[go: up one dir, main page]

JPH02188451A - Method and device for cooling optical fiber - Google Patents

Method and device for cooling optical fiber

Info

Publication number
JPH02188451A
JPH02188451A JP1005921A JP592189A JPH02188451A JP H02188451 A JPH02188451 A JP H02188451A JP 1005921 A JP1005921 A JP 1005921A JP 592189 A JP592189 A JP 592189A JP H02188451 A JPH02188451 A JP H02188451A
Authority
JP
Japan
Prior art keywords
optical fiber
cooling gas
cooling
fiber
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1005921A
Other languages
Japanese (ja)
Inventor
Hiroo Matsuda
松田 裕男
Kohei Kobayashi
宏平 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1005921A priority Critical patent/JPH02188451A/en
Publication of JPH02188451A publication Critical patent/JPH02188451A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/50Cooling the drawn fibre using liquid coolant prior to coating, e.g. indirect cooling via cooling jacket

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To enable stable resin coating with high quality by setting a cooling gas feeder and uniformly blowing a cooling gas on the periphery of a drawn optical fiber before resin coating to cool the optical fiber. CONSTITUTION:A cooling gas feeder 4 having cooling gas blowholes is set between a furnace 2 for drawing an optical fiber 3 and a die 5 for primary coating. The drawn optical fiber 3 is passed through a vessel 6 surrounding the feeder 4, having top and bottom holes for passing the fiber 3 and setting to form a cooling gas atmosphere and a cooling gas is fed to cool the fiber 3. The cooled fiber 3 is coated with resin by passing through the die 5 and the resin is cured with a curing device 9.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、加熱線引きされた光ファイバを被覆するに先
立って、予め光ファイバを冷却する方法及びこれに用い
る装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method of cooling an optical fiber that has been heated and drawn prior to coating the fiber, and an apparatus used therefor.

〈従来の技術〉 透明ガラス化した光フアイバ母材を所定の径に加熱線引
きする場合、一般にはこれに引き続いて光ファイバの外
周面に樹脂被覆が施される。
<Prior Art> When a transparent vitrified optical fiber base material is heated and drawn to a predetermined diameter, the outer peripheral surface of the optical fiber is generally subsequently coated with a resin.

通常、光ファイバの線引きそして樹脂被覆は次のように
して行っている。すなわち第5図に示すように予め別途
作製の光フアイバ母材1を、線引き炉2の炉心管2a内
に保持し、加熱溶融した光フアイバ母材1の先端から一
定の張力で線引きし、得られた光ファイバ3を、線引き
過程中の自然放熱で冷却させながら、液状の樹脂を入れ
た一次被覆用のダイス5の中を通過させ、光ファイバ3
の表面にこの樹脂を付着させた後、樹脂硬化装置9で樹
脂を固化し得られる光フアイバ素線7を巻取ドラム8に
巻き取るか若しくは、更に二次被覆を連続して行うよう
にしている。
Normally, optical fibers are drawn and coated with resin as follows. That is, as shown in FIG. 5, an optical fiber preform 1 prepared separately in advance is held in a core tube 2a of a drawing furnace 2, and a wire is drawn with a constant tension from the tip of the heated and melted optical fiber preform 1. The optical fiber 3 is cooled by natural heat dissipation during the drawing process, and passed through a primary coating die 5 containing liquid resin.
After adhering this resin to the surface of the fiber, the resin is solidified in a resin curing device 9, and the resulting optical fiber strand 7 is wound onto a winding drum 8, or a secondary coating is continuously applied. There is.

これは、線引き後の光ファイバ3が巻取ドラム8への接
触や光ファイバ3同士の接触等により光ファイバ3の表
面に傷が付き易く、さらに、ごく小さな傷でも光ファイ
バ3の表面に発生するとその材質が金属とは異なる高ぜ
い性材料であるため100g前後の小さな引張荷重や小
ざな曲げ荷重でも容易に傷が成長し、ぜい性破壊を起こ
しファイバの破断にいたる欠点を有するためである。従
って、線引きされた光ファイバ3の表面に直ちに樹脂被
覆して、引張り強度や曲げ強度を保持させろ上述したよ
うな方法が採用されている。
This is because the surface of the optical fiber 3 is easily scratched due to contact of the optical fiber 3 after drawing with the winding drum 8 or contact between the optical fibers 3, and furthermore, even a very small scratch can occur on the surface of the optical fiber 3. Since the material is a highly brittle material that is different from metal, it has the disadvantage that even a small tensile load of around 100 g or a small bending load can easily cause a flaw to grow, causing brittle fracture and leading to fiber breakage. It is. Therefore, the method described above is adopted in which the surface of the drawn optical fiber 3 is immediately coated with a resin to maintain its tensile strength and bending strength.

