[go: up one dir, main page]

JPH02186779A - Infrared-ray image pickup device - Google Patents

Infrared-ray image pickup device

Info

Publication number
JPH02186779A
JPH02186779A JP1006294A JP629489A JPH02186779A JP H02186779 A JPH02186779 A JP H02186779A JP 1006294 A JP1006294 A JP 1006294A JP 629489 A JP629489 A JP 629489A JP H02186779 A JPH02186779 A JP H02186779A
Authority
JP
Japan
Prior art keywords
infrared
signal processing
infrared detection
signals
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1006294A
Other languages
Japanese (ja)
Other versions
JP2743427B2 (en
Inventor
Sho Yasuda
升 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1006294A priority Critical patent/JP2743427B2/en
Publication of JPH02186779A publication Critical patent/JPH02186779A/en
Application granted granted Critical
Publication of JP2743427B2 publication Critical patent/JP2743427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To exactly correct the characteristic dispersion of each detection element by non-linear-correcting the output of the detection element arranged in a row of an infrared-ray detection array by signal processing circuits each of which is provided with a ROM respectively, and outputting it through a scanning conversion circuit. CONSTITUTION:The outputs of the infrared-ray detection elements 191 to 198 arranged in a row of the infrared-rate detection array 7 are inputted to the corresponding signal processing circuits 101 to 108, and after they are A/D- converted 21, the corresponding ROM 22 in which a correction value is stored is referred to, and they are corrected in linear. These corrected signals are outputted as a parallel-series-converted video signals by the scanning conversion circuit 11, and become the signals in which the variance of each infrared-ray detection element is exactly corrected.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は被写体の温度分布状態を画像表示するのに用
いられる赤外線撮像装置に関し、特にその信号処理方式
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an infrared imaging device used to display an image of a temperature distribution state of an object, and particularly to a signal processing method thereof.

「従来の技術J 従来の赤外線1最像装置は、単一の赤外線検出素子を用
いて機械走査方式によるラスク走査で映像信号を得てい
た。したし近年より一層の高性能化及びテレビジョン並
のリアルタイム性の追求から、50〜150素子を列状
に配列したりニアアレイを用いる方式が実用されはじめ
ている。
``Prior Technology J'' Conventional infrared 1 imaging devices used a single infrared detection element to obtain video signals through rusk scanning using a mechanical scanning method. In pursuit of real-time performance, systems in which 50 to 150 elements are arranged in a row or a near array are beginning to be put into practical use.

第5図はこの種の撮像装置の原理的な構成を示すもので
ある。被写体からの光束1は赤外レンズ2を介して水平
走査113に入射する。水平走査鏡3の外形は例えば断
面が正8角形の角柱でその側面が赤外線を反射するミラ
ーとなっており、中心軸Y−Yを中心として回転される
。水平走査鏡3で反射された光束1は、垂直走査鏡4で
反射されて反射鏡5に入射しそこで再び反射されて結像
しンズ6を介して赤外線検出アレイ6に入射する。
FIG. 5 shows the basic configuration of this type of imaging device. A light beam 1 from an object enters a horizontal scan 113 via an infrared lens 2. The external shape of the horizontal scanning mirror 3 is, for example, a prism with a regular octagonal cross section, the side surfaces of which serve as mirrors that reflect infrared rays, and are rotated around the central axis YY. The light beam 1 reflected by the horizontal scanning mirror 3 is reflected by the vertical scanning mirror 4 and enters the reflecting mirror 5, where it is reflected again and enters the infrared detection array 6 via the imaging lens 6.

