JPH02184819A - Ferroelectric liquid crystal display element - Google Patents
Ferroelectric liquid crystal display elementInfo
- Publication number
- JPH02184819A JPH02184819A JP523589A JP523589A JPH02184819A JP H02184819 A JPH02184819 A JP H02184819A JP 523589 A JP523589 A JP 523589A JP 523589 A JP523589 A JP 523589A JP H02184819 A JPH02184819 A JP H02184819A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- substrate
- thickness
- crystal layer
- inclination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 title claims description 20
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 48
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 230000005684 electric field Effects 0.000 abstract description 5
- 230000003287 optical effect Effects 0.000 abstract description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 abstract 3
- 238000004040 coloring Methods 0.000 abstract 1
- 230000003292 diminished effect Effects 0.000 abstract 1
- 230000010287 polarization Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000002269 spontaneous effect Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000002845 discoloration Methods 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 2
- 238000000411 transmission spectrum Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 241001442234 Cosa Species 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は複屈折を利用した強誘電性液晶表示素子に口す
る。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a ferroelectric liquid crystal display device that utilizes birefringence.
従来の技術
複屈折を利用した強誘電性液晶表示素子においては、こ
の系を透過してくる光強度■は、入射光の偏光方向とダ
イレクタの向きのなす角2θ、2枚の偏光子が平行な時
の透過光強度11I、液晶の屈折率異方性へ〇、液晶層
の厚みd、入射光波長λ1 = I n−5in22(
2θ) ・5in2(7Y dΔn/入)・ ・ ・
・(+)
とあられすことができろ。表面安定化強誘電性液晶(S
SFLC)表示素子ではダイレクタの向きがupまたは
downの2状態間を電界の極性の反転によりスイッチ
するものである。いまup状態のダイレクタの向きを偏
光方向と一致させれば、2θ=0となりこのときの透過
光強度1 (up)=0となる。5SFLC素子のコン
トラストを最大にするためには、down状態の透過光
強度を最大にする、すなわち(1)式において20=π
/4(=45度)、dΔ11 /λ=m/2(mは奇数
)にすれはよい。強誘電性液晶で2θ=45度のものは
、数多くある。一方dΔn/入についてだが、中色光源
のスイッチング素子として5SFI、C素子を使う場合
は液晶層の厚みを最適化することによっ−CdΔn/λ
=m/2 (mは奇数)にすることができる。たとえ
はメルク社製強誘電性液晶ZLI−3654(Δn =
0.13)、1le−Neレーザ(λ= 632.8n
m)をもちいた液晶ライトバルブでは液晶層の厚みはd
=m入/2Δn=2.4,7.3.12.、、、(μm
)にすればよい。しかし液晶カラーデイスプレーの場合
、可視光全領域(400〜700nm)でdΔn/入を
ある程度一定にしないと可視光のある特定波長の透過率
が極端に低くなったり、透過率の波長依存性が大きくな
って色がついてみえるようになる。そのためdΔn =
0.2〜0.3μmにするのが一般的である。第1図に
(1)式でdΔnを変えて計算した透過率のスペクトル
を示した。Conventional technology In a ferroelectric liquid crystal display device that utilizes birefringence, the light intensity that passes through this system is determined by the angle 2θ between the polarization direction of the incident light and the direction of the director, and the angle 2θ between the two polarizers being parallel. Transmitted light intensity 11I when
2θ) ・5in2 (7Y dΔn/in)・ ・ ・
・(+) May it come to you. Surface stabilized ferroelectric liquid crystal (S
In SFLC) display elements, the direction of the director is switched between two states, up and down, by reversing the polarity of the electric field. If the direction of the director in the up state now matches the polarization direction, 2θ=0 and the transmitted light intensity 1 (up) at this time becomes 0. In order to maximize the contrast of the 5SFLC element, the transmitted light intensity in the down state must be maximized, that is, 20=π in equation (1).
/4 (=45 degrees), dΔ11 /λ=m/2 (m is an odd number). There are many ferroelectric liquid crystals with 2θ=45 degrees. On the other hand, regarding dΔn/λ, when using 5SFI and C elements as switching elements for medium color light sources, by optimizing the thickness of the liquid crystal layer -CdΔn/λ
= m/2 (m is an odd number). For example, Merck's ferroelectric liquid crystal ZLI-3654 (Δn =
0.13), 1le-Ne laser (λ = 632.8n
In the liquid crystal light valve using m), the thickness of the liquid crystal layer is d
=m included/2Δn=2.4, 7.3.12. ,,,(μm
). However, in the case of liquid crystal color displays, if dΔn/input is not kept constant to a certain extent over the entire visible light range (400 to 700 nm), the transmittance at a certain wavelength of visible light may become extremely low, or the wavelength dependence of the transmittance may become extremely low. As they grow larger, they begin to appear colored. Therefore, dΔn =
Generally, the thickness is 0.2 to 0.3 μm. FIG. 1 shows the transmittance spectrum calculated by changing dΔn using equation (1).
一般に市販されている強誘電性液晶のΔnはだいたい0
.13〜帆】5なので、この値から計算すると液晶層の
厚みは1.3〜2.3μmにせねばならない。The Δn of commercially available ferroelectric liquid crystals is approximately 0.
.. 13~5] Therefore, calculating from this value, the thickness of the liquid crystal layer must be 1.3~2.3 μm.
現在市販されている液晶カラーテレビの液晶層厚は約5
μmであるが、この液晶層厚でもゴミ、はこり等による
ギャップ不良が生じ、これ以上薄くしにくいことはよく
知られた事実である。The liquid crystal layer thickness of currently commercially available LCD color TVs is approximately 5.
It is a well-known fact that even with this liquid crystal layer thickness, gap defects occur due to dust, clumps, etc., and it is difficult to make the liquid crystal layer thinner.
発明が解決しようとする課題
カラー表示する強誘電性液晶表示素子では液晶層厚を2
μm程度にせねばならず、歩留まりが悪かった。Problems to be Solved by the Invention In a ferroelectric liquid crystal display element for color display, the thickness of the liquid crystal layer is reduced to 2.
It had to be on the order of μm, resulting in poor yield.
本発明は、このような課題を解決することを目的とする
。The present invention aims to solve such problems.
課題を解決するための手段
本発明は、液晶の層の基板の法線からの傾き角が45度
以上90度未溝にするものである。Means for Solving the Problems In the present invention, the liquid crystal layer is formed so that the inclination angle from the normal to the substrate is 45 degrees or more and 90 degrees.
作用
液晶の層の基板の法線からの傾き角をβとすると液晶の
ダイレクタの向きは基板から角度βだけ傾いた方向とな
る。光スィッチとして作用するのは、基板面に射影した
成分なのでΔn cosβとなり実効的にΔnを小さく
することができる。その結果dを大きくすることが可能
になる。例えばΔn=0.13の強誘電性液晶材料で、
傾き角β260度とするとΔn(eff、)=0.13
cos60’ ==0.065となりdΔn == 0
.2〜0.371mにするにはd =3.1〜4.6μ
mとすればよい。傾きのない場合はd = 1.5〜2
.311mが最適値であるので、傾けないときに比へ液
晶層を大きくでき、歩留まりの向上が望める。If the tilt angle of the working liquid crystal layer from the normal to the substrate is β, then the direction of the liquid crystal director is tilted from the substrate by the angle β. What acts as an optical switch is the component projected onto the substrate surface, so Δn cos β, and Δn can be effectively reduced. As a result, it becomes possible to increase d. For example, with a ferroelectric liquid crystal material with Δn=0.13,
If the tilt angle β is 260 degrees, Δn(eff,) = 0.13
cos60' ==0.065 and dΔn ==0
.. To make it 2-0.371m, d = 3.1-4.6μ
It should be m. If there is no slope, d = 1.5~2
.. Since 311 m is the optimum value, the liquid crystal layer can be made relatively large when not tilted, and an improvement in yield can be expected.
また傾けた場合実効的な自発分極も小さくなるがもとも
と20nC/cm2程度あったものが、20cos60
゜= 10(nC/cm2)となっても応答速度に大き
な変化はない。応答速度は自発分極の逆数に比例するか
らである。Also, when tilted, the effective spontaneous polarization becomes smaller, but it was originally about 20nC/cm2, but it was 20cos60.
Even if ゜=10 (nC/cm2), there is no significant change in the response speed. This is because the response speed is proportional to the reciprocal of spontaneous polarization.
実施例 以下に、本発明の実施例を図面を参照して説明する。Example Embodiments of the present invention will be described below with reference to the drawings.
強誘電性液晶表示素子は2枚の基板間に強誘電性液晶を
挟持することで実現される。これらの基板の液晶と接す
る面には少なくとも電極作成及び配向処理がなされてい
る。液晶の層の基板の法線からの傾きを制御する方法と
して、SiOの斜方蒸着の蒸着角を変える、ポリイミド
やポリビニルアルコール等の配向膜に長鎖アルキル基を
つけ、その密度をかえる等の方法があるが、SiOの斜
方蒸着の蒸着角を変えるのが最も手軽である。A ferroelectric liquid crystal display element is realized by sandwiching a ferroelectric liquid crystal between two substrates. The surfaces of these substrates that come into contact with the liquid crystal are subjected to at least electrode formation and alignment treatment. Methods of controlling the tilt of the liquid crystal layer from the normal to the substrate include changing the deposition angle of SiO oblique evaporation, adding long-chain alkyl groups to alignment films such as polyimide and polyvinyl alcohol, and changing their density. There are several methods, but the easiest is to change the deposition angle during oblique deposition of SiO.
基板としては可視光で無色透明であれば、ガラスやプラ
スティックのどのようなものも使用できるが透明性や表
面の均一性などを考慮すれはガラスが最も良い。As the substrate, any material such as glass or plastic can be used as long as it is colorless and transparent under visible light, but glass is best in consideration of transparency and surface uniformity.
電極としてはある程度透明であればどのようなものも用
いることができる。インジウムすずオキシド(ITO)
は可視光透過率が高く、最適である。Any electrode can be used as long as it is transparent to some extent. Indium tin oxide (ITO)
has high visible light transmittance and is optimal.
ただしその電極の表面ばモ坦にしておく必要かある。However, it is necessary to keep the surface of the electrode flat.
この電極のしに配向処理をする。配向処理の向きが上下
の基板で逆になるように配置するのが好ましい。すなわ
ち斜方蒸着では蒸着方向が逆方向になるように向かい合
わせるのが好ましい。高分子のラビングにより配向させ
る場合はラビング方向をL下基板で逆向きにすればよい
。この様な基板配置ムJ゛すると強誘電性液晶の層構造
が、下の基板から1−の基板まで均一 (傾いたユニフ
ォーム構造)になるため、層の傾き角を制御しやすい。An alignment treatment is applied to the edge of this electrode. It is preferable to arrange the upper and lower substrates so that the directions of the alignment treatment are reversed. That is, in oblique evaporation, it is preferable to face each other so that the evaporation directions are opposite to each other. When aligning by rubbing a polymer, the rubbing direction may be reversed on the L lower substrate. With such a substrate arrangement, the layer structure of the ferroelectric liquid crystal becomes uniform (tilted uniform structure) from the bottom substrate to the first substrate, making it easy to control the tilt angle of the layers.
ところが配向処理の向きを上の基板と下の基板で同方向
にすると強誘電性液晶の層構造は液晶層中央で折れ曲が
フだような構造(シェブロン構造)になるので、層の傾
き角の制御は困難である。However, if the orientation process is performed in the same direction on the upper and lower substrates, the layer structure of the ferroelectric liquid crystal will have a flat bend at the center of the liquid crystal layer (chevron structure), so the tilt angle of the layer will change. is difficult to control.
液晶の層の傾き角は強誘電性液晶の分極反転電流の大き
さまたはX線回折のピーク位置により測定できる。The tilt angle of the liquid crystal layer can be measured by the magnitude of the polarization reversal current of the ferroelectric liquid crystal or the peak position of X-ray diffraction.
液晶の層の傾きは基板の法線方向から45度以上90度
未満がよく、60度から80度が最適である。液晶の層
の傾きが45度未満の場合は液晶層厚をあまり大きくす
ることができない。また90度では液晶が基板と垂直に
なってしまい、液晶が電界に応答しなくなるので不適で
ある。また80度以上90度未満の場合は、全く傾いて
いない場合と比へ応答速度が6倍から10倍遅くなる。The inclination of the liquid crystal layer is preferably 45 degrees or more and less than 90 degrees from the normal direction of the substrate, and optimally 60 degrees to 80 degrees. If the tilt of the liquid crystal layer is less than 45 degrees, the thickness of the liquid crystal layer cannot be increased very much. Further, at 90 degrees, the liquid crystal becomes perpendicular to the substrate and the liquid crystal no longer responds to an electric field, which is not suitable. Further, if the angle is 80 degrees or more and less than 90 degrees, the response speed will be 6 to 10 times slower than when it is not tilted at all.
ただし今後液晶材料のΔnが0.13よりも小さくなっ
た場合、45度から60度傾いたものでも液晶層厚を5
μm以上にすることができ好都合である。However, if the Δn of the liquid crystal material becomes smaller than 0.13 in the future, the thickness of the liquid crystal layer will be reduced by 5 degrees even if it is tilted from 45 degrees to 60 degrees.
It is convenient because it can be made larger than μm.
なお層を傾けた場合、強誘電性液晶のチルト角すなわち
(+)式における2θは45度よりも小さくする必要が
ある。基板上に射影したチルト角をα、層の基板の法線
方向からの傾き角(すなわち液晶分子の基板からの傾き
角)をβとすると液晶材料に必要なチルト角γは(2)
式で算出できる。Note that when the layer is tilted, the tilt angle of the ferroelectric liquid crystal, that is, 2θ in the (+) equation, needs to be smaller than 45 degrees. If the tilt angle projected onto the substrate is α, and the tilt angle of the layer from the normal direction of the substrate (that is, the tilt angle of liquid crystal molecules from the substrate) is β, then the tilt angle γ required for the liquid crystal material is (2)
It can be calculated using the formula.
7 =cos−’(sin”β+C08213CO5α
)a11カ(2)その算出方法を次に示す。第2図のよ
うに座標をとり、xy面が基板で、強誘電性液晶の安定
な2状態がOPの位置とOQの位置であるとする。点P
は(Acosβ、O,As1nβ)・ 点Qは(Aco
sβCOS Q *AcosβS団α、As1nβ)な
ので、三角形OPQに間して余弦定理をもちいると、^
2cos2β(1−cosa )2+^2cos2βs
in” a = A”+A2−2A2cos7 ・・
・(3)(3)式を整理すれば
cos 7 =sin2β+C082βcos aゆえ
に7 = cos−’ (s i n2β+cos2β
cosa)ここでα:45度とすれば
7 = cos−’ (sin2β+0.71cos2
β)−−−(4)たとえば層の傾き角β:60度の場合
、γ=22度となる。7 =cos-'(sin"β+C08213CO5α
)a11(2) The calculation method is shown below. Assume that the coordinates are taken as shown in FIG. 2, the xy plane is the substrate, and the two stable states of the ferroelectric liquid crystal are the OP position and the OQ position. Point P
is (Acosβ, O, As1nβ)・ Point Q is (Aco
sβCOS Q *AcosβS group α, As1nβ), so if we use the cosine theorem between triangle OPQ, we get ^
2cos2β(1-cosa)2+^2cos2βs
in" a = A"+A2-2A2cos7...
・(3) If we rearrange the equation (3), cos 7 = sin2β + C082β cos a, so 7 = cos-' (s in2β + cos2β
cosa) Here, if α: 45 degrees, then 7 = cos-' (sin2β+0.71cos2
β)---(4) For example, when the layer inclination angle β is 60 degrees, γ=22 degrees.
以下に更に具体的な実施例を述べる。More specific examples will be described below.
実施例1〜4
厚さ1.1…隋のコーニング社製81059タイプガラ
ス央板1に直径20IIlaIの円形電極をITOを蒸
着することによって得た。この基板上に回転斜方蒸着に
よって5iOOカラムを作成した。SiOカラム状構造
物の傾き角は、斜方蒸着の基板への大斜角を変化させる
ことで変えた。Examples 1 to 4 Circular electrodes with a diameter of 20IIlaI were obtained by vapor-depositing ITO on a glass center plate 1 of type 81059 manufactured by Corning, Sui, with a thickness of 1.1. A 5iOO column was fabricated on this substrate by rotating oblique evaporation. The tilt angle of the SiO column-like structure was changed by changing the large tilt angle of the oblique evaporation onto the substrate.
次に2枚の基板を蒸着方向が反対になるように向い合わ
せ、再ボキシ樹脂により接着した。このとき基板上に表
に示す液晶層の厚みに対応した直径のグラスファイバを
分散した。Next, the two substrates were faced to each other so that the vapor deposition directions were opposite to each other, and the two substrates were bonded together using a re-boxy resin. At this time, glass fibers having a diameter corresponding to the thickness of the liquid crystal layer shown in the table were dispersed on the substrate.
次にこのセルにチッソ石油化学(株)製強誘電性液晶C
5−1013(自発分極16nc/cnr’、Δn=0
.14)を100度で注入したのち徐冷し、実施例1〜
4の5SFLC素子を作成した。Next, this cell was equipped with a ferroelectric liquid crystal C manufactured by Chisso Petrochemical Co., Ltd.
5-1013 (spontaneous polarization 16nc/cnr', Δn=0
.. 14) was injected at 100 degrees, slowly cooled, and Example 1~
A 5SFLC device of No. 4 was prepared.
比較例1〜4
実施例!−4と同様の材料で同じような工程をもちいて
、5SFLC素子を作成した。ただしこの場合、SiO
の蒸着の大斜角を低くし液晶層の傾き角を45度未満に
した。Comparative Examples 1 to 4 Examples! A 5SFLC device was fabricated using the same materials and process as in -4. However, in this case, SiO
The large tilt angle of the vapor deposition was lowered to make the tilt angle of the liquid crystal layer less than 45 degrees.
5SFLC素子駆動結果
この様にして作成した5SFLC素子について±lO■
印加して、分極反転電流を測定し、みかけの自発分極の
値から層の傾き角を算出した。なお比較例1は電界印加
によっても全く応答せず、層が基板の法線方向から90
度(液晶分子はほぼ基板に垂直に配向している)になっ
ているものと考えられる。また素子の色づきを評価した
。Oは良好、△は多少青みがかってみえるもの、Xはマ
ゼンタ色にみえるなど明確な色づきが観測できるもので
ある。その結果を表に示す。5SFLC element driving results ±lO■ for the 5SFLC element created in this way
The polarization reversal current was measured, and the tilt angle of the layer was calculated from the value of the apparent spontaneous polarization. Comparative Example 1 did not respond at all to the application of an electric field, and the layer was separated by 90° from the normal direction of the substrate.
It is thought that the liquid crystal molecules are oriented almost perpendicularly to the substrate. The color change of the element was also evaluated. O means it is good, Δ means it looks a little bluish, and X means it looks magenta, so clear coloration can be observed. The results are shown in the table.
表
木: 電界により応答しなかった
実施例のものは液晶層厚を4 B rn以上にしても明
確な色づきがみられないが、比較例では色づきが大きく
、デイスプレーとしての使用に耐えないものであった。Table wood: In the examples that did not respond to the electric field, no clear discoloration was observed even when the liquid crystal layer thickness was increased to 4 Brn or more, but in the comparative examples, the discoloration was so large that it could not withstand use as a display. Met.
発明の効果
以上述べたように、本発明にかかる強訴電性液晶表示素
子は、層の基板の法線方向からの傾き角が45度以h9
0度未満の場合に、液晶層厚を大きくしても素子の色づ
きはみられず、歩留まりよく作成できることがわかった
。Effects of the Invention As described above, in the strongly electrostatic liquid crystal display element according to the present invention, the inclination angle of the layer from the normal direction of the substrate is 45 degrees or more h9
It was found that when the temperature is less than 0 degrees, no discoloration of the device is observed even if the liquid crystal layer thickness is increased, and the device can be manufactured with a high yield.
第1図は、液晶層厚dと屈折率異方性Δnの積を変えた
ときの透過率スペクトルを示すグラフ、第2図は、層を
傾けた際に液晶材料に要求されるチルト角算出するため
の座標を示すグラフである。
代理人の氏名 弁理士 粟野重孝 はか1名波長(n
m )Figure 1 is a graph showing the transmittance spectrum when changing the product of liquid crystal layer thickness d and refractive index anisotropy Δn. Figure 2 is a graph showing the tilt angle required for the liquid crystal material when the layer is tilted. This is a graph showing the coordinates for Name of agent: Patent attorney Shigetaka Awano
m)
Claims (2)
90度未満であることを特徴とする強誘電性液晶表示素
子。(1) A ferroelectric liquid crystal display element characterized in that the tilt angle of the liquid crystal layer from the normal line of the substrate is 45 degrees or more and less than 90 degrees.
の基板で逆になるように配置されたことを特徴とする請
求項1項記載の強誘電性液晶表示素子。(2) The ferroelectric liquid crystal display element according to claim 1, wherein the ferroelectric liquid crystal display element is arranged so that the direction of alignment treatment of the upper and lower substrates is reversed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP523589A JPH02184819A (en) | 1989-01-12 | 1989-01-12 | Ferroelectric liquid crystal display element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP523589A JPH02184819A (en) | 1989-01-12 | 1989-01-12 | Ferroelectric liquid crystal display element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02184819A true JPH02184819A (en) | 1990-07-19 |
Family
ID=11605532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP523589A Pending JPH02184819A (en) | 1989-01-12 | 1989-01-12 | Ferroelectric liquid crystal display element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02184819A (en) |
-
1989
- 1989-01-12 JP JP523589A patent/JPH02184819A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4586791A (en) | Optical modulation element with surface parallel and unidirectional alignment of LC | |
US5350498A (en) | Inducing tilted perpendicular alignment in liquid crystals | |
JP3529434B2 (en) | Liquid crystal display device | |
US4917472A (en) | Light valves with positive dielectric anisotropy liquid crystal and highly tilted off-perpendicular surface alignment, and associated operating method | |
US5583680A (en) | Chiral smectic liquid crystal display having an increased apparent tilt angle | |
JP2674600B2 (en) | Liquid crystal display | |
JP2621110B2 (en) | Liquid crystal display device and method of manufacturing the same | |
JPH03209440A (en) | Liquid crystal display element | |
JPH0895030A (en) | Optical compensation sheet and liquid crystal display element using it | |
US5557435A (en) | Liquid crystal device and display apparatus | |
JPH02184819A (en) | Ferroelectric liquid crystal display element | |
JPH0743476B2 (en) | Liquid crystal light modulator | |
Johnson et al. | Low-tilt-angle nematic alignment compatible with frit sealing | |
JPS61198130A (en) | Liquid crystal panel | |
JP2813222B2 (en) | Liquid crystal display device | |
JP3586779B2 (en) | Ferroelectric liquid crystal display | |
JP2983724B2 (en) | Alignment treatment method for ferroelectric liquid crystal devices | |
JP2697058B2 (en) | Alignment control method of ferroelectric liquid crystal | |
JP3062978B2 (en) | Ferroelectric liquid crystal device | |
JPH09203895A (en) | Liquid crystal display element and optical anisotropic element | |
JP3074805B2 (en) | Display element | |
JP4266209B2 (en) | Liquid crystal display element and optical anisotropic element | |
JPH09222601A (en) | Liquid crystal display element and optically anisotropic element | |
JPH05289097A (en) | Liquid crystal display element | |
JP2616974B2 (en) | Liquid crystal display |