この樹脂被覆は一般に線引き直後の光ファイバ3に紫外
線硬化樹脂等の合成樹脂を被覆することにより行ってい
るが、光フアイバ製造の生産性を高めろために、光ファ
イバ3の線引き速度の高速化という要請がある。
This resin coating is generally performed by coating the optical fiber 3 immediately after drawing with a synthetic resin such as an ultraviolet curing resin, but in order to increase the productivity of optical fiber manufacturing, the drawing speed of the optical fiber 3 has been increased. There is a request.

この光ファイバの線引き速度の高速化に伴う問題点とし
て、光ファイバ3は加熱溶融された光フアイバ母材1か
ら線引きしたものであり、締引き過程において熱放散し
て冷却されるといっても、未だ十分冷却されない場合が
あり、このような状態で一次被覆用のダイス5の中を通
すと、被覆層はファイバ3の熱的影響を受け、被覆樹脂
の樹脂粘度が低下し被覆層の厚み寸法が安定せず、十分
な引張強度や曲げ強度が得られないというものがあった
A problem associated with increasing the drawing speed of optical fibers is that the optical fiber 3 is drawn from a heated and melted optical fiber base material 1, and even though it is cooled by heat dissipation during the drawing process. , it may still not be sufficiently cooled, and if it passes through the die 5 for primary coating in such a state, the coating layer will be affected by the heat of the fiber 3, the resin viscosity of the coating resin will decrease, and the thickness of the coating layer will decrease. In some cases, the dimensions were not stable and sufficient tensile strength and bending strength could not be obtained.

そこで、この様な不具合を解消するために、従来は特開
昭61−72648号公報に開示された強制的に光ファ
イバを冷却する装置等が知られていた。
In order to solve this problem, a device for forcibly cooling an optical fiber, etc., disclosed in Japanese Patent Laid-Open No. 61-72648, has been known.

これは第6図に示すように内周側に光ファイバ3を貫通
させろ空間を形成する内側管と、この内側管の外周側で
内側管とほぼ同軸状に位置し内側管との間で冷却液を挿
通する空間を形成する外側管とを有する冷却管19を具
備する装置である。この装置による光アイμ3の冷却は
内側管の内周側の空間に内側管の入口10よりHeガス
等の冷却ガスを導入すると共に、内側管と外側管との間
の空間に外側管の冷却液入口12から入り冷却液出口1
3から排出する冷却液を挿通することにより、光ファイ
バ3の熱を内側管を介し強制的に伝熱することにより行
われていた。
As shown in Fig. 6, this is cooled between an inner tube that forms a space for the optical fiber 3 to pass through on the inner circumference side, and an inner tube that is located approximately coaxially with the inner tube on the outer circumference side of the inner tube. This device includes a cooling pipe 19 having an outer pipe that forms a space through which liquid is inserted. The optical eye μ3 is cooled by this device by introducing a cooling gas such as He gas into the space on the inner circumferential side of the inner tube from the inlet 10 of the inner tube, and cooling the outer tube into the space between the inner tube and the outer tube. Entering from liquid inlet 12 Cooling liquid outlet 1
This is done by forcibly transferring the heat of the optical fiber 3 through the inner tube by passing the cooling liquid discharged from the inner tube.

〈発明が解決しようとする課題〉 光ファイバの生産性向上のなめに光ファイバの線引き速
度を大きくする程、光ファイバより単位時間当抄に奪う
熱量を大きくしなければならず、この手段として線引き
した光ファイバに樹脂被覆を施す以前に光ファイバを強
制的に冷却する必要があった。
<Problems to be Solved by the Invention> In order to improve the productivity of optical fibers, as the drawing speed of optical fibers is increased, the amount of heat taken from the optical fibers per unit time must be increased. It was necessary to forcibly cool the optical fiber before coating it with resin.

しかし、特開昭61=72648号公報記載の方法のよ
うに光ファイバと平行に冷却ガスを流す形式では光フア
イバ近傍の冷却ガスが近傍の外側の冷却ガスと入れ替わ
り難く、熱伝導によって光ファイバ近侍の冷却ガスから
その外側の冷却ガスへと移っていくのみであって、冷却
効果はあまり多(を期待できない。
However, in the method described in JP-A-61-72648, in which the cooling gas is flowed parallel to the optical fiber, it is difficult for the cooling gas near the optical fiber to replace the cooling gas outside the vicinity, and due to heat conduction, the cooling gas near the optical fiber is The cooling gas only moves from the cooling gas inside the cooling gas to the cooling gas outside the cooling gas, so we cannot expect much cooling effect.

従って、線引き速度を大きくすると光ファイバの温度が
十分低下せず、この熱的影響を受は樹脂被覆層の寸法が
不安定となり樹脂被覆の高品質化、品質安定化が図れな
いどう課題を有し“Cいる。
Therefore, when the drawing speed is increased, the temperature of the optical fiber does not decrease sufficiently, and this thermal influence causes the dimensions of the resin coating layer to become unstable, which poses problems in that it is difficult to achieve high quality and stable quality of the resin coating. There is a “C”.

さらに、この熱伝導を大きくするため熱伝導率の高いH
eガスを使用しているが、この方法ではHeガスの消費
量が多く、またH8ガスの価格が高いため、冷却のため
の費用が高くなり、最終的に光フアイバケーブルの製品
コスト高となる課題を有している。
Furthermore, in order to increase this heat conduction, H
Although e-gas is used, this method consumes a large amount of He gas, and the price of H8 gas is high, which increases the cost of cooling and ultimately increases the product cost of the optical fiber cable. I have issues.

く課題を解決するための手段〉 本発明による光ファイバの冷却方法は、線引きされた光
ファイバを樹脂被覆するに先立ってこの光ファイバを冷
却ガス雰囲気に通し、この冷却ガス雰囲気にて前記光フ
ァイバの周囲から前記冷却ガス雰囲気を形成する冷却ガ
スを前記光ファイバへほぼ均等に吹出すようにしたこと
を特徴とするものであり、 光ファイバの冷却装置は、光ファイバの線引き炉と一次
被覆用ダイスとの間にこの光ファイバを取り囲むように
設けられ且つ冷却ガスが供給される冷却ガス供給装置と
、この冷却ガス供給装置に形成され且つ前記光ファイバ
の周囲から前記光ファイバへほぼ均等に冷却ガス流を吹
出す複数の冷却ガス吹出し口と、前記冷却ガス供給装置
を取り囲むと共に上下端に前記光ファイバの挿通口を有
し且つ冷却ガス雰囲気を形成するための容器とから構成
されることを特徴とするものである。
Means for Solving the Problems> The method for cooling an optical fiber according to the present invention includes passing a drawn optical fiber through a cooling gas atmosphere before coating the optical fiber with a resin, and cooling the optical fiber in the cooling gas atmosphere. The cooling gas forming the cooling gas atmosphere is blown out almost uniformly from around the optical fiber to the optical fiber, and the optical fiber cooling device includes an optical fiber drawing furnace and a primary coating. A cooling gas supply device is provided between the die and the optical fiber so as to surround the optical fiber, and a cooling gas is supplied thereto; It is comprised of a plurality of cooling gas outlets for blowing out a gas flow, and a container that surrounds the cooling gas supply device, has an insertion port for the optical fiber at the upper and lower ends, and forms a cooling gas atmosphere. This is a characteristic feature.

く作   用〉 加熱源により加熱溶融された光フアイバ母材先端から線
引きされろ光ファイバは、冷却ガス雰囲気を形成する容
器内で冷却ガス供給装置の吹出し口から光ファイバに向
けて冷却ガスが吹き付けられるため効率良く冷却されろ
The optical fiber is drawn from the tip of the optical fiber base material heated and melted by a heating source. Cooling gas is blown toward the optical fiber from the outlet of the cooling gas supply device in a container that forms a cooling gas atmosphere. Cool efficiently.