この例では、同アレイ6が8素子より成る場合を示して
おり、第6図に示すように、画像分解する場合、8本の
ラスターをIWとして水平、垂直走査される。即ち、水
平走査は水平走査鏡3を高速回転させることにより行わ
れ、また垂直走査は垂直走査機構8により垂直走査鏡4
を回転又は上下に振動させることにより行われる。赤外
線検出アレイ7はデユワ−9内に収容され、液体窒素に
より一190℃程度に冷却されている。検出アレイ7の
各素子により検出された信号つまり光電変換された信号
V、1(i=1〜8)はそれぞれ信号処理回路10+、
10z、・・・logで増幅されて走査変換回路11に
並列に入力される。走査変換回路11では、並列に入力
された信号処理回路107の出力Vs!゛が並直列変換
されると共に標準テレビ方式、例えばNTSC方式のテ
レビ信号に変換されて出力端子12に出力される。
In this example, the array 6 is made up of eight elements, and as shown in FIG. 6, when an image is decomposed, eight rasters are used as IW to be horizontally and vertically scanned. That is, horizontal scanning is performed by rotating the horizontal scanning mirror 3 at high speed, and vertical scanning is performed by rotating the vertical scanning mirror 4 by the vertical scanning mechanism 8.
This is done by rotating or vibrating up and down. The infrared detection array 7 is housed in a dewar 9 and is cooled to about -190° C. with liquid nitrogen. The signals detected by each element of the detection array 7, that is, the photoelectrically converted signals V, 1 (i=1 to 8) are sent to a signal processing circuit 10+,
10z, . . . are amplified by log and input into the scan conversion circuit 11 in parallel. In the scan conversion circuit 11, the output Vs! of the signal processing circuit 107 input in parallel is inputted in parallel. is parallel-serial converted and converted into a standard television system, for example, an NTSC system television signal, which is output to an output terminal 12.

ところで、各検出素子の光電変換特性にバラツキがある
ため、表示画像に一定パターンの感度不均一性が発生し
、画質劣化の要因となるので、各素子の光電変換特性の
バラツキを補正する必要がある。従来の補正方法は、各
素子に温度Ta及びTbの二つの基準赤色源(図示せず
)の光を個別に照射し、各素子の入力光1(Pa及びp
b(それぞれ基準温度Ta及びTbに対応する)におけ
る信号処理回路10+の出力Vsi゛がそれぞれ一致す
るように(第7図参照)、同回路において利得及びオフ
セットを調整するようにしている。
By the way, since there are variations in the photoelectric conversion characteristics of each detection element, a certain pattern of sensitivity nonuniformity occurs in the displayed image, which causes image quality deterioration, so it is necessary to correct the variations in the photoelectric conversion characteristics of each element. be. In the conventional correction method, each element is individually irradiated with light from two reference red sources (not shown) at temperatures Ta and Tb, and the input light 1 (Pa and p) of each element is
The gain and offset of the signal processing circuit 10+ are adjusted so that the outputs Vsi' of the signal processing circuit 10+ at b (corresponding to reference temperatures Ta and Tb, respectively) coincide with each other (see FIG. 7).

「発明が解決しようとする課題」 赤外線検出アレイの各素子のバラツキを補正する従来の
方法は、各素子の特性が線形であれば完全な補正が可能
である。またたとえ非線形であっても、その特性が2点
で一致させることにより使用領域での特性がほぼ一致す
るような特性であれば問題ない。しかし赤外線検出アレ
イの場合はそうはならない、特に最近広く使われはじめ
たMCT検出器(水銀、カドミウム及びテルルを使った
検出器)の場合、各素子の非線形特性のバラツキが大き
く、たとえ限られた範囲で補正できても、入力光量に大
きなレベル差のある画像、或いはレベル変動の大きな画
像に対しては、補正誤差が大きくなり、感度バラツキに
よる画質変化はさけられない。
``Problems to be Solved by the Invention'' Conventional methods for correcting variations in each element of an infrared detection array are capable of complete correction if the characteristics of each element are linear. Further, even if the characteristics are non-linear, there is no problem as long as the characteristics in the usage area are almost the same by matching the characteristics at two points. However, this is not the case with infrared detection arrays, especially in the case of MCT detectors (detectors using mercury, cadmium, and tellurium), which have recently become widely used. Even if correction is possible within a range, the correction error will become large for images with large level differences in the amount of input light or images with large level fluctuations, and changes in image quality due to sensitivity variations cannot be avoided.

この発明の目的は、赤外線検出アレイの各素子の特性バ
ラツキを従来より広い範囲に亘って、より正確に補正で
きる新しい信号処理法を提供するにある。
An object of the present invention is to provide a new signal processing method that can more accurately correct variations in characteristics of each element of an infrared detection array over a wider range than before.

