JPH02184595A - Production of diamond thin film and apparatus therefor - Google Patents
Production of diamond thin film and apparatus thereforInfo
- Publication number
- JPH02184595A JPH02184595A JP119989A JP119989A JPH02184595A JP H02184595 A JPH02184595 A JP H02184595A JP 119989 A JP119989 A JP 119989A JP 119989 A JP119989 A JP 119989A JP H02184595 A JPH02184595 A JP H02184595A
- Authority
- JP
- Japan
- Prior art keywords
- filaments
- thin film
- diamond
- raw material
- material gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 229910003460 diamond Inorganic materials 0.000 title abstract description 5
- 239000010432 diamond Substances 0.000 title abstract description 5
- 239000000758 substrate Substances 0.000 claims abstract description 30
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 24
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 24
- 239000002994 raw material Substances 0.000 claims abstract description 21
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 13
- 238000006243 chemical reaction Methods 0.000 claims abstract description 9
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 6
- 239000007789 gas Substances 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 27
- 238000010884 ion-beam technique Methods 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 4
- 239000010408 film Substances 0.000 description 31
- 150000002500 ions Chemical class 0.000 description 13
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 12
- 238000007740 vapor deposition Methods 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 5
- -1 ethylene, propylene, acetylene Chemical group 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000000752 ionisation method Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001868 water Inorganic materials 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
(技術分野)
本発明はダイヤモンド状薄膜の製造方法及び装置に関し
、さらに詳しくは、面積の大きいダイヤモンド状薄膜の
製造方法及び装置に関する0発明の方法及び装置により
製造されるダイヤモンド状薄膜はまた表面平滑性が良く
、結晶性の優れたダイヤモンド状膜である特徴をも有す
る。Detailed Description of the Invention (Technical Field) The present invention relates to a method and apparatus for producing a diamond-like thin film, and more particularly, to a method and apparatus for producing a diamond-like thin film having a large area. The diamond-like thin film also has the characteristics of being a diamond-like film with good surface smoothness and excellent crystallinity.
(従来技術)
従来から気相法によるダイヤモンド、あるいはダイヤモ
ンド状炭素薄膜の製造には多くの方法が提案されている
が、充分に面積の大きい膜は得られていない、気相法に
は直流、高周波、及びマイクロ波を含めたプラズマ法、
ガスのイオン化を利用下イオン化蒸着法、及び気相反応
を利用したCVD法などがある。しかしこれらの方法の
大部分は基板を700℃以上の高温に加熱しなければ品
質の良い膜を得ることができない0例えば品質の良いダ
イヤモンド状薄膜が成膜できるとされているCVD法で
は700〜10oO℃、RFプラズマ法では700〜1
000℃、マイクロ波プラズマ法では700℃以上とい
ずれも高温度の基板温度を必要とする(例えば「表面化
学」第5巻第108号(1984年)第108−115
頁)。(Prior art) Many methods have been proposed for producing diamond or diamond-like carbon thin films using the vapor phase method, but a film with a sufficiently large area has not been obtained. Plasma methods including high frequency and microwave;
There are ionization vapor deposition methods that utilize gas ionization, and CVD methods that utilize gas phase reactions. However, in most of these methods, a high-quality film cannot be obtained unless the substrate is heated to a high temperature of 700°C or higher. 10oO℃, 700~1 for RF plasma method
000°C, and microwave plasma method requires a high substrate temperature of 700°C or higher (for example, "Surface Chemistry" Vol. 5 No. 108 (1984) No. 108-115)
page).
(従来技術の問題点)
しかしこのような高い基板温度は基板面積を増大しよう
とするとき重大な障害となる。なぜなら基板面積が木き
くなるほど成膜装置に供給される電力の多くが基板を7
00℃以上に加熱するために消費されることになるから
である。従って400℃以下等の低い基板温度でも所定
の成膜が実施できるスパッター法、イオンビーム蒸着法
、DCプラズマ法、イオン化蒸着法などが利用できると
良いが、これらの方法を広い面積のダイヤモンド状薄膜
の製造に適用する適当な手段は今のところ提案されてい
ない。(Problems with the Prior Art) However, such a high substrate temperature poses a serious obstacle when attempting to increase the substrate area. This is because the larger the substrate area, the more power supplied to the film forming equipment will be applied to the substrate.
This is because it will be consumed for heating to 00°C or higher. Therefore, it would be better to use sputtering, ion beam evaporation, DC plasma, ionization evaporation, and other methods that can form a desired film even at low substrate temperatures such as 400°C or lower. No suitable means have been proposed so far to be applied to the production of.
本発明はこれらの方法のうちイオン化蒸着法の改良に関
する。この方法は炭化水素原料ガス又は分解又は反応に
より炭化水素を生成し得る原料ガス(ここに炭化水素と
はメタン、エタン、プロパン等の飽和炭化水素、エチレ
ン、プロピレン、アセチレン等の不飽和炭化水素等があ
り、分解して炭化水素を生成し得る原料ガスはメチルア
ルコール、エチルアルコール等のアルコール類、アセト
ン、メチルエチルケトン等のケトン類なとがあり、又反
応して炭化水素ガスを生成する原料ガスには一酸化炭素
、二酸化炭素と水素との混合ガス等がある。また前記原
料にはヘリウム、ネオン、アルゴン等の希ガスあるいは
水素、酸素、窒素、水、−酸化炭素、二酸化炭素、等の
少なくとも一種を含ませることができる)を陰極一対陰
極間のアーク放電、陰極熱フィラメント一対陰極間の熱
電子放出によるイオン化等の手段でイオン化してイオン
流とし、この流れを電場で加速して基板に差し向けるこ
とによりダイヤモンド状薄膜を製膜する方法であり、特
開昭58−174507号、特願昭63−59376号
、同63−59377号等に記載されている通り、イオ
ン化蒸着法は製膜能率が良く、製膜されたダイヤモンド
状膜が良好な表面性、高硬度、高熱伝導性、高屈折率を
有し、仕上表面処理が不要である等、優れた方法である
。しかし、フィラメントは一般に線状にしか構成できず
、固型のフィラメントは存在しない。The present invention relates to improvements in ionized vapor deposition among these methods. This method is a hydrocarbon raw material gas or a raw material gas that can produce hydrocarbons by decomposition or reaction (here, hydrocarbons are saturated hydrocarbons such as methane, ethane, propane, unsaturated hydrocarbons such as ethylene, propylene, acetylene, etc.). The raw material gases that can be decomposed to produce hydrocarbons include alcohols such as methyl alcohol and ethyl alcohol, and ketones such as acetone and methyl ethyl ketone. Examples include carbon monoxide, a mixed gas of carbon dioxide and hydrogen, etc. The raw materials include rare gases such as helium, neon, and argon, and at least one of hydrogen, oxygen, nitrogen, water, carbon oxide, carbon dioxide, etc. ) is ionized into an ion flow by means such as arc discharge between a pair of cathodes or ionization by thermionic emission between a cathode hot filament and a pair of cathodes, and this flow is accelerated by an electric field to cause it to flow onto the substrate. The ionization vapor deposition method is a method of forming a diamond-like thin film by directing the film to a diamond-like thin film. It is an excellent method because it is efficient, the diamond-like film formed has good surface properties, high hardness, high thermal conductivity, and high refractive index, and no finishing surface treatment is required. However, filaments can generally only be configured linearly, and solid filaments do not exist.
これに代わるフィラメントとして本発明者は線状やU字
形に曲げて先端をほぼ点状にした複数の電熱フィラメン
トを2次元座標状に均一配列し、それらフィラメント全
体の周りを対陰極で囲むことを試みたが(後で第9図に
関連して説明する)フィラメントと対陰極との間隔が一
定にならないためか広い面積にわたって良質のダイヤモ
ンド状薄膜を得ることができなかった。As an alternative filament, the present inventor proposed a method in which a plurality of electric heating filaments bent into a linear or U-shape with almost dotted tips are arranged uniformly in a two-dimensional coordinate system, and the entire filament is surrounded by an anticathode. Although this method was attempted (to be explained later with reference to FIG. 9), it was not possible to obtain a diamond-like thin film of good quality over a wide area, probably because the distance between the filament and the anticathode was not constant.
(発明の目的)
本発明の目的は、イオン化蒸着法を改良して、面積の大
きいダイヤモンド状薄膜を製造することにある。OBJECTS OF THE INVENTION It is an object of the present invention to improve the ionization vapor deposition method to produce diamond-like thin films with large areas.
(発明の概要)
本発明の上記目的は、真空中に炭化水素原料ガス又は分
解又は反応により炭化水素を生成し得る原料ガスを導入
し、これをイオン化させ、基板上に析出させてダイヤモ
ンド状薄膜を形成させる方法において、前記イオン化を
達成するため複数の陰極熱フィラメントを所定の間隔で
一定方向にジグザグ又は直線状の1列(又は平行な複数
列)に配置し、前記複数のフィラメントに所定の加熱電
流を流すことを特徴とするダイヤモンド状薄膜の製造方
法及びかかる方法を実施する装置によって本発明の目的
を達成する。複数の陰極熱フィラメントがこの様に1列
に配置されるために、これらのフィラメントに対してほ
ぼ一定の離間距離を以て取り囲む対陰極を設けることが
でき(フィラメントが平行な複数列からなるときは各列
の周りをそれぞれ取り囲む対陰極を設ける)、その結果
陰極熱フィラメントと対陰極との間に印加される電圧が
との熱極熱フィラメントにもほぼ−様に作用し熱電子に
よる炭化水素ガスの電離が−様になり特性の良い広い面
積のダイヤモンド状薄膜が製造できる。(Summary of the Invention) The above-mentioned object of the present invention is to introduce a hydrocarbon raw material gas or a raw material gas capable of producing hydrocarbons through decomposition or reaction into a vacuum, ionize it, and deposit it on a substrate to form a diamond-like thin film. In this method, a plurality of cathode thermal filaments are arranged in a zigzag or linear row (or multiple parallel rows) in a certain direction at predetermined intervals in order to achieve the ionization, and the plurality of cathode heat filaments are The objects of the invention are achieved by a method for producing diamond-like thin films, characterized in that a heating current is applied, and an apparatus for carrying out such a method. Because a plurality of cathode hot filaments are arranged in one row in this way, it is possible to provide an anticathode surrounding these filaments at a substantially constant distance (when the filaments are composed of multiple parallel rows, each (Anticathodes surrounding each row are provided), so that the voltage applied between the cathode hot filament and the anticathode acts approximately in the same way on the cathode hot filament and the hydrocarbon gas is released by thermionic electrons. The ionization becomes -like, and a diamond-like thin film with good properties and a wide area can be produced.
より好ましくは炭化水素原料ガス又は分解又は反応によ
り炭化水素を生成し得る原料ガスは複数の陰極熱フィラ
メントにそれぞれ近接して設けた複数のノズルにより導
入されると更に−様な電離作用が得られる。More preferably, when the hydrocarbon raw material gas or the raw material gas capable of producing hydrocarbons through decomposition or reaction is introduced through a plurality of nozzles provided close to each of the plurality of cathode hot filaments, a more similar ionization effect can be obtained. .
本発明によると、基板を陰極熱フイラメント列の方向(
すなわち前記一定方向)に対してほぼ直角な方向に送給
するならば、連続的なダイヤモンド状薄膜の製造が実現
できる。別法として基板を固定し、イオン化された炭化
水素のプラズマ状のイオンビームを熱陰極フィラメント
の列の方向に対してほぼ直角な方向に偏向走査すること
により広い基板に対してダイヤモンド状薄膜の成膜な実
施できる。このような偏向磁界は、イオン流の加速方向
にたいして交差する方向の磁界を生じる永久磁石又は電
磁石を用いることにより形成することができる。According to the present invention, the substrate is moved in the direction of the cathode hot filament row (
In other words, if the diamond-like thin film is fed in a direction substantially perpendicular to the above-mentioned fixed direction, a continuous diamond-like thin film can be produced. Alternatively, a diamond-like thin film can be formed on a wide substrate by fixing the substrate and deflecting and scanning a plasma-like ion beam of ionized hydrocarbons in a direction approximately perpendicular to the direction of the rows of hot cathode filaments. Membrane implementation is possible. Such a deflection magnetic field can be created by using a permanent magnet or an electromagnet that generates a magnetic field in a direction perpendicular to the acceleration direction of the ion stream.
なお、本発明によるとイオン化蒸着法によるダイヤモン
ド状薄膜の優れた表面性等の特徴はそのまま生かされる
のである。In addition, according to the present invention, the characteristics such as the excellent surface properties of the diamond-like thin film produced by the ionization vapor deposition method can be utilized as is.
本発明のダイヤモンド状薄膜は、磁気ディスク、VTR
シリンダ、プラスチック成形金型等の被覆として、ある
いは広い面積で高強度の必要な用途に広く応用すること
ができる。The diamond-like thin film of the present invention can be used for magnetic disks, VTRs, etc.
It can be widely applied as a coating for cylinders, plastic molds, etc., and for applications that require high strength over a wide area.
(発明の詳細な説明)
本発明の基本技術であるイオン化蒸着法は、特願昭63
−59377号及び同63−59376号等に記載され
ており、本発明の実施例ではこれらに記載された装置を
基本とした方法及び装置を用いる。(Detailed Description of the Invention) The ionization vapor deposition method, which is the basic technology of the present invention, is disclosed in Japanese Patent Application No. 63
-59377 and No. 63-59376, etc., and the embodiments of the present invention use methods and devices based on the devices described in these documents.
第1図に本発明の製膜装置の好ましい第1実施例を示す
0図中10は真空容器、11はチャンバーであり、排気
系18に接続されて1O−6Torr程度までの高真空
に引かれる。12はロール状に巻かれ適当な駆動手段に
より一定方向に送られる基板Sの裏面に設けられた電極
であり、この場合電圧Vaが与えられている。13はグ
リッドでイオンの加速を行なうのに使用される。14は
熱陰極フィラメントであり、交流電源Ifによって加熱
されて熱電子を発生し、また負電位に維持されている。FIG. 1 shows a preferred first embodiment of the film forming apparatus of the present invention. In FIG. 1, 10 is a vacuum container, and 11 is a chamber, which is connected to an exhaust system 18 and drawn to a high vacuum of about 10-6 Torr. . Reference numeral 12 denotes an electrode provided on the back surface of the substrate S which is wound into a roll and sent in a fixed direction by a suitable driving means, and in this case is applied with a voltage Va. 13 is used for accelerating ions with a grid. Reference numeral 14 denotes a hot cathode filament, which is heated by an AC power source If to generate thermoelectrons, and is maintained at a negative potential.
15は原料である炭化水素ガスの供給口である。また、
フィラメント14を取囲んで対電極16が配置され、フ
ィラメントとの間に電圧Vdを与える。フィラメント1
4、対電極16及び供給口15の周りを取り囲んでイオ
ン化ガスの閉じ込め用の磁界を発生する電磁コイル19
が配置されている。従ってVd。15 is a supply port for hydrocarbon gas, which is a raw material. Also,
A counter electrode 16 is arranged surrounding the filament 14 and applies a voltage Vd between it and the filament. filament 1
4. An electromagnetic coil 19 that surrounds the counter electrode 16 and the supply port 15 and generates a magnetic field for confining the ionized gas.
is located. Therefore, Vd.
Va及びコイルの電流を調整することにより膜質な変え
ることができる。The film quality can be changed by adjusting Va and the coil current.
なお第1図においては、炭化水素ガスの原料導入通路1
7にプラズマ励起室16が設けられており、これにより
イオン化装置の効率を高めている。プラズマ励起は例え
ばマイクロ波、高周波(RF波)、放射線、紫外線など
が利用できる。In Fig. 1, the hydrocarbon gas raw material introduction passage 1
A plasma excitation chamber 16 is provided at 7, thereby increasing the efficiency of the ionization device. For example, microwaves, radio frequency (RF waves), radiation, ultraviolet rays, etc. can be used for plasma excitation.
また第1図において、第2図に示したような磁石20を
フィラメント14の上部に配置してプラズマ状のイオン
ビームの偏向用に用いても良い。Further, in FIG. 1, a magnet 20 as shown in FIG. 2 may be placed above the filament 14 and used for deflecting the plasma-like ion beam.
ただしこの場合には磁石20の磁界強度は一定にし、磁
石の磁界はイオン流の走行方向にたいして交差する方向
にする。このようにしてCHs、CH,”イオン等の所
望するイオンに対して偏向角度θを得る。一方、質量が
これらのイオンと大きく異なるイオン例えば水素イオン
はさらに大きく曲げられ、また中性粒子や重質の多量体
イオンは直進する。従って、直進方向にマスクを配置す
れば結晶性の高いイオンのみが基板Sに付着する。However, in this case, the magnetic field strength of the magnet 20 is kept constant, and the magnetic field of the magnet is set in a direction that intersects with the traveling direction of the ion flow. In this way, a deflection angle θ is obtained for desired ions such as CHs, CH, and ions.On the other hand, ions whose mass is significantly different from these ions, such as hydrogen ions, are bent even more, and neutral particles and heavy High-quality multimer ions travel straight. Therefore, if a mask is placed in the straight direction, only highly crystalline ions will adhere to the substrate S.
1才」づ11皿 次ぎに第1図に本発明のイオン化装置の例を説明する。11 dishes for 1 year old Next, an example of the ionization device of the present invention will be explained with reference to FIG.
第3図は第1図のA−Aから見たイオン化装置部分の平
面図である0図示のように複数のU字形熱陰極フィラメ
ント14が一定間隔で一列に配列されており、各U字形
フィラメントの平面は列の方向に対して直角な方向を向
いている。このフィラメント列の両側には対陰極16が
配置されている。更に各フィラメント14の中心部分の
底部に炭化水素ガスの供給口15が開口している。FIG. 3 is a plan view of the ionization device section seen from A-A in FIG. 1. As shown in FIG. The plane of is oriented perpendicular to the column direction. Anticathodes 16 are arranged on both sides of this filament row. Furthermore, a hydrocarbon gas supply port 15 is opened at the bottom of the central portion of each filament 14 .
以下に実例により示すように、基板との距離を適当に定
め、またフィラメントの幅Wと間隔d、フィラメントと
対陰極との間隔gを適当に選択するなどの条件を適宜に
定めると基板面に析出成長するダイヤモンド状yJWA
の膜厚及び結晶性がフィラメント列の方向にほぼ一定に
なることが分かった。As shown in the example below, if the distance to the substrate is appropriately determined, the width W and spacing d of the filament, and the spacing g between the filament and anticathode are appropriately determined, the surface of the substrate Diamond-like yJWA that grows by precipitation
It was found that the film thickness and crystallinity of the film were almost constant in the direction of the filament rows.
第4図はイオン化装置の他の例を示す、この例では第3
図の例においてU字形フィラメント14が交互に一対の
対陰極16の方へ一定距離だけずれたジグザグ形になっ
ている。この例でも形成されるダイヤモンド状膜の膜厚
及び特性はフィラメントの全体的な配列方向にほぼ一定
になることが分かった。Figure 4 shows another example of the ionization device, in this example the third
In the illustrated example, the U-shaped filaments 14 alternate in a zigzag shape offset by a fixed distance toward a pair of anticathodes 16. In this example as well, it was found that the thickness and characteristics of the diamond-like film formed were almost constant in the overall alignment direction of the filaments.
第5図は第3図の変形例によるイオン化装置部分の平面
図である。複数のU字形熱陰極フィラメント14の面は
それぞれフィラメント列の方向に平行になっている。FIG. 5 is a plan view of a portion of the ionization device according to a modification of FIG. 3. The surfaces of the plurality of U-shaped hot cathode filaments 14 are parallel to the direction of the filament rows.
第6図は第4図の変形例であり第4図と同様にU字形フ
ィラメント14の面が対陰極の面に平行になっている。FIG. 6 is a modification of FIG. 4, and like FIG. 4, the surface of the U-shaped filament 14 is parallel to the surface of the anticathode.