この際、冷却ガス流は光ファイバの周囲にほぼ均等に吹
き付けられるため、光ファイバが冷却ガス流方向へ振ら
れずに冷却されることとなる。
At this time, since the cooling gas flow is sprayed almost evenly around the optical fiber, the optical fiber is cooled without being swayed in the direction of the cooling gas flow.

く実 施゛例〉 本発明の良好な一実施例を第1図から第4図を参照しつ
つ説明する。尚、第5図、第6図と同一部材には同一符
号を付して重複した説明は省略する。
Embodiment Example A preferred embodiment of the present invention will be described with reference to FIGS. 1 to 4. Incidentally, the same members as in FIGS. 5 and 6 are given the same reference numerals, and redundant explanation will be omitted.

線引き炉2の下部には線引きされた光ファイバ3が押通
される容器である冷却円筒6が位置している。冷却円筒
6の上下端には光ファイバ3の挿通口であり、光ファイ
バ3より若干大きな径を有する細孔15a、15bをそ
れぞれ中央に形成した端板18 a、  18 bが一
体的に取付けられている。また、冷却円筒6は円筒状且
つ細孔15a、15bをほぼ中心とする外壁17を有す
ると共に、細孔15a。
A cooling cylinder 6, which is a container into which the drawn optical fiber 3 is pushed, is located at the bottom of the drawing furnace 2. At the upper and lower ends of the cooling cylinder 6, end plates 18a and 18b are integrally attached, each having a hole 15a and 15b formed in the center thereof, which serves as an insertion opening for the optical fiber 3 and has a diameter slightly larger than that of the optical fiber 3. ing. Further, the cooling cylinder 6 has a cylindrical shape and an outer wall 17 having the pores 15a and 15b approximately in the center, and the pore 15a.

15bをほぼ中心とし且つ冷却液を押通する空間を外壁
17とで形成する内壁14を外壁17の内周側に有して
おり、外壁17と内壁14とは上下端がそれぞれ端板1
8 a、 18 bに接合している。また、外壁17に
はその下端側に冷却液の挿通する空間へつながる冷却液
人口12があり且つその上端側には冷却液の排出用の冷
却液出口13があり、冷却液入口12、冷却液出口13
はそれぞれ図示しない放熱装置を有する冷却液循環装置
に接続している。
It has an inner wall 14 on the inner circumferential side of the outer wall 17 that is approximately centered on the outer wall 15b and forms a space through which the cooling liquid is forced.
8a and 18b. Further, the outer wall 17 has a coolant port 12 connected to a space through which the coolant passes at its lower end, and a coolant outlet 13 for discharging the coolant at its upper end. Exit 13
are each connected to a coolant circulation system having a heat dissipation device (not shown).

さらに、内壁14の内周側には細孔15aから押通され
ろ光ファイバ3と同軸状で光ファイバ3の周囲を取り巻
く位置にらせん状をなす冷却ガス供給装置である供給管
4が配置されている。供給管4の上端部及び下端部はそ
れぞれ内壁14及び外壁17を貫通し、冷却円筒6の外
側に冷却ガスの入口10 a、 10 bを形成してお
り、入口10 g、  10 bはそれぞれ図示しない
冷却ガス供給源に接続している。さらに、冷却ガス供給
源から供給された冷却ガスが光ファイバ3へ吹出すため
の吹出し口16が供給管4の光ファイバ3と対向する位
置であって、供給管4の長手方向に等間隔に複数設けら
れており、さらに吹出し口16の孔径は冷却ガスの吹出
し速さが全てほぼ同一となるように設定されている。従
って、吹出し口16から吹出される冷却ガス流の速度ベ
クトルの総和はほぼ零となっており、吹出し口16から
光ファイバ3へほぼ均等に冷却ガスが吹出している。以
上より、光ファイバ3の冷却は、まず、冷却ガスが冷却
ガス供給源から供給管4の入口10 a、  10 b
から同時に供給管4に導入され、これにより複数の吹出
し口16から吹出した冷却ガスが供給管4のらせんの中
心軸と同軸状の光ファイバ3に吹付けられるため、光フ
ァイバ3の近傍にたえず低温の冷却ガスが存在し、光フ
ァイバ3の熱を冷却ガスが奪う乙とにより行われる。
Further, on the inner circumferential side of the inner wall 14, a supply pipe 4, which is a cooling gas supply device, is disposed in a spiral shape, being forced through the small hole 15a and coaxial with the optical fiber 3, and surrounding the optical fiber 3. ing. The upper and lower ends of the supply pipe 4 penetrate the inner wall 14 and the outer wall 17, respectively, and form cooling gas inlets 10a and 10b on the outside of the cooling cylinder 6, and the inlets 10g and 10b are not shown in the figure, respectively. connected to a non-cooling gas supply. Furthermore, the blow-off ports 16 for blowing out the cooling gas supplied from the cooling gas supply source to the optical fiber 3 are located at positions facing the optical fibers 3 of the supply pipe 4, and are arranged at equal intervals in the longitudinal direction of the supply pipe 4. A plurality of blow-off ports 16 are provided, and the hole diameters of the blow-off ports 16 are set so that the cooling gas blow-off speeds are all approximately the same. Therefore, the sum of the velocity vectors of the cooling gas flow blown out from the outlet 16 is approximately zero, and the cooling gas is blown out from the outlet 16 to the optical fiber 3 almost evenly. From the above, the optical fiber 3 is cooled by first passing the cooling gas from the cooling gas supply source to the inlets 10a and 10b of the supply pipe 4.
As a result, the cooling gas blown out from the plurality of outlets 16 is blown onto the optical fiber 3 which is coaxial with the center axis of the spiral of the supply pipe 4, so that the cooling gas is constantly introduced into the vicinity of the optical fiber 3. This is done by the presence of a low-temperature cooling gas and the cooling gas taking away the heat from the optical fiber 3.

また、光ファイバ3の冷却は内壁14の内周側の空間に
吹出された冷却ガスが細孔15a。
Further, the optical fiber 3 is cooled by the cooling gas blown into the space on the inner peripheral side of the inner wall 14 through the pores 15a.

15bから冷却円筒6の外に一部流出するものの、この
内周側の空間に冷却ガスが充満し冷却ガスの雰囲気を形
成するので、冷却ガスの対流が発生し、光ファイバ3の
近傍あるいは周囲に低温の冷却ガスがたえず対流により
送9こまれろことによっても行われる。
Although a portion of the cooling gas flows out of the cooling cylinder 6 from the optical fiber 15b, the inner circumferential space is filled with the cooling gas and forms a cooling gas atmosphere, so a convection of the cooling gas occurs and the cooling gas flows near or around the optical fiber 3. This is also achieved by constantly introducing low-temperature cooling gas by convection.

さらに、冷却液供給装置により潤滑する冷却液である水
道水が冷却液人口12から内壁14と外壁17との間に
供給され、この冷却液が内壁14及び内壁14の内周側
の空間に充満した冷却ガスを介して供給管4、供給管4
内の冷却ガス及び光ファイバ3の熱を熱伝導により奪う
ことによっても行われろ。また冷却ガスが光ファイバ3
の周囲にある複数の吹出し口16より光ファイバ3に吹
付けられるため、冷却ガス流による光ファイバ3への応
力が相殺され、結果として光ファイバ3の振れや振動が
防止され、光ファイバ3に線径変動を与えろおそれが生
じない。
Furthermore, tap water, which is a cooling liquid for lubricating, is supplied from the cooling liquid supply device 12 between the inner wall 14 and the outer wall 17, and this cooling liquid fills the inner wall 14 and the space on the inner peripheral side of the inner wall 14. The supply pipe 4, the supply pipe 4
This can also be done by removing heat from the cooling gas inside the optical fiber 3 and the optical fiber 3 by thermal conduction. Also, the cooling gas is connected to the optical fiber 3.
Since the air is blown onto the optical fiber 3 from the plurality of air outlets 16 around the cooling gas flow, the stress on the optical fiber 3 due to the cooling gas flow is canceled out, and as a result, the deflection and vibration of the optical fiber 3 are prevented, and the There is no risk of varying the wire diameter.

ここで使用される冷却ガスとしては空気以外の熱伝導性
の良好なガスを用いることが冷却の効率を向上するのに
有効であるが、そのガスの使用量は吹出し口16からの
吹出し、対流、熱伝導を併用し光ファイバ3の冷却を行
っている乙とより従来例の特開昭61−72648号公
報記載の装置より大巾に少な(することができろ。
As the cooling gas used here, it is effective to use a gas with good thermal conductivity other than air to improve the cooling efficiency, but the amount of gas used is , which cools the optical fiber 3 using heat conduction, is significantly less than the conventional device described in Japanese Patent Application Laid-open No. 61-72648.

上記構成の製造装置を用いて、光ファイバ3が直径12
5μmの石英ファイバであり、綿引き速度が毎分400
mの割合である場合において、線引き炉2の下端より1
.5m下の位置に上下長が2mの冷却円筒6の上端が位
置するように冷却円筒6を設置し、温度約25℃のHe
ガスを毎分31の割合で流した。このとき冷却円筒6の
下端での光ファイバ3の温度は、55℃であり、第5図
の装置で同様のファイバ径、材質、線引き速度及び測定
位置で測定した値の270℃に対し大巾に光ファイバ3
の温度を下げろことができた。比較として、同じ位置に
同じ上下長で第6図に示す様な従来の冷却管19を設け
、同様のファイバ径、材質、線引き速度、Heガス温度
及び測定位置で光ファイバ3が55℃になるには毎分1
2Iの割合でHeガスを流す必要があった。
Using the manufacturing apparatus with the above configuration, the optical fiber 3 has a diameter of 12 mm.
It is a 5 μm quartz fiber, and the cotton drawing speed is 400 per minute.
m, from the lower end of the drawing furnace 2
.. The cooling cylinder 6 is installed so that the upper end of the cooling cylinder 6 with a vertical length of 2 m is located 5 m below, and the He
Gas was flowed at a rate of 31 per minute. At this time, the temperature of the optical fiber 3 at the lower end of the cooling cylinder 6 is 55°C, which is much higher than the value of 270°C measured using the apparatus shown in Fig. 5 with the same fiber diameter, material, drawing speed, and measurement position. optical fiber 3
I was able to lower the temperature. For comparison, a conventional cooling pipe 19 as shown in FIG. 6 is installed at the same position with the same vertical length, and the optical fiber 3 reaches 55°C with the same fiber diameter, material, drawing speed, He gas temperature, and measurement position. 1 per minute
It was necessary to flow He gas at a rate of 2I.

ナオ、光ファイバ3の周囲から冷却ガスをファイバへ吹
出す吹出し口の位W1マ必ずしも供給管4の長手方向に
沿って等間隔である必要はなく、線引き方向と垂直方向
の力が光ファイバ3に加わらない様な位置であればよい
The locations of the outlets W1 that blow out cooling gas from around the optical fiber 3 to the fiber do not necessarily have to be at equal intervals along the longitudinal direction of the supply pipe 4, and the force in the direction perpendicular to the drawing direction is applied to the optical fiber 3. Any position that does not interfere with the flow may be used.

また、らせん状なす供給管4の代りに線引き方向と平行
に複数本パイプを設置する等の他のパイプ構造でもよく
、さらに、パイプ構造でない他の供給装置としてもよい
Further, instead of the spiral supply pipe 4, other pipe structures such as a plurality of pipes installed in parallel to the drawing direction may be used, or other supply devices other than pipe structures may be used.

本発明に用いる冷却ガスとしては熱伝導性の高い不活性
ガスが望ましく、待にHeガス単体あるいはHeガスを
含む混合ガスが優れているが、他の熱伝導性の良いガス
とするとともできろ。さらに、本実施例の冷却液には水
道水を使用したが、冷却液としては水道水に限定されろ
ことなく使用温度以下の凝固点を有し、冷却の効果が高
く、価格の安い流体であればよい。
The cooling gas used in the present invention is preferably an inert gas with high thermal conductivity, and He gas alone or a mixed gas containing He gas is excellent, but it is also possible to use other gases with good thermal conductivity. . Furthermore, although tap water was used as the coolant in this example, the coolant is not limited to tap water, and may be any fluid that has a freezing point below the operating temperature, has a high cooling effect, and is inexpensive. Bye.

〈発明の効果〉 本発明によれば、光ファイバの周囲から冷却ガスを流し
ても光ファイバの位置が冷却ガスを流さないときの位置
と変わらないため、線引きにおける光フアイバ母材のく
びれ部分の形状に影響を与えろことなく冷却ガスを流す
ことができる。
<Effects of the Invention> According to the present invention, the position of the optical fiber does not change even if cooling gas is flowed around the optical fiber from the position when no cooling gas is flown. Cooling gas can flow through it without affecting the shape.

従って、光フアイバ近傍の冷却ガスの温度を常に低く保
つことができ、冷却ガスによる冷却としては最大の能力
が発揮され、高品質で安定し且つ低コストの光フアイバ
素線の製造が可能となる。
Therefore, the temperature of the cooling gas near the optical fiber can be kept low at all times, and the maximum cooling capacity is demonstrated by the cooling gas, making it possible to manufacture high-quality, stable, and low-cost optical fiber wires. .

また、実施例による光ファイバの冷却方法及び冷却装置
によれば、容器である冷却円筒6内に充満した冷却ガス
を介して熱伝導が行われろと共に容諸内の冷却ガスが対
流を起こす冷却効果があり、従来方法より冷却効果を大
幅に向上でき、従来例と同程度の冷却効果を上げるのに
必要な冷却ガスの消費量を大幅に低減でき、低いコスト
で高品質で安定した樹脂被覆を可能とすることができる
Further, according to the optical fiber cooling method and cooling device according to the embodiment, heat conduction is performed through the cooling gas filled in the cooling cylinder 6, which is a container, and the cooling effect is achieved by causing convection of the cooling gas inside the container. The cooling effect can be significantly improved compared to conventional methods, and the consumption of cooling gas required to achieve the same level of cooling effect as conventional methods can be significantly reduced, allowing high-quality and stable resin coating to be achieved at low cost. It can be made possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に光ファイバの製造工程及び
装置の全体図、第2図は本発明の一実施例に係る光フア
イバ冷却装置の側面図、第3図は本発明の一実施例に係
る供給管の説明図、第4図は第3図の供給管の平面図、
第5図は従来技術に係る光ファイバの製造工程及び装置
の全体図、第6図は別の従来技術に係る光ファイバの製
造工程及び装置の全体図である。 図  面  中、 1は光フアイバ母材、 2ば腺引き炉、 3は光ファイバ、 4は供給管、 5はダイス、 6は冷却円筒、 7は光フアイバ素線、 8ば巻取ドラム、 9は樹脂硬化装置、 10、10 a、 10 bは入口 12は冷却液入口、 13は冷却液出口、 14は内壁、 15a、15bは細孔、 16Cよ吹出し口、 17は外壁、 18a、18bは端板、 19は冷却管である。
FIG. 1 is an overall view of an optical fiber manufacturing process and apparatus according to an embodiment of the present invention, FIG. 2 is a side view of an optical fiber cooling device according to an embodiment of the present invention, and FIG. 3 is an overall view of an optical fiber cooling device according to an embodiment of the present invention. An explanatory diagram of the supply pipe according to the embodiment, FIG. 4 is a plan view of the supply pipe of FIG. 3,
FIG. 5 is an overall view of an optical fiber manufacturing process and apparatus according to the prior art, and FIG. 6 is an overall view of an optical fiber manufacturing process and apparatus according to another prior art. In the drawing, 1 is an optical fiber base material, 2 is a drawing furnace, 3 is an optical fiber, 4 is a supply pipe, 5 is a die, 6 is a cooling cylinder, 7 is an optical fiber wire, 8 is a winding drum, 9 10, 10a, 10b are resin curing devices, 10, 10a, 10b are inlets, 12 are coolant inlets, 13 are coolant outlets, 14 are inner walls, 15a, 15b are pores, 16C are air outlets, 17 are outer walls, 18a, 18b are The end plate 19 is a cooling pipe.

Claims (2)

【特許請求の範囲】[Claims] (1)線引きされた光ファイバを樹脂被覆するに先立っ
てこの光ファイバを冷却ガス雰囲気に通し、この冷却ガ
ス雰囲気にて前記光ファイバの周囲から前記冷却ガス雰
囲気を形成する冷却ガスを前記光ファイバへほぼ均等に
吹出すようにしたことを特徴とする光ファイバの冷却方
法。
(1) Prior to coating a drawn optical fiber with resin, the optical fiber is passed through a cooling gas atmosphere, and in this cooling gas atmosphere, a cooling gas forming the cooling gas atmosphere is applied to the optical fiber from around the optical fiber. A method for cooling an optical fiber, characterized in that the optical fiber is blown out almost evenly.
(2)光ファイバの線引き炉と一次被覆用ダイスとの間
にこの光ファイバを取り囲むように設けられ且つ冷却ガ
スが供給される冷却ガス供給装置と、この冷却ガス供給
装置に形成され且つ前記光ファイバの周囲から前記光フ
ァイバへほぼ均等に冷却ガス流を吹出す複数の冷却ガス
吹出し口と、前記冷却ガス供給装置を取り囲むと共に上
下端に前記光ファイバの挿通口を有し且つ冷却ガス雰囲
気を形成するための容器とから構成されることを特徴と
する光ファイバの冷却装置。
(2) A cooling gas supply device provided between the optical fiber drawing furnace and the primary coating die to surround the optical fiber and supplying cooling gas; A plurality of cooling gas outlets that blow out a cooling gas flow almost uniformly from the periphery of the fiber to the optical fiber, and an insertion opening for the optical fiber surrounding the cooling gas supply device and at the upper and lower ends, and providing a cooling gas atmosphere. 1. An optical fiber cooling device comprising: a container for forming an optical fiber;
JP1005921A 1989-01-17 1989-01-17 Method and device for cooling optical fiber Pending JPH02188451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1005921A JPH02188451A (en) 1989-01-17 1989-01-17 Method and device for cooling optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1005921A JPH02188451A (en) 1989-01-17 1989-01-17 Method and device for cooling optical fiber

Publications (1)

Publication Number Publication Date
JPH02188451A true JPH02188451A (en) 1990-07-24

Family

ID=11624361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1005921A Pending JPH02188451A (en) 1989-01-17 1989-01-17 Method and device for cooling optical fiber

Country Status (1)

Country Link
JP (1) JPH02188451A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5383946A (en) * 1992-06-24 1995-01-24 The Furukawa Electric Co., Ltd. Optical fiber production method and production apparatus thereof
JP2015218069A (en) * 2014-05-14 2015-12-07 住友電気工業株式会社 Optical fiber cooling device and optical fiber manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5383946A (en) * 1992-06-24 1995-01-24 The Furukawa Electric Co., Ltd. Optical fiber production method and production apparatus thereof
JP2015218069A (en) * 2014-05-14 2015-12-07 住友電気工業株式会社 Optical fiber cooling device and optical fiber manufacturing method

Similar Documents

Publication Publication Date Title
JP3160422B2 (en) Optical waveguide fiber drawing apparatus and method
US5160359A (en) Apparatus and method for drawing an optical fiber from a solid blank
JPH0455138B2 (en)
JP4356155B2 (en) Optical fiber manufacturing method
JP2001524441A (en) Method and apparatus for cooling optical fiber
EP0079186B1 (en) Apparatus for drawing optical fibers
US9676659B2 (en) Method of manufacturing an optical fiber
KR910000732B1 (en) Method and apparatus for manufacturing optical fiber
US4838918A (en) Inert atmosphere cooler for optical fibers
JP2003119045A (en) Method for drawing optical fiber
JPH10101360A (en) Method and apparatus for cooling optical fiber
JPH02188451A (en) Method and device for cooling optical fiber
JP2000247688A (en) Optical fiber cooling system
JPH038738A (en) Optical fiber drawing furnace and drawing method
JPH1067531A (en) Production of optical fiber and device for the same
JPS61174133A (en) Production of optical fiber
JPH07121820B2 (en) Optical fiber manufacturing method and device
JPH11116284A (en) Optical fiber coating method and coating apparatus
JPS62148348A (en) Primary coating method for optical filament and equipment therefor
JPH01192749A (en) Optical fiber cooling method and device
JP2618424B2 (en) Manufacturing method of optical fiber core
JPH10226531A (en) Optical fiber drawing device
KR100393611B1 (en) Keeping device of bare fiber temperature
JPH0570161A (en) Production unit for optical fiber
JPS589836A (en) High speed spinning of optical fiber