[課題を解決するための手段」 この発明は、水平走査鏡と、垂直走査鏡と、赤外線検出
アレイと、複数の信号処理回路と、走査変換回路とを具
備する赤外線撮像装置に関するものであって、 上記赤外線検出アレイは、複数の赤外線検出素子を列状
に配列したものであり、 上記信号処理回路は、上記赤外線検出素子毎に設けられ
、ROMを有し、赤外線検出素子の検出信号をそのRO
Mのアドレス入力端子に入力して、対応する記憶領域に
格納されているところの、対応する赤外線検出素子の非
直線性を補正した検出信号を出力するものであり、 上記走査変換回路は、上記複数の信号処理回路より並列
に入力される検出信号を並直列変換すると共に、標準テ
レビ信号に変換して出力するものである。
[Means for Solving the Problems] The present invention relates to an infrared imaging device comprising a horizontal scanning mirror, a vertical scanning mirror, an infrared detection array, a plurality of signal processing circuits, and a scan conversion circuit. The infrared detection array has a plurality of infrared detection elements arranged in a row, and the signal processing circuit is provided for each infrared detection element, has a ROM, and processes the detection signals of the infrared detection elements. R.O.
The scan conversion circuit is input to the address input terminal of M and outputs a detection signal corrected for non-linearity of the corresponding infrared detection element stored in the corresponding storage area. It converts detection signals input in parallel from a plurality of signal processing circuits into parallel to serial, and converts them into standard television signals and outputs them.

「実施例」 この発明の撮像装置には従来と同様に水平走査鏡、垂直
走査鏡などより成る機械光学的な走査機構が用いられる
。赤外線検出アレイ以降の電子回路、特に信号処理回路
にこの発明の特徴がある。
Embodiment The imaging device of the present invention uses a mechano-optical scanning mechanism comprising a horizontal scanning mirror, a vertical scanning mirror, etc., as in the prior art. The present invention is characterized by the electronic circuits after the infrared detection array, especially the signal processing circuits.

第1図に示すように、赤外線検出アレイ1の各素子19
□ (i=1〜8)の検出出力はそれぞれ増幅器20で
増幅された後、AD変換器21を介してディジタル信号
に変換される。そのディジタル信号はROM (読出し
専用メモリ)22のアドレス入力端子に入力される。
As shown in FIG. 1, each element 19 of the infrared detection array 1
□ (i=1 to 8) detection outputs are each amplified by an amplifier 20 and then converted to a digital signal via an AD converter 21. The digital signal is input to an address input terminal of a ROM (read only memory) 22.

各ROM22には前もって対応する赤外線検出素子19
、の非直線性を補正した検出信号Vs’が検出信号Vs
をアドレスとする記憶領域に格納されている。即ち、検
出素子19、の赤外線に対する光電変換特性が第2図に
示すように、検出信号Vsνの点において理想的な直線
00°より一δνだけずれていたとすればROM22の
Vsνをアドレスとする記憶領域には、第3図に示すよ
うに、Vsν’=Vsv+δνが記憶されている。この
ようにして検出信号Vsの所定のダイナミックレンジに
おいて、対応する補正値Vs’が格納されて、所謂参照
テーブルが構成される。従って、各素子に対応する参照
テーブルには各素子の特性に応じた個有のデータが格納
される。ROM22の出力、つまり補正された検出信号
Vs’の入力光量Pに対する特性は第4図に示すように
理想的な直線となる。このようにして入力光量Pに対す
る各ROM22の出力は同一の直線特性となり、よって
各検出素子19.のバラツキが補正される。各ROM2
2の出力は並列に走査変換回路11に入力されて、並直
列変換されると共に、標準テレビ方式のテレビ信号(し
かしディジタル信号)に変換されてDA変換器23に出
力され、アナグロのテレビ信号に変換されて出力端子1
2に出力される。なお、上記の対応する一組の増幅器2
0、AD変換器21及びROM22により信号処理回路
10.が構成される。
Each ROM 22 has a corresponding infrared detection element 19 in advance.
, the detection signal Vs' corrected for the nonlinearity is the detection signal Vs
It is stored in the storage area whose address is . That is, if the photoelectric conversion characteristic of the detection element 19 for infrared rays is deviated by 1 δν from the ideal straight line 00° at the point of the detection signal Vsν, as shown in FIG. As shown in FIG. 3, Vsv'=Vsv+δν is stored in the area. In this way, in a predetermined dynamic range of the detection signal Vs, the corresponding correction value Vs' is stored, forming a so-called reference table. Therefore, unique data corresponding to the characteristics of each element is stored in the reference table corresponding to each element. The output of the ROM 22, that is, the characteristic of the corrected detection signal Vs' with respect to the input light amount P is an ideal straight line as shown in FIG. In this way, the output of each ROM 22 with respect to the input light amount P has the same linear characteristic, so that each detection element 19. The variation in is corrected. Each ROM2
The outputs of 2 are inputted in parallel to the scan conversion circuit 11, where they are converted from parallel to serial, and also converted into a standard television system television signal (but a digital signal) and output to the DA converter 23, where they are converted into an analog television signal. Converted to output terminal 1
2 is output. Note that the above corresponding set of amplifiers 2
0, the signal processing circuit 10.0 by the AD converter 21 and the ROM 22. is configured.

「発明の効果」 この発明によれば、赤外線検出アレイ7の各検出素子の
光電変換特性のバラツキを従来より広い範囲に亘り、よ
り正確に補正できる。従って、入力光量に大きなレベル
差のある画像、或いはレヘル変動の大きな画像に対して
も素子バラツキに起因して画質を劣化させる恐れはなく
、従来より高品位の画像が得られる。
"Effects of the Invention" According to the present invention, variations in the photoelectric conversion characteristics of each detection element of the infrared detection array 7 can be corrected more accurately over a wider range than conventional techniques. Therefore, even for images with large level differences in the amount of input light or images with large level fluctuations, there is no risk of image quality deterioration due to element variations, and higher quality images than conventional ones can be obtained.

また、この発明によれば検出素子のバラツキを補正する
のに、従来のような二つの基準赤色源(基準温度rA)
を必要としないので、それだけ装置を経済化できる効果
もある。
Further, according to the present invention, in order to correct variations in detection elements, two reference red sources (reference temperature rA) as in the conventional method are used.
This also has the effect of making the equipment more economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例の要部のブロック図、第2図
は第1図の赤外線検出アレイ7の1つの検出素子の光電
変換特性を示す図、第3図は第2図の特性をもつ検出素
子と対応する第1図のROM22に格納された参照テー
ブルを説明するための図、第4図は第1図の検出素子1
9+  (i=1〜8)の入力光量Pに対するROM2
2の出力特性を示す図、第5図は従来の赤外線描像装置
の原理的構成を示すブロック図、第6図は第5図におい
て、被写体(対称とする画像)を機械光学的走査により
ラスクー8本分纏めて分解走査する状態を説明するため
の図、第7図は第5図の信号処理回路10の出力Vs’
の特性例を示す図である。 十 6 囮
FIG. 1 is a block diagram of a main part of an embodiment of the present invention, FIG. 2 is a diagram showing the photoelectric conversion characteristics of one detection element of the infrared detection array 7 of FIG. 1, and FIG. 3 is a diagram showing the characteristics of FIG. 2. 4 is a diagram for explaining a reference table stored in the ROM 22 of FIG. 1 which corresponds to the detection element 1 of FIG. 1.
ROM2 for input light amount P of 9+ (i=1 to 8)
FIG. 5 is a block diagram showing the basic configuration of a conventional infrared imaging device. FIG. 6 is a diagram showing the output characteristics of a conventional infrared imaging device. FIG. 7 is a diagram for explaining the state in which main parts are collectively analyzed and scanned, and FIG. 7 shows the output Vs' of the signal processing circuit 10 in FIG.
It is a figure which shows the example of a characteristic. 10 6 Decoy

Claims (1)

【特許請求の範囲】[Claims] (1)水平走査鏡と、垂直走査鏡と、赤外線検出アレイ
と、複数の信号処理回路と、走査変換回路とを具備する
赤外線撮像装置であって、 上記赤外線検出アレイは、複数の赤外線検出素子を列状
に配列したものであり、 上記信号処理回路は、上記赤外線検出素子毎に設けられ
、ROMを有し、赤外線検出素子の検出信号をそのRO
Mのアドレス入力端子に入力して、対応する記憶領域に
格納されているところの、対応する赤外線検出素子の非
直線性を補正した検出信号を出力するものであり、 上記走査変換回路は、上記複数の信号処理回路より並列
に入力される検出信号を並直列変換すると共に、標準テ
レビ信号に変換して出力するものである、 赤外線撮像装置。
(1) An infrared imaging device comprising a horizontal scanning mirror, a vertical scanning mirror, an infrared detection array, a plurality of signal processing circuits, and a scan conversion circuit, the infrared detection array comprising a plurality of infrared detection elements. are arranged in a row, and the signal processing circuit is provided for each infrared detection element, has a ROM, and transfers the detection signal of the infrared detection element to its RO.
The scan conversion circuit is input to the address input terminal of M and outputs a detection signal corrected for non-linearity of the corresponding infrared detection element stored in the corresponding storage area. An infrared imaging device that converts detection signals input in parallel from multiple signal processing circuits into parallel to serial, converts them into standard television signals, and outputs the signals.
JP1006294A 1989-01-13 1989-01-13 Infrared imaging device Expired - Fee Related JP2743427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1006294A JP2743427B2 (en) 1989-01-13 1989-01-13 Infrared imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1006294A JP2743427B2 (en) 1989-01-13 1989-01-13 Infrared imaging device

Publications (2)

Publication Number Publication Date
JPH02186779A true JPH02186779A (en) 1990-07-23
JP2743427B2 JP2743427B2 (en) 1998-04-22

Family

ID=11634358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1006294A Expired - Fee Related JP2743427B2 (en) 1989-01-13 1989-01-13 Infrared imaging device

Country Status (1)

Country Link
JP (1) JP2743427B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000513518A (en) * 1996-06-14 2000-10-10 シマゲ オユ Calibration method and system for imaging device
JP2007174112A (en) * 2005-12-20 2007-07-05 Sumitomo Electric Ind Ltd Far-infrared imaging device and output value correction method
JP2010249392A (en) * 2009-04-15 2010-11-04 Panasonic Corp Microwave heating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000513518A (en) * 1996-06-14 2000-10-10 シマゲ オユ Calibration method and system for imaging device
JP2007174112A (en) * 2005-12-20 2007-07-05 Sumitomo Electric Ind Ltd Far-infrared imaging device and output value correction method
JP2010249392A (en) * 2009-04-15 2010-11-04 Panasonic Corp Microwave heating device

Also Published As

Publication number Publication date
JP2743427B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
US4419692A (en) High speed infrared imaging system
KR950008707B1 (en) Temperature Tracking Fault Compensator for Solid State Imagers
US6982744B2 (en) Multi-point calibration method for imaging light and color measurement device
EP0468474A2 (en) A method of compensating scattered characteristics of infrared detector elements
US4876453A (en) Method and apparatus for calibrating an imaging sensor
JPH05176238A (en) Image pickup device
GB2099990A (en) Temperature measurement using thermal imaging apparatus
GB2336268A (en) Correction of grey values in IR imaging
US6683310B2 (en) Readout technique for microbolometer array
US5978021A (en) Apparatus producing a high definition picture and method thereof
JPH02186779A (en) Infrared-ray image pickup device
EP0576140B1 (en) Imaging apparatus
US7084796B2 (en) Cross-talk linearity connection
US4917488A (en) Photocell distance measurement
Broekaert et al. Nonlinearity and nonuniformity corrections for the IRIS family of IRCCD thermal imagers
JPH1169105A (en) Image reader
Bernier et al. Infrared pushbroom camera breadboard using off-the-shelf 2D array of detector
RU2407213C1 (en) Image forming device
JPS59110286A (en) How to improve images with defective channels
JPS6199471A (en) Infrared image pickup device
KR100697541B1 (en) Imaging Circuits and Methods of Space Compensation
JPH05300438A (en) Image pickup device
RU2066057C1 (en) Process of formation of videosignal of infra-red imager with multielement photodetector
JPH09218087A (en) Nonspherical element for infrared image system
Jacobson et al. Enhanced sensitivity for hyperspectral infrared chemical detection

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees