
1記載1、2または3のいずれかに記載のMOS型半導
体装置。
(4) The columnar semiconductor layer is electrically isolated from the underlying semiconductor region by a depletion layer extending from the outer peripheral surface during operation, or is internally depleted. 3. MOS type semiconductor device according to any one of 3.
(5)前記柱状半導体層は最小加工寸法をもってパター
ン形成されたことを特徴とする請求項1、2または3の
いずれかに記載のMOS型半導体装置。
(5) The MOS type semiconductor device according to claim 1, wherein the columnar semiconductor layer is patterned to have a minimum processing size.
JP1008008A 1988-09-06 1989-01-17 MOS type semiconductor device Expired - Lifetime JP2703970B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1008008A JP2703970B2 (en) 1989-01-17 1989-01-17 MOS type semiconductor device
KR1019890012863A KR900005603A (en) 1988-09-06 1989-09-06 MOS semiconductor integrated circuit device
US07/754,191 US5258635A (en) 1988-09-06 1991-08-28 MOS-type semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1008008A JP2703970B2 (en) 1989-01-17 1989-01-17 MOS type semiconductor device

Publications (2)

Publication Number Publication Date
JPH02188966A true JPH02188966A (en) 1990-07-25
JP2703970B2 JP2703970B2 (en) 1998-01-26

Family

ID=11681327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1008008A Expired - Lifetime JP2703970B2 (en) 1988-09-06 1989-01-17 MOS type semiconductor device

Country Status (1)

Country Link
JP (1) JP2703970B2 (en)

Cited By (172)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4139039A1 (en) * 1990-11-30 1992-06-04 Toshiba Kawasaki Kk SEMICONDUCTOR DEVICE
US5416350A (en) * 1993-03-15 1995-05-16 Kabushiki Kaisha Toshiba Semiconductor device with vertical transistors connected in series between bit lines
US6548848B2 (en) 2001-03-15 2003-04-15 Kabushiki Kaisha Toshiba Semiconductor memory device
US6891225B2 (en) 2000-09-08 2005-05-10 Kabushiki Kaisha Toshiba Dynamic semiconductor memory device
JP2008288391A (en) * 2007-05-17 2008-11-27 Elpida Memory Inc Semiconductor device, and manufacturing method thereof
WO2008146505A1 (en) 2007-05-30 2008-12-04 Unisantis Electronics (Japan) Ltd. Semiconductor device
WO2009016880A1 (en) 2007-08-02 2009-02-05 Unisantis Electronics (Japan) Ltd. Semiconductor device
JP2009071247A (en) * 2007-09-18 2009-04-02 Elpida Memory Inc Semiconductor memory device
JP2009081377A (en) * 2007-09-27 2009-04-16 Elpida Memory Inc Semiconductor device
JP2009088134A (en) * 2007-09-28 2009-04-23 Elpida Memory Inc Semiconductor device, semiconductor device manufacturing method, and data processing system
WO2009096466A1 (en) 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. Semiconductor storage device
WO2009096467A1 (en) 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. Semiconductor storage device
WO2009096468A1 (en) 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. Semiconductor storage device, semiconductor device having memory mounted therein, and methods for fabricating the devices
WO2009096469A1 (en) 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. Semiconductor storage device
WO2009096470A1 (en) 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. Fabrication process of semiconductor device
WO2009096465A1 (en) 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. Semiconductor storage device
WO2009096464A1 (en) 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. Semiconductor device, and method for manufacturing the same
WO2009099232A1 (en) 2008-02-08 2009-08-13 Unisantis Electronics (Japan) Ltd. Semiconductor manufacturing method
WO2009102062A1 (en) 2008-02-15 2009-08-20 Unisantis Electronics (Japan) Ltd. Semiconductor device and fabrication method thereof
WO2009102060A1 (en) 2008-02-15 2009-08-20 Unisantis Electronics (Japan) Ltd. Semiconductor device and method for manufacturing the same
WO2009102061A1 (en) 2008-02-15 2009-08-20 Unisantis Electronics (Japan) Ltd. Semiconductor device manufacturing method
WO2009102059A1 (en) 2008-02-15 2009-08-20 Unisantis Electronics (Japan) Ltd. Semiconductor device manufacturing method
WO2009154293A1 (en) 2008-06-20 2009-12-23 日本ユニサンティスエレクトロニクス株式会社 Semiconductor memory device
EP2159833A2 (en) 2008-09-02 2010-03-03 Unisantis Electronics (Japan) Ltd. Method of producing a semiconductor device
JP2010232631A (en) * 2009-12-10 2010-10-14 Unisantis Electronics Japan Ltd Semiconductor device and method for manufacturing the same
EP2242096A2 (en) 2009-04-17 2010-10-20 Unisantis Electronics (Japan) Ltd. Semiconductor device
EP2244298A2 (en) 2009-04-20 2010-10-27 Unisantis Electronics (Japan) Ltd. Semiconductor device and manufacturing method thereof
EP2246893A2 (en) 2009-04-28 2010-11-03 Unisantis Electronics (Japan) Ltd. Semiconductor device including a MOS transistor and a production method therefor
EP2254149A2 (en) 2009-05-22 2010-11-24 Unisantis Electronics (Japan) Ltd. SRAM using vertical transistors with a diffusion layer for reducing leakage currents
JP2010267814A (en) * 2009-05-14 2010-11-25 Elpida Memory Inc Semiconductor device and manufacturing method thereof
EP2296176A1 (en) 2009-09-14 2011-03-16 Unisantis Electronics (Japan) Ltd. SRAM cell with four SGTs and manufacturing method thereof
EP2299485A1 (en) 2009-09-16 2011-03-23 Unisantis Electronics (Japan) Ltd. SRAM cell comprising four NMOS SGTs and two load resistors
JP2011061181A (en) * 2009-08-11 2011-03-24 Unisantis Electronics Japan Ltd Semiconductor device and method of manufacturing the same
JP2011077437A (en) * 2009-10-01 2011-04-14 Unisantis Electronics Japan Ltd Semiconductor device
JP2011086900A (en) * 2009-09-16 2011-04-28 Unisantis Electronics Japan Ltd Semiconductor device
US7936004B2 (en) 2006-03-27 2011-05-03 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and manufacturing method thereof
US8026141B2 (en) 2008-02-08 2011-09-27 Unisantis Electronics (Japan) Ltd. Method of producing semiconductor
US8053842B2 (en) 2008-01-29 2011-11-08 Unisantis Electronics (Japan) Ltd. Semiconductor storage device
JP2012023305A (en) * 2010-07-16 2012-02-02 Elpida Memory Inc Semiconductor device and semiconductor device manufacturing method
US8138048B2 (en) 2008-06-20 2012-03-20 Unisantis Electronics Singapore Pte Ltd. Semiconductor storage device
US8154086B2 (en) 2008-01-29 2012-04-10 Unisantis Electronics Singapore Pte Ltd. Semiconductor surround gate SRAM storage device
US8158468B2 (en) 2008-02-15 2012-04-17 Unisantis Electronics Singapore Pte Ltd. Production method for surrounding gate transistor semiconductor device
US8163605B2 (en) 2008-02-15 2012-04-24 Unisantis Electronics Singapore Pte Ltd. Production method for semiconductor device
US8188537B2 (en) 2008-01-29 2012-05-29 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method therefor
US8198654B2 (en) 2009-09-16 2012-06-12 Unisantis Electronics Singapore Pte Ltd. Semiconductor device
US8212298B2 (en) 2008-01-29 2012-07-03 Unisantis Electronics Singapore Pte Ltd. Semiconductor storage device and methods of producing it
US8211809B2 (en) 2008-09-02 2012-07-03 Unisantis Electronics Singapore Pte Ltd. Method of producing semiconductor device
US8211758B2 (en) 2008-02-15 2012-07-03 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and method of producing the same
US8241976B2 (en) 2008-02-15 2012-08-14 Unisantis Electronics Singapore Pte Ltd. Semiconductor surrounding gate transistor device and production method therefor
US8319293B2 (en) 2009-03-25 2012-11-27 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method therefor
US8319288B2 (en) 2010-04-21 2012-11-27 Unisantis Electronics Singapore Pte Ltd. Semiconductor device
US8372713B2 (en) 2008-01-29 2013-02-12 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method therefor
US8378425B2 (en) 2008-01-29 2013-02-19 Unisantis Electronics Singapore Pte Ltd. Semiconductor storage device
US8466512B2 (en) 2009-08-18 2013-06-18 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method thereof
US8476132B2 (en) 2008-01-29 2013-07-02 Unisantis Electronics Singapore Pte Ltd. Production method for semiconductor device
US8513717B2 (en) 2011-01-18 2013-08-20 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device and method for manufacturing the same
US8530960B2 (en) 2010-12-07 2013-09-10 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US8664063B2 (en) 2011-12-13 2014-03-04 Unisantis Electronics Singapore Pte. Ltd. Method of producing a semiconductor device and semiconductor device
US8697511B2 (en) 2012-05-18 2014-04-15 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US8735971B2 (en) 2011-12-02 2014-05-27 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US8755219B2 (en) 2012-02-15 2014-06-17 Unisantis Electronics Singapore Pte. Ltd. Hierarchical wordline loadless 4GST-SRAM with a small cell area
US8754481B2 (en) 2011-10-18 2014-06-17 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US8759178B2 (en) 2011-11-09 2014-06-24 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US8772881B2 (en) 2009-06-05 2014-07-08 Unisantis Electronics Singapore Pte Ltd. Semiconductor device
US8823085B2 (en) 2012-08-08 2014-09-02 Unisantis Electronics Singapore Pte. Ltd. Method for producing a semiconductor device and semiconductor device
US8829619B2 (en) 2012-10-09 2014-09-09 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US8829601B2 (en) 2012-05-17 2014-09-09 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US8836051B2 (en) 2012-06-08 2014-09-16 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US8877578B2 (en) 2012-05-18 2014-11-04 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
WO2014181819A1 (en) * 2013-05-10 2014-11-13 ピーエスフォー ルクスコ エスエイアールエル Semiconductor device
US8916478B2 (en) 2011-12-19 2014-12-23 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US8975705B2 (en) 2012-05-21 2015-03-10 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9000513B2 (en) 2012-11-12 2015-04-07 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing a semiconductor device and semiconductor device with surrounding gate transistor
US9012981B2 (en) 2012-05-17 2015-04-21 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9024376B2 (en) 2013-01-25 2015-05-05 Unisantis Electronics Singapore Pte. Ltd. Vertical transistor with dielectrically-isolated work-function metal electrodes surrounding the semiconductor pillar
JP5712436B2 (en) * 2009-10-06 2015-05-07 国立大学法人東北大学 Semiconductor device
US9035384B2 (en) 2011-12-19 2015-05-19 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9041095B2 (en) 2013-01-24 2015-05-26 Unisantis Electronics Singapore Pte. Ltd. Vertical transistor with surrounding gate and work-function metal around upper sidewall, and method for manufacturing the same
US9082838B2 (en) 2012-09-28 2015-07-14 Unisantis Electronics Singapore Pte. Ltd. Method for producing a semiconductor device and semiconductor device
US9111794B2 (en) 2013-03-15 2015-08-18 Unisantis Electronics Singapore Pte. Ltd. Method for producing a semiconductor device having SGTS
US9117690B2 (en) 2011-12-02 2015-08-25 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9153697B2 (en) 2010-06-15 2015-10-06 Unisantis Electronics Singapore Pte Ltd. Surrounding gate transistor (SGT) structure
US9166043B2 (en) 2012-05-17 2015-10-20 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9224835B2 (en) 2013-08-15 2015-12-29 Unisantis Electronics Singapore Pte. Ltd. Method for producing SGT-including semiconductor device
US9224834B1 (en) 2013-12-25 2015-12-29 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing pillar-shaped semiconductor device
US9318605B2 (en) 2013-06-13 2016-04-19 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device with an SGT and method for manufacturing the same
JP2016119342A (en) * 2014-12-18 2016-06-30 猛英 白土 Semiconductor device and manufacturing method of the same
US9431501B2 (en) 2014-08-07 2016-08-30 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9490362B2 (en) 2013-04-19 2016-11-08 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device production method and semiconductor device
US9502520B2 (en) 2013-06-17 2016-11-22 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9514944B2 (en) 2013-05-16 2016-12-06 Unisantis Electronics Singapore Pte. Ltd. Method for producing an SGT-including semiconductor device
US9520473B2 (en) 2013-08-07 2016-12-13 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9525038B2 (en) 2013-06-10 2016-12-20 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9536892B2 (en) 2014-04-17 2017-01-03 Unisantis Electronics Singapore Pte. Ltd. Pillar-shaped semiconductor memory device and method for producing the same
US9583630B2 (en) 2014-07-24 2017-02-28 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9589973B2 (en) 2014-06-10 2017-03-07 Unisantis Electronics Singapore Pte. Ltd. Pillar-shaped semiconductor memory device and method for producing the same
US9590098B2 (en) 2013-07-19 2017-03-07 Unisantis Electronics Singapore Pte, Ltd. Method for producing semiconductor device and semiconductor device
US9613827B2 (en) 2013-11-06 2017-04-04 Unisantis Electronics Singapore Pte. Ltd. SGT-including semiconductor device and method for manufacturing the same
US9627494B2 (en) 2015-01-08 2017-04-18 Unisantis Electronics Singapore Pte. Ltd. Pillar-shaped semiconductor device and production method therefor
US9640628B2 (en) 2014-02-18 2017-05-02 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device having fin-shaped semiconductor layer
US9647142B2 (en) 2014-06-16 2017-05-09 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9653170B2 (en) 2014-10-07 2017-05-16 Unisantis Electronics Singapore Pte. Ltd. Pillar-shaped semiconductor memory device and method for producing the same
US9673321B2 (en) 2014-11-27 2017-06-06 Unisantis Electronics Singapore Pte. Ltd. Pillar-shaped semiconductor device and method for producing the same
US9768294B2 (en) 2013-04-16 2017-09-19 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9768267B2 (en) 2013-04-26 2017-09-19 Unisantis Electronics Singapore Pte. Ltd. Surrounding gate semiconductor device
US9773801B2 (en) 2014-03-04 2017-09-26 Unisantis Electronics Singapore Pte. Ltd. Pillar-shaped semiconductor memory device and method for producing the same
US9780179B2 (en) 2014-07-14 2017-10-03 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9780215B2 (en) 2014-06-16 2017-10-03 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9865535B2 (en) 2015-11-02 2018-01-09 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9865741B2 (en) 2014-03-05 2018-01-09 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9893179B2 (en) 2014-03-05 2018-02-13 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9947670B2 (en) 2014-09-05 2018-04-17 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9991381B2 (en) 2013-06-17 2018-06-05 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device having fin-shaped semiconductor layer
US10026739B2 (en) 2015-03-03 2018-07-17 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device having pillar-shaped semiconductor layers
CN108538836A (en) * 2017-02-27 2018-09-14 三星电子株式会社 Vertical semiconductor devices
US10103154B2 (en) 2013-05-16 2018-10-16 Unisantis Electronics Singapore Pte. Ltd. Method for producing an SGT-including semiconductor device
US10199381B2 (en) 2015-04-06 2019-02-05 Unisantis Electronics Singapore Pte. Ltd. Pillar-shaped semiconductor memory device and method for producing the same
US10211340B2 (en) 2015-12-18 2019-02-19 Unisantis Electronics Singapore Pte. Ltd. Method for producing pillar-shaped semiconductor device
US10217665B2 (en) 2014-08-28 2019-02-26 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device and method for producing semiconductor device
US10217865B2 (en) 2015-04-06 2019-02-26 Unisantis Electronics Singapore Pte. Ltd. SGT-including pillar-shaped semiconductor device and method for producing the same
US10229916B2 (en) 2015-10-09 2019-03-12 Unisantis Electronics Singapore Pte. Ltd. Method for producing pillar-shaped semiconductor device
US10269809B2 (en) 2015-07-08 2019-04-23 Unisantis Electronics Singapore Pte. Ltd. Pillar-shaped semiconductor memory device and method for producing the same
US10396197B2 (en) 2015-11-17 2019-08-27 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device and method for producing semiconductor device
US10410932B2 (en) 2015-10-09 2019-09-10 Unisantis Electronics Singapore Pte. Ltd. Method for producing pillar-shaped semiconductor device
US10438836B2 (en) 2011-11-09 2019-10-08 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing a semiconductor device
US10453941B2 (en) 2015-11-09 2019-10-22 Unisantis Electronics Singapore Pte. Ltd. Surround gate transistor and method for producing the same
US10535756B2 (en) 2015-12-18 2020-01-14 Unisantis Electronics Singapore Pte. Ltd. Method for producing pillar-shaped semiconductor device
WO2020044560A1 (en) * 2018-08-31 2020-03-05 株式会社ソシオネクスト Semiconductor device and method of manufacturing same
US10651189B2 (en) 2014-03-04 2020-05-12 Unisantis Electronics Singapore Pte. Ltd. Method for producing pillar-shaped semiconductor memory device
KR20200089735A (en) 2018-05-08 2020-07-27 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 Method for manufacturing columnar semiconductor device
US10804397B2 (en) 2014-02-18 2020-10-13 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device with surrounding gate transistor (SGT)
KR20200128427A (en) 2018-05-28 2020-11-12 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 Columnar semiconductor device and its manufacturing method
US10840155B2 (en) 2016-10-14 2020-11-17 Unisantis Electronics Singapore Pte. Ltd. Method for producing pillar-shaped semiconductor device
US10930761B2 (en) 2016-08-18 2021-02-23 Unisantis Electronics Singapore Pte. Ltd. Pillar-shaped semiconductor device and method for producing the same
KR20210047941A (en) 2018-10-01 2021-04-30 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 Method for manufacturing columnar semiconductor device
KR20210091289A (en) 2018-12-21 2021-07-21 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 3D semiconductor device manufacturing method
KR20210135283A (en) 2019-04-05 2021-11-12 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 Columnar semiconductor device and its manufacturing method
KR20220002421A (en) 2019-06-05 2022-01-06 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 Method for manufacturing columnar semiconductor device
KR20220012325A (en) 2019-07-11 2022-02-03 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 Columnar semiconductor device and its manufacturing method
US11309426B2 (en) 2017-03-27 2022-04-19 Unisantis Electronics Singapore Pte. Ltd. Pillar-shaped semiconductor device having connection material layer for anchoring wiring conductor layer and method for producing the same
KR20220059541A (en) 2019-10-30 2022-05-10 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 Columnar semiconductor device and its manufacturing method
US11682443B2 (en) 2021-04-06 2023-06-20 Unisantis Electronics Singapore Pte. Ltd. Semiconductor element memory device
KR20230124701A (en) 2020-12-25 2023-08-25 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 Memory devices using semiconductor devices
US11756603B2 (en) 2021-04-15 2023-09-12 Unisantis Electronics Singapore Pte. Ltd. Memory-element-including semiconductor device
US11763877B2 (en) 2021-05-11 2023-09-19 Unisantis Electronics Singapore Pte. Ltd. Semiconductor-element-including memory device
KR20230134575A (en) 2021-01-25 2023-09-21 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 semiconductor device memory device
US11776609B2 (en) 2021-04-15 2023-10-03 Unisantis Electronics Singapore Pte. Ltd. Memory-element-including semiconductor device
US11823726B2 (en) 2021-04-13 2023-11-21 Unisantis Electronics Singapore Pte. Ltd. Semiconductor element memory device
US11823727B2 (en) 2021-04-13 2023-11-21 Unisantis Electronics Singapore Pte. Ltd. Semiconductor element memory device
US11917807B2 (en) 2021-06-22 2024-02-27 Unisantis Electronics Singapore Pte. Ltd. Memory device using semiconductor element
US11915757B2 (en) 2021-05-13 2024-02-27 Unisantis Electronics Singapore Pte. Ltd. Memory device through use of semiconductor device
US11925013B2 (en) 2021-05-07 2024-03-05 Unisantis Electronics Singapore Pte. Ltd. Memory device using pillar-shaped semiconductor element
US11937418B2 (en) 2021-05-14 2024-03-19 Unisantis Electronics Singapore Pte. Ltd. Semiconductor-element-including memory device
US11968822B2 (en) 2021-07-09 2024-04-23 Unisantis Electronics Singapore Pte. Ltd. Memory device using semiconductor element
US11990204B2 (en) 2021-07-06 2024-05-21 Unisantis Electronics Singapore Pte. Ltd. Memory device using semiconductor element
US12016172B2 (en) 2021-04-06 2024-06-18 Unisantis Electronics Singapore Pte. Ltd. SGT memory device with improved write errors
KR20240091175A (en) 2021-11-09 2024-06-21 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 Semiconductor memory device and method of manufacturing the semiconductor memory device
US12048140B2 (en) 2020-12-25 2024-07-23 Unisantis Electronics Singapore Pte. Ltd. Memory device using semiconductor element
KR20240113970A (en) 2021-12-14 2024-07-23 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 Memory device using semiconductor elements
US12096611B2 (en) 2021-04-13 2024-09-17 Unisantis Electronics Singapore Pte. Ltd. Semiconductor element memory device
US12100443B2 (en) 2021-12-07 2024-09-24 Unisantis Electronics Singapore Pte. Ltd. Semiconductor-element-including memory device
US12101925B2 (en) 2021-05-11 2024-09-24 Unisantis Electronics Singapore Pte. Ltd. Memory device using semiconductor elements
US12108589B2 (en) 2021-05-13 2024-10-01 Unisantis Electronics Singapore Pte. Ltd. Memory device through use of semiconductor device
US12106796B2 (en) 2020-12-25 2024-10-01 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor element-including memory device
US12120864B2 (en) 2020-12-25 2024-10-15 Unisantis Electronics Singapore Pte. Ltd. Memory device using semiconductor element
US12131773B2 (en) 2021-12-14 2024-10-29 Unisantis Electronics Singapore Pte. Ltd. Memory device
US12144164B2 (en) 2021-06-25 2024-11-12 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing memory device using semiconductor element
WO2024236772A1 (en) * 2023-05-17 2024-11-21 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Memory device using semiconductor element
US12159923B2 (en) 2021-05-13 2024-12-03 Unisantis Electronics Singapore Pte. Ltd. Memory device using semiconductor elements
US12166107B2 (en) 2021-05-13 2024-12-10 Unisantis Electronics Singapore Pte. Ltd. Semiconductor-element-including memory device
US12185522B2 (en) 2021-05-06 2024-12-31 Unisantis Electronics Singapore Pte. Ltd. Memory apparatus using semiconductor devices
US12205629B2 (en) 2021-10-19 2025-01-21 Unisantis Electronics Singapore Pte. Ltd. Semiconductor-element-including memory device

Cited By (302)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4139039A1 (en) * 1990-11-30 1992-06-04 Toshiba Kawasaki Kk SEMICONDUCTOR DEVICE
US5311050A (en) * 1990-11-30 1994-05-10 Kabushiki Kaisha Toshiba Semiconductor vertical MOSFET inverter circuit
DE4139039C2 (en) * 1990-11-30 1995-11-16 Toshiba Kawasaki Kk MOS semiconductor device
US5416350A (en) * 1993-03-15 1995-05-16 Kabushiki Kaisha Toshiba Semiconductor device with vertical transistors connected in series between bit lines
US6891225B2 (en) 2000-09-08 2005-05-10 Kabushiki Kaisha Toshiba Dynamic semiconductor memory device
US6548848B2 (en) 2001-03-15 2003-04-15 Kabushiki Kaisha Toshiba Semiconductor memory device
US10916559B2 (en) 2006-03-27 2021-02-09 Kioxia Corporation Nonvolatile semiconductor memory device and manufacturing method thereof
US11362106B2 (en) 2006-03-27 2022-06-14 Kioxia Corporation Manufacturing method of a nonvolatile semiconductor memory device
US8551838B2 (en) 2006-03-27 2013-10-08 Kabushiki Kaisha Toshiba Nonvolatile semicondutor memory device and manufacturing method thereof
US9748260B2 (en) 2006-03-27 2017-08-29 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and manufacturing method thereof
US10211219B2 (en) 2006-03-27 2019-02-19 Toshiba Memory Corporation Nonvolatile semiconductor memory device and manufacturing method thereof
US11374021B2 (en) 2006-03-27 2022-06-28 Kioxia Corporation Manufacturing method of a nonvolatile semiconductor memory device
US11903205B2 (en) 2006-03-27 2024-02-13 Kioxia Corporation Method for reading data of a first memory cell transistor of a nonvolatile semiconductor memory device
US11903207B2 (en) 2006-03-27 2024-02-13 Kioxia Corporation Method for writing data of a first memory cell transistor of a nonvolatile semiconductor memory device
US9064735B2 (en) 2006-03-27 2015-06-23 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and manufacturing method thereof
US7936004B2 (en) 2006-03-27 2011-05-03 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and manufacturing method thereof
JP2008288391A (en) * 2007-05-17 2008-11-27 Elpida Memory Inc Semiconductor device, and manufacturing method thereof
EP2645411A2 (en) 2007-05-30 2013-10-02 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
EP2061075A1 (en) * 2007-05-30 2009-05-20 Unisantis Electronics (Japan) Ltd. Semiconductor device
US8039893B2 (en) 2007-05-30 2011-10-18 Unisantis Electronics (Japan) Ltd. CMOS inverter coupling circuit comprising vertical transistors
EP2061075A4 (en) * 2007-05-30 2012-06-13 Unisantis Elect Singapore Pte SEMICONDUCTOR DEVICE
JP2008300558A (en) * 2007-05-30 2008-12-11 Unisantis Electronics Japan Ltd Semiconductor device
WO2008146505A1 (en) 2007-05-30 2008-12-04 Unisantis Electronics (Japan) Ltd. Semiconductor device
US7919990B2 (en) 2007-08-02 2011-04-05 Unisantis Electronics (Japan) Ltd. Semiconductor device
JP2009038226A (en) * 2007-08-02 2009-02-19 Unisantis Electronics Japan Ltd Semiconductor device
WO2009016880A1 (en) 2007-08-02 2009-02-05 Unisantis Electronics (Japan) Ltd. Semiconductor device
JP2009071247A (en) * 2007-09-18 2009-04-02 Elpida Memory Inc Semiconductor memory device
JP2009081377A (en) * 2007-09-27 2009-04-16 Elpida Memory Inc Semiconductor device
JP2009088134A (en) * 2007-09-28 2009-04-23 Elpida Memory Inc Semiconductor device, semiconductor device manufacturing method, and data processing system
WO2009096468A1 (en) 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. Semiconductor storage device, semiconductor device having memory mounted therein, and methods for fabricating the devices
US8188537B2 (en) 2008-01-29 2012-05-29 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method therefor
US8372713B2 (en) 2008-01-29 2013-02-12 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method therefor
WO2009096469A1 (en) 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. Semiconductor storage device
WO2009096467A1 (en) 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. Semiconductor storage device
EP2383778A3 (en) * 2008-01-29 2013-08-14 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device, and method for manufacturing the same
US8476132B2 (en) 2008-01-29 2013-07-02 Unisantis Electronics Singapore Pte Ltd. Production method for semiconductor device
US8378425B2 (en) 2008-01-29 2013-02-19 Unisantis Electronics Singapore Pte Ltd. Semiconductor storage device
WO2009096470A1 (en) 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. Fabrication process of semiconductor device
WO2009096465A1 (en) 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. Semiconductor storage device
US8212298B2 (en) 2008-01-29 2012-07-03 Unisantis Electronics Singapore Pte Ltd. Semiconductor storage device and methods of producing it
US8343835B2 (en) 2008-01-29 2013-01-01 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method therefor
WO2009096466A1 (en) 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. Semiconductor storage device
US8154086B2 (en) 2008-01-29 2012-04-10 Unisantis Electronics Singapore Pte Ltd. Semiconductor surround gate SRAM storage device
WO2009096464A1 (en) 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. Semiconductor device, and method for manufacturing the same
EP2383778A2 (en) 2008-01-29 2011-11-02 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device, and method for manufacturing the same
US8053842B2 (en) 2008-01-29 2011-11-08 Unisantis Electronics (Japan) Ltd. Semiconductor storage device
US8026141B2 (en) 2008-02-08 2011-09-27 Unisantis Electronics (Japan) Ltd. Method of producing semiconductor
WO2009099232A1 (en) 2008-02-08 2009-08-13 Unisantis Electronics (Japan) Ltd. Semiconductor manufacturing method
US8158468B2 (en) 2008-02-15 2012-04-17 Unisantis Electronics Singapore Pte Ltd. Production method for surrounding gate transistor semiconductor device
US8241976B2 (en) 2008-02-15 2012-08-14 Unisantis Electronics Singapore Pte Ltd. Semiconductor surrounding gate transistor device and production method therefor
WO2009102062A1 (en) 2008-02-15 2009-08-20 Unisantis Electronics (Japan) Ltd. Semiconductor device and fabrication method thereof
US8163605B2 (en) 2008-02-15 2012-04-24 Unisantis Electronics Singapore Pte Ltd. Production method for semiconductor device
WO2009102060A1 (en) 2008-02-15 2009-08-20 Unisantis Electronics (Japan) Ltd. Semiconductor device and method for manufacturing the same
US8178399B1 (en) 2008-02-15 2012-05-15 Unisantis Electronics Singapore Pte Ltd. Production method for semiconductor device
US8395208B2 (en) 2008-02-15 2013-03-12 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and method of producing the same
WO2009102061A1 (en) 2008-02-15 2009-08-20 Unisantis Electronics (Japan) Ltd. Semiconductor device manufacturing method
US8211758B2 (en) 2008-02-15 2012-07-03 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and method of producing the same
WO2009102059A1 (en) 2008-02-15 2009-08-20 Unisantis Electronics (Japan) Ltd. Semiconductor device manufacturing method
WO2009154293A1 (en) 2008-06-20 2009-12-23 日本ユニサンティスエレクトロニクス株式会社 Semiconductor memory device
US8138048B2 (en) 2008-06-20 2012-03-20 Unisantis Electronics Singapore Pte Ltd. Semiconductor storage device
US8211809B2 (en) 2008-09-02 2012-07-03 Unisantis Electronics Singapore Pte Ltd. Method of producing semiconductor device
EP2159833A2 (en) 2008-09-02 2010-03-03 Unisantis Electronics (Japan) Ltd. Method of producing a semiconductor device
US8319293B2 (en) 2009-03-25 2012-11-27 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method therefor
US8642426B2 (en) 2009-03-25 2014-02-04 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method therefor
US8212311B2 (en) 2009-04-17 2012-07-03 Unisantis Electronics Singapore Pte Ltd. Semiconductor device having increased gate length implemented by surround gate transistor arrangements
EP2242096A2 (en) 2009-04-17 2010-10-20 Unisantis Electronics (Japan) Ltd. Semiconductor device
EP2244298A2 (en) 2009-04-20 2010-10-27 Unisantis Electronics (Japan) Ltd. Semiconductor device and manufacturing method thereof
US8519475B2 (en) 2009-04-20 2013-08-27 Unisantis Electronics Singapore Pte Ltd. Semiconductor device
US8080458B2 (en) 2009-04-20 2011-12-20 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device and manufacturing method thereof
EP2246893A2 (en) 2009-04-28 2010-11-03 Unisantis Electronics (Japan) Ltd. Semiconductor device including a MOS transistor and a production method therefor
JP2010267814A (en) * 2009-05-14 2010-11-25 Elpida Memory Inc Semiconductor device and manufacturing method thereof
US8373235B2 (en) 2009-05-22 2013-02-12 Unisantis Electronics Singapore Pte Ltd. Semiconductor memory device and production method therefor
EP2254149A2 (en) 2009-05-22 2010-11-24 Unisantis Electronics (Japan) Ltd. SRAM using vertical transistors with a diffusion layer for reducing leakage currents
US8772881B2 (en) 2009-06-05 2014-07-08 Unisantis Electronics Singapore Pte Ltd. Semiconductor device
US9484268B2 (en) 2009-08-11 2016-11-01 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method
JP2011061181A (en) * 2009-08-11 2011-03-24 Unisantis Electronics Japan Ltd Semiconductor device and method of manufacturing the same
US8558317B2 (en) 2009-08-11 2013-10-15 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method
US9059309B2 (en) 2009-08-11 2015-06-16 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method
US8466512B2 (en) 2009-08-18 2013-06-18 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method thereof
US8563379B2 (en) 2009-08-18 2013-10-22 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method thereof
US8169030B2 (en) 2009-09-14 2012-05-01 Unisantis Electronics Singapore Pte Ltd. Semiconductor memory device and production method thereof
EP2296176A1 (en) 2009-09-14 2011-03-16 Unisantis Electronics (Japan) Ltd. SRAM cell with four SGTs and manufacturing method thereof
US8441066B2 (en) 2009-09-16 2013-05-14 Unisantis Electronics Singapore Pte Ltd. Semiconductor device
EP2299485A1 (en) 2009-09-16 2011-03-23 Unisantis Electronics (Japan) Ltd. SRAM cell comprising four NMOS SGTs and two load resistors
JP2011086900A (en) * 2009-09-16 2011-04-28 Unisantis Electronics Japan Ltd Semiconductor device
US8198654B2 (en) 2009-09-16 2012-06-12 Unisantis Electronics Singapore Pte Ltd. Semiconductor device
US8507995B2 (en) 2009-09-16 2013-08-13 Unisantis Electronics Singapore Pte Ltd. Semiconductor memory device
JP2011077437A (en) * 2009-10-01 2011-04-14 Unisantis Electronics Japan Ltd Semiconductor device
JP5712436B2 (en) * 2009-10-06 2015-05-07 国立大学法人東北大学 Semiconductor device
JP2010232631A (en) * 2009-12-10 2010-10-14 Unisantis Electronics Japan Ltd Semiconductor device and method for manufacturing the same
US8319288B2 (en) 2010-04-21 2012-11-27 Unisantis Electronics Singapore Pte Ltd. Semiconductor device
US9153697B2 (en) 2010-06-15 2015-10-06 Unisantis Electronics Singapore Pte Ltd. Surrounding gate transistor (SGT) structure
JP2012023305A (en) * 2010-07-16 2012-02-02 Elpida Memory Inc Semiconductor device and semiconductor device manufacturing method
US8530960B2 (en) 2010-12-07 2013-09-10 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US8513717B2 (en) 2011-01-18 2013-08-20 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device and method for manufacturing the same
US8754481B2 (en) 2011-10-18 2014-06-17 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9691896B2 (en) 2011-11-09 2017-06-27 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9614075B2 (en) 2011-11-09 2017-04-04 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US10438836B2 (en) 2011-11-09 2019-10-08 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing a semiconductor device
US8759178B2 (en) 2011-11-09 2014-06-24 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US9837317B2 (en) 2011-12-02 2017-12-05 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9666718B2 (en) 2011-12-02 2017-05-30 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9117690B2 (en) 2011-12-02 2015-08-25 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9390978B2 (en) 2011-12-02 2016-07-12 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9595476B2 (en) 2011-12-02 2017-03-14 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US8735971B2 (en) 2011-12-02 2014-05-27 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9142645B2 (en) 2011-12-02 2015-09-22 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9299701B2 (en) 2011-12-02 2016-03-29 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US8664063B2 (en) 2011-12-13 2014-03-04 Unisantis Electronics Singapore Pte. Ltd. Method of producing a semiconductor device and semiconductor device
US8916478B2 (en) 2011-12-19 2014-12-23 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US9748244B2 (en) 2011-12-19 2017-08-29 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US9245889B2 (en) 2011-12-19 2016-01-26 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US9035384B2 (en) 2011-12-19 2015-05-19 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9806163B2 (en) 2011-12-19 2017-10-31 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device having an nMOS SGT and a pMOS SGT
US9362353B2 (en) 2011-12-19 2016-06-07 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9478545B2 (en) 2011-12-19 2016-10-25 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US8755219B2 (en) 2012-02-15 2014-06-17 Unisantis Electronics Singapore Pte. Ltd. Hierarchical wordline loadless 4GST-SRAM with a small cell area
US8829601B2 (en) 2012-05-17 2014-09-09 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9153660B2 (en) 2012-05-17 2015-10-06 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9166043B2 (en) 2012-05-17 2015-10-20 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US8890236B1 (en) 2012-05-17 2014-11-18 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9012981B2 (en) 2012-05-17 2015-04-21 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9299786B2 (en) 2012-05-17 2016-03-29 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9048315B2 (en) 2012-05-17 2015-06-02 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9252276B2 (en) 2012-05-18 2016-02-02 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9466683B2 (en) 2012-05-18 2016-10-11 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9601618B2 (en) 2012-05-18 2017-03-21 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9029923B2 (en) 2012-05-18 2015-05-12 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9666712B2 (en) 2012-05-18 2017-05-30 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US8823066B2 (en) 2012-05-18 2014-09-02 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9246001B2 (en) 2012-05-18 2016-01-26 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US8877578B2 (en) 2012-05-18 2014-11-04 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9202922B2 (en) 2012-05-18 2015-12-01 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9666728B2 (en) 2012-05-18 2017-05-30 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9054085B2 (en) 2012-05-18 2015-06-09 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9406768B2 (en) 2012-05-18 2016-08-02 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US8697511B2 (en) 2012-05-18 2014-04-15 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9437732B2 (en) 2012-05-18 2016-09-06 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9853113B2 (en) 2012-05-21 2017-12-26 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US8975705B2 (en) 2012-05-21 2015-03-10 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9093305B2 (en) 2012-05-21 2015-07-28 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9818833B2 (en) 2012-05-21 2017-11-14 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US10002934B2 (en) 2012-05-21 2018-06-19 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US8836051B2 (en) 2012-06-08 2014-09-16 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US8921926B2 (en) 2012-08-06 2014-12-30 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US8823085B2 (en) 2012-08-08 2014-09-02 Unisantis Electronics Singapore Pte. Ltd. Method for producing a semiconductor device and semiconductor device
US9082838B2 (en) 2012-09-28 2015-07-14 Unisantis Electronics Singapore Pte. Ltd. Method for producing a semiconductor device and semiconductor device
US8829619B2 (en) 2012-10-09 2014-09-09 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9035388B2 (en) 2012-10-09 2015-05-19 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9287396B2 (en) 2012-10-09 2016-03-15 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9306053B2 (en) 2012-11-12 2016-04-05 Unisantis Electronics Singapore Pte. Ltd. Method for producing a semiconductor device with surrounding gate transistor
US9299825B2 (en) 2012-11-12 2016-03-29 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device with surrounding gate transistor
US9000513B2 (en) 2012-11-12 2015-04-07 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing a semiconductor device and semiconductor device with surrounding gate transistor
US9041095B2 (en) 2013-01-24 2015-05-26 Unisantis Electronics Singapore Pte. Ltd. Vertical transistor with surrounding gate and work-function metal around upper sidewall, and method for manufacturing the same
US9496360B2 (en) 2013-01-25 2016-11-15 Unisantis Electronics Singapore Pte. Ltd. Vertical transistor with source/drain regions induced by work-function differences between a semiconductor pillar body and surrounding metal electrodes
US9024376B2 (en) 2013-01-25 2015-05-05 Unisantis Electronics Singapore Pte. Ltd. Vertical transistor with dielectrically-isolated work-function metal electrodes surrounding the semiconductor pillar
US9837503B2 (en) 2013-01-25 2017-12-05 Unisantis Electronics Singapore Pte. Ltd. Transistor having metal electrodes surrounding a semiconductor pillar body and corresponding work-function-induced source/drain regions
US9111794B2 (en) 2013-03-15 2015-08-18 Unisantis Electronics Singapore Pte. Ltd. Method for producing a semiconductor device having SGTS
US9768294B2 (en) 2013-04-16 2017-09-19 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US10002963B2 (en) 2013-04-16 2018-06-19 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US10056483B2 (en) 2013-04-16 2018-08-21 Unisantis Electronics Singapore Pte. Ltd. Method for producing a semiconductor device including semiconductor pillar and fin
US9666688B2 (en) 2013-04-19 2017-05-30 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device production method and semiconductor device
US9490362B2 (en) 2013-04-19 2016-11-08 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device production method and semiconductor device
US9842902B1 (en) 2013-04-26 2017-12-12 Unisantis Electronics Singapore Pte. Ltd. Method for producing surrounding gate semiconductor device
US9768267B2 (en) 2013-04-26 2017-09-19 Unisantis Electronics Singapore Pte. Ltd. Surrounding gate semiconductor device
WO2014181819A1 (en) * 2013-05-10 2014-11-13 ピーエスフォー ルクスコ エスエイアールエル Semiconductor device
US10103154B2 (en) 2013-05-16 2018-10-16 Unisantis Electronics Singapore Pte. Ltd. Method for producing an SGT-including semiconductor device
US9514944B2 (en) 2013-05-16 2016-12-06 Unisantis Electronics Singapore Pte. Ltd. Method for producing an SGT-including semiconductor device
US10056471B2 (en) 2013-06-10 2018-08-21 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US10186601B2 (en) 2013-06-10 2019-01-22 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device
US9525038B2 (en) 2013-06-10 2016-12-20 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9318605B2 (en) 2013-06-13 2016-04-19 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device with an SGT and method for manufacturing the same
US9461165B2 (en) 2013-06-13 2016-10-04 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device with an SGT and method for manufacturing the same
US9972722B2 (en) 2013-06-17 2018-05-15 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US10937902B2 (en) 2013-06-17 2021-03-02 Unisantis Electronics Singapore Pte. Ltd. Method for producing a semiconductor device having a fin-shaped semiconductor layer
US10008595B2 (en) 2013-06-17 2018-06-26 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9991381B2 (en) 2013-06-17 2018-06-05 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device having fin-shaped semiconductor layer
US9502520B2 (en) 2013-06-17 2016-11-22 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9842926B2 (en) 2013-07-19 2017-12-12 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9590098B2 (en) 2013-07-19 2017-03-07 Unisantis Electronics Singapore Pte, Ltd. Method for producing semiconductor device and semiconductor device
US9660051B1 (en) 2013-07-19 2017-05-23 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device
US9520473B2 (en) 2013-08-07 2016-12-13 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9640637B2 (en) 2013-08-07 2017-05-02 Unisantis Electronics Signapore Pte. Ltd. Method for producing semiconductor device
US9876087B2 (en) 2013-08-07 2018-01-23 Unisantis Electronics Singapore Pte. Ltd. Surround gate transistor device and contact structure for same
US9224835B2 (en) 2013-08-15 2015-12-29 Unisantis Electronics Singapore Pte. Ltd. Method for producing SGT-including semiconductor device
US9613827B2 (en) 2013-11-06 2017-04-04 Unisantis Electronics Singapore Pte. Ltd. SGT-including semiconductor device and method for manufacturing the same
US10312110B2 (en) 2013-11-06 2019-06-04 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing an SGT-including semiconductor device
US9224834B1 (en) 2013-12-25 2015-12-29 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing pillar-shaped semiconductor device
US9812547B2 (en) 2014-02-18 2017-11-07 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device having fin-shaped semiconductor layer
US9640628B2 (en) 2014-02-18 2017-05-02 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device having fin-shaped semiconductor layer
US9755053B2 (en) 2014-02-18 2017-09-05 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device having fin-shaped semiconductor layer
US10804397B2 (en) 2014-02-18 2020-10-13 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device with surrounding gate transistor (SGT)
US10811535B2 (en) 2014-02-18 2020-10-20 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device including surrounding gate transistor having a gate electrode with inclined side surface
US9773801B2 (en) 2014-03-04 2017-09-26 Unisantis Electronics Singapore Pte. Ltd. Pillar-shaped semiconductor memory device and method for producing the same
US10651189B2 (en) 2014-03-04 2020-05-12 Unisantis Electronics Singapore Pte. Ltd. Method for producing pillar-shaped semiconductor memory device
US10121795B2 (en) 2014-03-04 2018-11-06 Unisantis Electronics Singapore Pte. Ltd. Method for producing pillar-shaped semiconductor memory device
US9865741B2 (en) 2014-03-05 2018-01-09 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US10475922B2 (en) 2014-03-05 2019-11-12 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9893179B2 (en) 2014-03-05 2018-02-13 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US10923591B2 (en) 2014-03-05 2021-02-16 Unisantis Electronics Singapore Pte. Ltd. Method for producing a semiconductor device
US9960277B2 (en) 2014-03-05 2018-05-01 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device
US9536892B2 (en) 2014-04-17 2017-01-03 Unisantis Electronics Singapore Pte. Ltd. Pillar-shaped semiconductor memory device and method for producing the same
US9589973B2 (en) 2014-06-10 2017-03-07 Unisantis Electronics Singapore Pte. Ltd. Pillar-shaped semiconductor memory device and method for producing the same
US10026842B2 (en) 2014-06-16 2018-07-17 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device
US9647142B2 (en) 2014-06-16 2017-05-09 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9780215B2 (en) 2014-06-16 2017-10-03 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9780179B2 (en) 2014-07-14 2017-10-03 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US10483366B2 (en) 2014-07-14 2019-11-19 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9583630B2 (en) 2014-07-24 2017-02-28 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US9741801B2 (en) 2014-08-07 2017-08-22 Unisantis Electronics Singapore Pte. Ltd. Method for producing a semiconductor device
US9431501B2 (en) 2014-08-07 2016-08-30 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device
US10340184B2 (en) 2014-08-28 2019-07-02 Unisantis Electronics Singapore Pte. Ltd. Method for producing a semiconductor device
US10217665B2 (en) 2014-08-28 2019-02-26 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device and method for producing semiconductor device
US10411021B2 (en) 2014-09-05 2019-09-10 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9947670B2 (en) 2014-09-05 2018-04-17 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US9653170B2 (en) 2014-10-07 2017-05-16 Unisantis Electronics Singapore Pte. Ltd. Pillar-shaped semiconductor memory device and method for producing the same
US10050124B2 (en) 2014-11-27 2018-08-14 Unisantis Electronics Singapore Pte. Ltd. Method for producing a pillar-shaped semiconductor device
US9673321B2 (en) 2014-11-27 2017-06-06 Unisantis Electronics Singapore Pte. Ltd. Pillar-shaped semiconductor device and method for producing the same
JP2016119342A (en) * 2014-12-18 2016-06-30 猛英 白土 Semiconductor device and manufacturing method of the same
US9627494B2 (en) 2015-01-08 2017-04-18 Unisantis Electronics Singapore Pte. Ltd. Pillar-shaped semiconductor device and production method therefor
US10026739B2 (en) 2015-03-03 2018-07-17 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device having pillar-shaped semiconductor layers
US10199381B2 (en) 2015-04-06 2019-02-05 Unisantis Electronics Singapore Pte. Ltd. Pillar-shaped semiconductor memory device and method for producing the same
US10734391B2 (en) 2015-04-06 2020-08-04 Unisantis Electronics Singapore Pte. Ltd. SGT-including pillar-shaped semiconductor device and method for producing the same
US10217865B2 (en) 2015-04-06 2019-02-26 Unisantis Electronics Singapore Pte. Ltd. SGT-including pillar-shaped semiconductor device and method for producing the same
US10658371B2 (en) 2015-04-06 2020-05-19 Unisantis Electronics Singapore Pte. Ltd. Method for producing a pillar-shaped semiconductor memory device
US10651181B2 (en) 2015-04-06 2020-05-12 Unisantis Electronics Singapore Pte. Ltd. Method for producing pillar-shaped semiconductor device
US10651180B2 (en) 2015-04-06 2020-05-12 Unisantis Electronics Singapore Pte. Ltd. Method for producing pillar-shaped semiconductor device
US10269809B2 (en) 2015-07-08 2019-04-23 Unisantis Electronics Singapore Pte. Ltd. Pillar-shaped semiconductor memory device and method for producing the same
US10593682B2 (en) 2015-07-08 2020-03-17 Unisantis Electronics Singapore Pte. Ltd. Method for producing pillar-shaped semiconductor memory device
US10229916B2 (en) 2015-10-09 2019-03-12 Unisantis Electronics Singapore Pte. Ltd. Method for producing pillar-shaped semiconductor device
US10410932B2 (en) 2015-10-09 2019-09-10 Unisantis Electronics Singapore Pte. Ltd. Method for producing pillar-shaped semiconductor device
US9865535B2 (en) 2015-11-02 2018-01-09 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device
US10453941B2 (en) 2015-11-09 2019-10-22 Unisantis Electronics Singapore Pte. Ltd. Surround gate transistor and method for producing the same
US10483376B1 (en) 2015-11-09 2019-11-19 Unisantis Electronics Singapore Pte. Ltd. Method for producing a semiconductor device
US10396197B2 (en) 2015-11-17 2019-08-27 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device and method for producing semiconductor device
US11211488B2 (en) 2015-12-18 2021-12-28 Unisantis Electronics Singapore Pte. Ltd. Method for producing a pillar-shaped semiconductor device
US11183582B2 (en) 2015-12-18 2021-11-23 Unisantis Electronics Singapore Pte. Ltd. Method for producing pillar-shaped semiconductor device
US11282958B2 (en) 2015-12-18 2022-03-22 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device including SGT
US10535756B2 (en) 2015-12-18 2020-01-14 Unisantis Electronics Singapore Pte. Ltd. Method for producing pillar-shaped semiconductor device
US10644151B2 (en) 2015-12-18 2020-05-05 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device including SGT
US10211340B2 (en) 2015-12-18 2019-02-19 Unisantis Electronics Singapore Pte. Ltd. Method for producing pillar-shaped semiconductor device
US10553715B2 (en) 2015-12-18 2020-02-04 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device including SGT and method for producing the same
US10930761B2 (en) 2016-08-18 2021-02-23 Unisantis Electronics Singapore Pte. Ltd. Pillar-shaped semiconductor device and method for producing the same
US10840155B2 (en) 2016-10-14 2020-11-17 Unisantis Electronics Singapore Pte. Ltd. Method for producing pillar-shaped semiconductor device
CN108538836A (en) * 2017-02-27 2018-09-14 三星电子株式会社 Vertical semiconductor devices
CN108538836B (en) * 2017-02-27 2023-12-19 三星电子株式会社 Vertical semiconductor device
US11309426B2 (en) 2017-03-27 2022-04-19 Unisantis Electronics Singapore Pte. Ltd. Pillar-shaped semiconductor device having connection material layer for anchoring wiring conductor layer and method for producing the same
US12027627B2 (en) 2017-03-27 2024-07-02 Unisantis Electronics Singapore Pte. Ltd. Pillar-shaped semiconductor device having connection material layer for anchoring wiring conductor layer and method for producing the same
US11380780B2 (en) 2018-05-08 2022-07-05 Unisantis Electronics Singapore Pte. Ltd. Method for producing pillar-shaped semiconductor device
KR20200089735A (en) 2018-05-08 2020-07-27 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 Method for manufacturing columnar semiconductor device
KR20200128427A (en) 2018-05-28 2020-11-12 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 Columnar semiconductor device and its manufacturing method
US11682727B2 (en) 2018-05-28 2023-06-20 Unisantis Electronics Singapore Pte. Ltd. Semiconductor device having semiconductor pillar with first impurity region formed lower part of the pillar and second impurity region formed upper part of the pillar
JPWO2020044560A1 (en) * 2018-08-31 2021-08-26 株式会社ソシオネクスト Semiconductor devices and their manufacturing methods
WO2020044560A1 (en) * 2018-08-31 2020-03-05 株式会社ソシオネクスト Semiconductor device and method of manufacturing same
US11705338B2 (en) 2018-10-01 2023-07-18 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing pillar-shaped semiconductor device
KR20210047941A (en) 2018-10-01 2021-04-30 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 Method for manufacturing columnar semiconductor device
US11862464B2 (en) 2018-12-21 2024-01-02 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing three-dimensional semiconductor device
KR20210091289A (en) 2018-12-21 2021-07-21 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 3D semiconductor device manufacturing method
KR20210135283A (en) 2019-04-05 2021-11-12 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 Columnar semiconductor device and its manufacturing method
US12096608B2 (en) 2019-04-05 2024-09-17 Unisantis Electronics Singapore Pte. Ltd. Pillar-shaped semiconductor device and manufacturing method thereof
KR20220002421A (en) 2019-06-05 2022-01-06 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 Method for manufacturing columnar semiconductor device
US12108585B2 (en) 2019-06-05 2024-10-01 Unisantis Electronics Singapore Pte. Ltd. Manufacturing method of pillar-shaped semiconductor device
KR20220012325A (en) 2019-07-11 2022-02-03 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 Columnar semiconductor device and its manufacturing method
US12127386B2 (en) 2019-07-11 2024-10-22 Unisantis Electronics Singapore Pte. Ltd. Semiconductor memory device
US12127385B2 (en) 2019-07-11 2024-10-22 Unisantis Electronics Singapore Pte. Ltd. Pillar-shaped semiconductor device and method for producing the same
KR20220034051A (en) 2019-07-11 2022-03-17 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 Columnar semiconductor device and its manufacturing method
KR20220059541A (en) 2019-10-30 2022-05-10 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 Columnar semiconductor device and its manufacturing method
US12029022B2 (en) 2019-10-30 2024-07-02 Unisantis Electronics Singapore Pte. Ltd. Pillar-shaped semiconductor device and method for producing the same
US12120864B2 (en) 2020-12-25 2024-10-15 Unisantis Electronics Singapore Pte. Ltd. Memory device using semiconductor element
US12106796B2 (en) 2020-12-25 2024-10-01 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor element-including memory device
US12048140B2 (en) 2020-12-25 2024-07-23 Unisantis Electronics Singapore Pte. Ltd. Memory device using semiconductor element
KR20230124701A (en) 2020-12-25 2023-08-25 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 Memory devices using semiconductor devices
US11776620B2 (en) 2020-12-25 2023-10-03 Unisantis Electronics Singapore Pte. Ltd. Memory device including semiconductor element
KR20230134575A (en) 2021-01-25 2023-09-21 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 semiconductor device memory device
US12016172B2 (en) 2021-04-06 2024-06-18 Unisantis Electronics Singapore Pte. Ltd. SGT memory device with improved write errors
US11682443B2 (en) 2021-04-06 2023-06-20 Unisantis Electronics Singapore Pte. Ltd. Semiconductor element memory device
US11823727B2 (en) 2021-04-13 2023-11-21 Unisantis Electronics Singapore Pte. Ltd. Semiconductor element memory device
US12096611B2 (en) 2021-04-13 2024-09-17 Unisantis Electronics Singapore Pte. Ltd. Semiconductor element memory device
US11823726B2 (en) 2021-04-13 2023-11-21 Unisantis Electronics Singapore Pte. Ltd. Semiconductor element memory device
US11756603B2 (en) 2021-04-15 2023-09-12 Unisantis Electronics Singapore Pte. Ltd. Memory-element-including semiconductor device
US11776609B2 (en) 2021-04-15 2023-10-03 Unisantis Electronics Singapore Pte. Ltd. Memory-element-including semiconductor device
US12185522B2 (en) 2021-05-06 2024-12-31 Unisantis Electronics Singapore Pte. Ltd. Memory apparatus using semiconductor devices
US11925013B2 (en) 2021-05-07 2024-03-05 Unisantis Electronics Singapore Pte. Ltd. Memory device using pillar-shaped semiconductor element
US12101925B2 (en) 2021-05-11 2024-09-24 Unisantis Electronics Singapore Pte. Ltd. Memory device using semiconductor elements
US11763877B2 (en) 2021-05-11 2023-09-19 Unisantis Electronics Singapore Pte. Ltd. Semiconductor-element-including memory device
US11996136B2 (en) 2021-05-11 2024-05-28 Unisantis Electronics Singapore Pte. Ltd. Semiconductor-element-including memory device
US12166107B2 (en) 2021-05-13 2024-12-10 Unisantis Electronics Singapore Pte. Ltd. Semiconductor-element-including memory device
US12159923B2 (en) 2021-05-13 2024-12-03 Unisantis Electronics Singapore Pte. Ltd. Memory device using semiconductor elements
US12108589B2 (en) 2021-05-13 2024-10-01 Unisantis Electronics Singapore Pte. Ltd. Memory device through use of semiconductor device
US11915757B2 (en) 2021-05-13 2024-02-27 Unisantis Electronics Singapore Pte. Ltd. Memory device through use of semiconductor device
US11937418B2 (en) 2021-05-14 2024-03-19 Unisantis Electronics Singapore Pte. Ltd. Semiconductor-element-including memory device
US11917807B2 (en) 2021-06-22 2024-02-27 Unisantis Electronics Singapore Pte. Ltd. Memory device using semiconductor element
US12144164B2 (en) 2021-06-25 2024-11-12 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing memory device using semiconductor element
US11990204B2 (en) 2021-07-06 2024-05-21 Unisantis Electronics Singapore Pte. Ltd. Memory device using semiconductor element
US11968822B2 (en) 2021-07-09 2024-04-23 Unisantis Electronics Singapore Pte. Ltd. Memory device using semiconductor element
US12205629B2 (en) 2021-10-19 2025-01-21 Unisantis Electronics Singapore Pte. Ltd. Semiconductor-element-including memory device
KR20240091175A (en) 2021-11-09 2024-06-21 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 Semiconductor memory device and method of manufacturing the semiconductor memory device
US12183391B2 (en) 2021-11-09 2024-12-31 Unisantis Electronics Singapore Pte. Ltd. Semiconductor memory device and manufacturing method of semiconductor memory device
US12100443B2 (en) 2021-12-07 2024-09-24 Unisantis Electronics Singapore Pte. Ltd. Semiconductor-element-including memory device
US12131773B2 (en) 2021-12-14 2024-10-29 Unisantis Electronics Singapore Pte. Ltd. Memory device
KR20240113970A (en) 2021-12-14 2024-07-23 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 Memory device using semiconductor elements
WO2024236772A1 (en) * 2023-05-17 2024-11-21 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Memory device using semiconductor element

Also Published As

Publication number Publication date
JP2703970B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
JP2703970B2 (en) MOS type semiconductor device
JP3057661B2 (en) Semiconductor device
JP2950558B2 (en) Semiconductor device
US5258635A (en) MOS-type semiconductor integrated circuit device
US10483268B2 (en) Semiconductor device including memory cell array with transistors disposed in different active regions
JP3900465B2 (en) SOI field effect transistor
US8026577B2 (en) Semiconductor apparatus having a triple well structure and manfacturing method thereof
TWI459511B (en) Memory cell
US6140684A (en) SRAM cell structure with dielectric sidewall spacers and drain and channel regions defined along sidewall spacers
US5998276A (en) Methods of making a SRAM cell employing substantially vertically elongated pull-up resistors and methods of making resistor constructions
US6084255A (en) Gate array semiconductor device
KR940002772B1 (en) Semiconductor integrated circuit and its manufacturing method
US6613634B2 (en) Method of manufacturing a semiconductor device using oblique ion injection
US6118158A (en) Static random access memory device having a memory cell array region in which a unit cell is arranged in a matrix
US5095347A (en) Plural transistor silicon on insulator structure with shared electrodes
JPH0786430A (en) Semiconductor device and its manufacture
US6486007B2 (en) Method of fabricating a memory cell for a static random access memory
KR980012556A (en) All CMOS SRAM cells containing Vcc and Vss buses on both sides of each complementary data line on a single level
JP2825244B2 (en) Semiconductor device
US6507124B2 (en) Semiconductor memory device
JPH0685427B2 (en) Semiconductor memory device
US6538338B2 (en) Static RAM semiconductor memory device having reduced memory
US6320233B1 (en) CMOS semiconductor device
JP3128086B2 (en) Basic cell of gate array
US6545325B2 (en) Semiconductor device and fabrication method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 12