これらの例に対して第9図のようにフィラメント15を
配列しそれら全体の外側に対陰極16を配置したところ
、膜厚が一様にならず膜質が低下した。従って、熱陰極
フィラメントと対陰極の間隔をほぼ一定にすることが極
めて重要な因子とな桑ことが確認される。In these examples, when the filaments 15 were arranged as shown in FIG. 9 and the anticathode 16 was placed outside the entire filament, the film thickness was not uniform and the film quality was degraded. Therefore, it is confirmed that keeping the distance between the hot cathode filament and the anticathode substantially constant is an extremely important factor.
第7図はイオン化装置の他の例を示す、この例は第3図
の装置を3個(一般に複数)並べたものである。フィラ
メント列は間に対陰極16゜16°°が介在することに
より熱陰極フィラメントと対電極の間隔がほぼ一定にな
っている。FIG. 7 shows another example of an ionization device, in which three (generally a plurality of) devices of FIG. 3 are arranged side by side. Anticathodes of 16° and 16° are interposed between the filament rows, so that the distance between the hot cathode filament and the counter electrode is almost constant.
第8図はイオン化装置の更に他の例を示す、この例は第
5図の装置を3個(一般に複数)並べたものである。フ
ィラメント列は間に対陰極16°、16°°が介在する
ことにより熱陰極フィラメントと対電極の間隔がほぼ一
定になっている。FIG. 8 shows yet another example of an ionization device, in which three (generally a plurality of) devices of FIG. 5 are arranged side by side. Anticathodes 16° and 16° are interposed between the filament rows, so that the distance between the hot cathode filament and the counter electrode is almost constant.
戊」し伝法
第1図の装置によって製膜方法を詳しく説明する。先ず
、チャンバー11内を10−’T o r rまで高真
空とし、ガス供給通路17のバルブを操作して所定流量
のメタンガス、それと水素との混合ガス、或いはそれと
Ar%He、Ne等のキャリアガス等を各供給口15か
ら導入しながら排気系18を調整して所定のガス圧例え
ば1O−ITorrとする。一方、複数の熱陰極フィラ
メント14には交流電流Ifを流して加熱し、フィラメ
ント14と対陰極16の間には電位差Vdを印加して放
電を形成する。供給口15から供給されたメタンガスは
熱分解されるとともにフィラメントからの熱電子と衝突
してプラスのイオンと電子を生じる。この電子は別の熱
分解粒子と衝突する。電磁コイルの磁界による閉じ込め
作用の下に、このような現象を繰り返すことによりメタ
ンガスは熱分解物質のプラスイオンと成る。The film forming method will be explained in detail using the apparatus shown in FIG. First, the inside of the chamber 11 is made into a high vacuum to 10-' Torr, and the valve of the gas supply passage 17 is operated to supply a predetermined flow rate of methane gas, a mixed gas of methane gas and hydrogen, or a carrier such as Ar%He, Ne, etc. While introducing gas etc. from each supply port 15, the exhaust system 18 is adjusted to a predetermined gas pressure, for example, 10-ITorr. On the other hand, an alternating current If is passed through the plurality of hot cathode filaments 14 to heat them, and a potential difference Vd is applied between the filaments 14 and the anticathode 16 to form a discharge. Methane gas supplied from the supply port 15 is thermally decomposed and collides with thermoelectrons from the filament to generate positive ions and electrons. This electron collides with another pyrolysis particle. By repeating this phenomenon under the confinement effect of the magnetic field of the electromagnetic coil, methane gas becomes positive ions of thermally decomposed substances.
プラスイオンは電極12、グリッド16に印加された負
電位Vaにより引き寄せられ、ゆっくりと移動している
基体Sの方へ向けて加速され、基板に衝突して製膜反応
を行ない、ダイヤモンド状薄膜を形成する。所望により
、上に述べた固定磁石を利用して更に品質の良い薄膜を
得ることができる。The positive ions are attracted by the negative potential Va applied to the electrode 12 and the grid 16, are accelerated toward the slowly moving substrate S, and collide with the substrate to perform a film-forming reaction and form a diamond-like thin film. Form. If desired, even better quality thin films can be obtained using the fixed magnets described above.
なお、各部の電位、電流、温度等の条件については先に
引用した特許出願や特許公報のばか公知の資料を参照さ
れたい。For conditions such as potential, current, temperature, etc. of each part, please refer to the previously cited patent applications and patent gazettes.
第2図は本発明の第2実施例によるダイヤモンド状薄膜
の製造装置を示す、この装置では基板Sはフィラメント
の軸線に対して傾けて配置されており、その裏面は電極
12によって支持されている。イオン化装置は第1実施
例と同様に第3.4.5.6.7、又は8図の例が使用
出来る0本例では更に、イオンビームを走査するための
可変磁石20がフィラメントの配列方向の磁界を発生す
るように設けである。磁界の強さを成膜動作中に一定の
割合で次第に強くしてプラズマ状イオンビームの偏向角
度θを一定の速度で増大させる(あるいはこの逆の動作
)。FIG. 2 shows an apparatus for manufacturing a diamond-like thin film according to a second embodiment of the present invention. In this apparatus, a substrate S is arranged at an angle with respect to the axis of the filament, and its back surface is supported by an electrode 12. . As with the first embodiment, the example shown in Figures 3.4.5.6.7 or 8 can be used as the ionization device. In this example, a variable magnet 20 for scanning the ion beam is also installed in the filament alignment direction. It is designed to generate a magnetic field of The strength of the magnetic field is gradually increased at a constant rate during the film forming operation to increase the deflection angle θ of the plasma-like ion beam at a constant rate (or vice versa).
収1左迭
本例の成膜動作は基本的には第1図と同様である。ただ
、本例では基板Sが固定されており、可変磁石20によ
るプラズマ状イオンビームの走査が行なわれる点で違う
。The film forming operation in this example is basically the same as that in FIG. 1. However, this example differs in that the substrate S is fixed and the plasma ion beam is scanned by the variable magnet 20.
上記の2つの実施例において、構成上の特徴部部分は第
3.4.5.6.7、又は8図のイオン化装置の構成で
ある。特に(1)複数のフィラメントが使用されること
、(2)フィラメントの間隔がほぼ一定であること、(
3)フィラメントと対陰極の間隔がほぼ一定であること
、が所期の目的の達成に極めて重要である。In the two embodiments described above, the structural features are those of the ionization device of FIG. 3.4.5.6.7 or 8. In particular, (1) multiple filaments are used, (2) the spacing of the filaments is approximately constant, (
3) It is extremely important to achieve the intended purpose that the spacing between the filament and the anticathode is approximately constant.
以下に実例を挙げる。Examples are given below.
第3図に示したイオン化装置を使用し、第1図に示した
成膜装置を使用して成膜を行なった。真空容器10内を
10−”Torrに排気してからメタンガスを導入しガ
ス圧を10”’Torrとして熱陰極フィラメントに放
電を起こさせた。電磁コイル19の磁束密度は400ガ
ウス、基板電圧−300V、基板温度200℃とした。Film formation was performed using the ionization apparatus shown in FIG. 3 and the film formation apparatus shown in FIG. After the inside of the vacuum vessel 10 was evacuated to 10'' Torr, methane gas was introduced and the gas pressure was set at 10'' Torr to cause discharge to occur in the hot cathode filament. The magnetic flux density of the electromagnetic coil 19 was 400 Gauss, the substrate voltage was -300V, and the substrate temperature was 200°C.
またフィラメント14には電流25Aを流した。Further, a current of 25 A was applied to the filament 14.
フィラメントは第3図においてd=2mm、w=10m
m、g=8mmとした。基板Sは20ミクロンmのアル
ミニウム箔を使用し、送り速度40 m m / h
rとした。The filament is d = 2 mm and w = 10 m in Figure 3.
m, g = 8 mm. The substrate S uses aluminum foil with a thickness of 20 microns, and the feed rate is 40 mm/h.
It was set as r.
If=175A、Va=30V、Vd=−30Vの条件
で、膜厚0.8μmのダイヤモンド状膜を得た。ビッカ
ース硬度は6500Kg/mm”であった。A diamond-like film with a thickness of 0.8 μm was obtained under the conditions of If = 175 A, Va = 30 V, and Vd = -30 V. The Vickers hardness was 6500 Kg/mm''.
匠ス
150μmのポリイミド上に例1と同一条件で成膜した
ところ、膜厚0,6μm1ビツ力−ス硬度5500Kg
/mm”であった0本例によるとプラスチックフィルム
の表面にも成膜が可能なことが分かる。When a film was formed on a 150 μm polyimide film under the same conditions as Example 1, the film thickness was 0.6 μm and the hardness was 5500 kg.
/mm'', it can be seen that it is possible to form a film on the surface of a plastic film.
工較旦
第9図のように配列したイオン化装置を使用したほかは
例1の方法によって成膜を行なった。ただし、偏向磁石
を用いなかったほかは、実施例と同一の装置及び条件を
用いて3μmの薄膜を成膜した。 If =475
A、Va=30V、Vd=−30vの条件で、成膜され
た膜の中心部分の膜厚は0.2μmでビッカース硬度は
800Kg/mm” 、その両側の膜厚は0,5μmで
ビッカース硬度は2000Kg/mm”、その更に両性
側の膜厚は1μでビッカース硬度は2500Kg/mm
”であった、この結果からフィラメントと対陰極の距離
が一定とならないために膜厚と硬度が一定にならないこ
とが分かる。Film formation was carried out by the method of Example 1, except that an ionization device arranged as shown in FIG. 9 was used. However, a 3 μm thin film was formed using the same apparatus and conditions as in the example, except that no deflection magnet was used. If=475
A, under the conditions of Va=30V and Vd=-30v, the film thickness at the center of the formed film is 0.2 μm and the Vickers hardness is 800 Kg/mm, and the film thickness on both sides is 0.5 μm and the Vickers hardness. The film thickness on both sides is 1μ and the Vickers hardness is 2500Kg/mm.
This result shows that the film thickness and hardness are not constant because the distance between the filament and anticathode is not constant.
(作用効果)
上記の実例によると本発明は陰極熱フィラメントと対陰
極を密接に関連させて特殊構造に構成したため、均一な
膜厚と高い硬度を有する優れたダイヤモンド状膜が成膜
出来ることが分かる。(Effects) According to the above example, the present invention has a special structure in which the cathode hot filament and the anticathode are closely related, so that it is possible to form an excellent diamond-like film with uniform film thickness and high hardness. I understand.
明の第2実施例によるダイヤモンド状薄膜の製造装置を
示す断面図、第3図は本発明のイオン化装置の一例を示
す第1図A−A平面図、第4図は本発明のイオン化装置
の他の例を示す同様な平面図、第5図は本発明のイオン
化装置の更に他の例を示す同様な平面図、第6図は本発
明のイオン化装置の他の例を示す同様な平面図、第7図
は本発明のイオン化装置の更に他の例を示す同様な平面
図、第8図は本発明のイオン化装置の更に他の例を示す
同様な平面図、及び第9図は比較例によるイオン化装置
の平面図である。3 is a cross-sectional view showing an apparatus for manufacturing a diamond-like thin film according to a second embodiment of the present invention; FIG. 3 is a plan view taken along line A-A in FIG. A similar plan view showing another example, FIG. 5 a similar plan view showing still another example of the ionization device of the present invention, and FIG. 6 a similar plan view showing another example of the ionization device of the present invention. , FIG. 7 is a similar plan view showing still another example of the ionization device of the present invention, FIG. 8 is a similar plan view showing still another example of the ionization device of the present invention, and FIG. 9 is a comparative example. FIG.
第1図は本発明の第1実施例によるダイヤモンド状薄膜
の製造装置を示す断面図、第2図は本発第1図
第2図
第9図
手続補正書
平成元年8月7日Figure 1 is a cross-sectional view showing a diamond-like thin film manufacturing apparatus according to the first embodiment of the present invention, Figure 2 is the present invention Figure 1 Figure 2 Figure 9 Procedural amendment dated August 7, 1989
Claims (9)
り炭化水素を生成し得る原料ガスを導入し、これをイオ
ン化させ、基板上に析出させてダイヤモンド状薄膜を形
成させる方法において、前記イオン化を達成するため複
数の陰極熱フィラメントを所定間隔で一定方向に延びる
ジグザグ又は直線状の1列又は多数列に配置し、前記複
数のフィラメントに所定の加熱電流を流すことを特徴と
するダイヤモンド状薄膜の製造方法。(1) In a method of introducing a hydrocarbon raw material gas or a raw material gas capable of producing hydrocarbons through decomposition or reaction into a vacuum, ionizing it, and depositing it on a substrate to form a diamond-like thin film, the ionization is performed. To achieve this, a plurality of cathode heating filaments are arranged in one or multiple rows in a zigzag or straight line extending in a fixed direction at predetermined intervals, and a predetermined heating current is passed through the plurality of filaments. Production method.
てほぼ一定の離間距離を以て前記複数のフィラメントを
取り囲む対陰極を設け、前記陰極熱フィラメントと対陰
極との間に電圧を印加することを特徴とする前記第1項
記載のダイヤモンド状薄膜の製造方法。(2) An anticathode is provided surrounding the plurality of cathode hot filaments forming each row at a substantially constant distance, and a voltage is applied between the cathode hot filament and the anticathode. A method for producing a diamond-like thin film according to item 1 above.
素を生成し得る原料ガスは複数の陰極熱フィラメントの
位置にそれぞれ近接して設けた複数のノズルにより導入
されることを特徴とする前記第1項または第2項記載の
製造方法。(3) The first method characterized in that the hydrocarbon raw material gas or the raw material gas capable of producing hydrocarbons through decomposition or reaction is introduced through a plurality of nozzles provided close to the positions of the plurality of cathode hot filaments, respectively. The manufacturing method according to item 1 or 2.
給されることを特徴とする前記第1項ないし第3項のい
ずれかに記載のダイヤモンド状薄膜の製造方法。(4) The method for producing a diamond-like thin film according to any one of items 1 to 3, wherein the substrate is fed in a direction substantially perpendicular to the certain direction.
ラズマ状のイオンビームは可変磁界の作用により前記一
定方向に対して直角な方向に順次偏向されることを特徴
とする前記第1項ないし第3項記載のいずれかに記載の
ダイヤモンド状薄膜の製造方法。(5) Items 1 to 3 above, characterized in that the substrate is fixed and the plasma-like ion beam generated by ionization is sequentially deflected in a direction perpendicular to the fixed direction by the action of a variable magnetic field. A method for producing a diamond-like thin film according to any one of paragraphs.
り炭化水素を生成し得る原料ガスを導入し、これをイオ
ン化させ、基板上に析出させてダイヤモンド状薄膜を形
成させる装置において、所定の間隔で一定方向に延びる
ジグザグ又は直線状の1列又は複数列に配列した複数の
陰極熱フィラメントと、各列の前記複数のフィラメント
に対してほぼ一定の離間距離を以て前記複数のフィラメ
ントを取り囲む対陰極と、前記複数のフィラメントに所
定の加熱電流を流す手段と、前記フィラメントと対陰極
との間に電圧を印加する手段とを設けたことを特徴とす
る特徴とするダイヤモンド状薄膜の製造装置。(6) In an apparatus that introduces a hydrocarbon raw material gas or a raw material gas that can generate hydrocarbons through decomposition or reaction into a vacuum, ionizes it, and deposits it on a substrate to form a diamond-like thin film, at a predetermined interval. a plurality of cathode hot filaments arranged in one or more rows in a zigzag or straight line extending in a fixed direction; and an anticathode surrounding the plurality of filaments at a substantially constant distance with respect to the plurality of filaments in each row. An apparatus for producing a diamond-like thin film, comprising means for passing a predetermined heating current through the plurality of filaments, and means for applying a voltage between the filaments and an anticathode.
して複数の炭化水素原料ガス又は分解又は反応により炭
化水素を生成し得る原料ガスを導入するノズルを設けた
ことを特徴とする前記第6項記載の製造装置。(7) Item 6 above, characterized in that a nozzle for introducing a plurality of hydrocarbon raw material gases or a raw material gas capable of producing hydrocarbons through decomposition or reaction is provided in close proximity to each of the plurality of cathode hot filaments. The manufacturing equipment described.
る手段を設けたことを特徴とする前記第6項ないし第7
項のいずれかに記載のダイヤモンド状薄膜の製造装置。(8) Items 6 to 7 above, characterized in that a means for feeding the substrate in a direction perpendicular to the certain direction is provided.
An apparatus for producing a diamond-like thin film according to any one of paragraphs.
ムを前記一定方向に対して直角な方向に偏向させる可変
磁界発生手段を具備したことを特徴とする前記第6項な
いし第8項記載のいずれかに記載のダイヤモンド状薄膜
の製造装置。(9) Any one of items 6 to 8 above, further comprising variable magnetic field generating means for deflecting a plasma-like ion beam generated by ionization in a direction perpendicular to the fixed direction. The apparatus for producing the described diamond-like thin film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP119989A JP2687155B2 (en) | 1989-01-09 | 1989-01-09 | Method and apparatus for producing diamond-like thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP119989A JP2687155B2 (en) | 1989-01-09 | 1989-01-09 | Method and apparatus for producing diamond-like thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02184595A true JPH02184595A (en) | 1990-07-19 |
JP2687155B2 JP2687155B2 (en) | 1997-12-08 |
Family
ID=11494793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP119989A Expired - Fee Related JP2687155B2 (en) | 1989-01-09 | 1989-01-09 | Method and apparatus for producing diamond-like thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2687155B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5662877A (en) * | 1989-08-23 | 1997-09-02 | Tdk Corporation | Process for forming diamond-like thin film |
-
1989
- 1989-01-09 JP JP119989A patent/JP2687155B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5662877A (en) * | 1989-08-23 | 1997-09-02 | Tdk Corporation | Process for forming diamond-like thin film |
Also Published As
Publication number | Publication date |
---|---|
JP2687155B2 (en) | 1997-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0285668B1 (en) | Thin film formation apparatus | |
JPH0672306B2 (en) | Plasma processing apparatus and plasma processing method | |
JPH0623430B2 (en) | Carbon production method | |
US5827613A (en) | Articles having diamond-like protective film and method of manufacturing the same | |
JP3386175B2 (en) | Method of forming compound thin film with gas cluster ion assist | |
US5169452A (en) | Apparatus for the synthesis of diamond-like thin films | |
Mitura et al. | The system for depositing hard diamond-like films onto complex-shaped machine elements in an rf arc plasma | |
US5662877A (en) | Process for forming diamond-like thin film | |
JP2687156B2 (en) | Method and apparatus for producing diamond-like thin film | |
JP2687155B2 (en) | Method and apparatus for producing diamond-like thin film | |
JP3056827B2 (en) | Article having a diamond-like carbon protective film and method for producing the same | |
US5112458A (en) | Process for producing diamond-like films and apparatus therefor | |
JP2687129B2 (en) | Method and apparatus for producing diamond-like thin film | |
JP2717853B2 (en) | Diamond-like thin film, manufacturing method and manufacturing apparatus | |
JP2989198B2 (en) | Method and apparatus for producing diamond-like thin film | |
JP2717854B2 (en) | Method for producing diamond-like thin film | |
JP2915001B2 (en) | Recording / reproducing sliding member | |
JP2717857B2 (en) | Method for producing diamond-like thin film | |
JP2717856B2 (en) | Method and apparatus for producing diamond-like thin film | |
JPH01279747A (en) | Device for forming film by plasma beam | |
US20070110644A1 (en) | System for manufacturing a fullerene derivative and method for manufacturing | |
JPH01234396A (en) | Method and device for producing diamond-like thin film | |
JP3246780B2 (en) | Method and apparatus for forming hard carbon film | |
JP3485937B2 (en) | Mold having protective film of diamond-like thin film and method of manufacturing the same | |
JP2715277B2 (en) | Thin film forming equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |