[go: up one dir, main page]

JPH02182802A - Method and device producing metallic sintered member - Google Patents

Method and device producing metallic sintered member

Info

Publication number
JPH02182802A
JPH02182802A JP303789A JP303789A JPH02182802A JP H02182802 A JPH02182802 A JP H02182802A JP 303789 A JP303789 A JP 303789A JP 303789 A JP303789 A JP 303789A JP H02182802 A JPH02182802 A JP H02182802A
Authority
JP
Japan
Prior art keywords
mold
kneaded
water
binder
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP303789A
Other languages
Japanese (ja)
Inventor
Kouichi Gondai
権代 晃一
Hideki Nakamura
秀樹 中村
Shigemi Hosoda
細田 成巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP303789A priority Critical patent/JPH02182802A/en
Publication of JPH02182802A publication Critical patent/JPH02182802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce the high-precision metallic sintered member at a low cost with the small-scale device by filling a plastic kneaded body consisting of raw metal powder, a water-soluble org. binder and water into a degassed metallic mold and heating and sintering the obtained formed product. CONSTITUTION:Raw metal powder (preferably water-atomized powder having about 1.0-20mu average particle diameter), a water-soluble org. binder and water are kneaded to prepare a plastic kneaded body. The kneaded body is charged into an extrusion cylinder 1-3 from a feed port 1-1, and filled into a degassed metallic mold 1-4 by an extrusion screw 1-2 to obtain a formed product of the combined kneaded body having a shape similar to the cavity. The formed body is cut by a cutting knife 1-12, and discharged from the mold 1-4 by an ejector pin 1-11. The discharged formed body is heated to remove the binder, and compacted by sintering. By this method, a thick metallic sintered member is semicontinuously produced with high precision by the small-scale device, and the cost is drastically reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属焼結部材の製造方法および装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for manufacturing a sintered metal member.

〔従来の技術〕[Conventional technology]

金属およびセラミックス等の素材分野において、厚肉部
材は、数多く存在する。
In the field of materials such as metals and ceramics, there are many thick-walled members.

これらのうち、溶解、鋳造の工程を経て製造される金属
材料においては、鋼材の切削加工、型鍛造等の手法で製
造される。また、セラミックスおよび粉末冶金の手法に
よる金属材料の製造においては、プレス成形、コールド
アイソスタティックプレス成形(以下、CIP成形とい
う)が主で、一部では射出成形または押出成形による製
造も試みられている。
Among these, metal materials manufactured through melting and casting processes are manufactured by methods such as steel cutting and die forging. In addition, in the production of metal materials using ceramics and powder metallurgy methods, press molding and cold isostatic press molding (hereinafter referred to as CIP molding) are the main methods, and manufacturing by injection molding or extrusion molding has also been attempted in some cases. .

C発明が解決しようとする課題〕 従来技術のうち、切削加工による手法では、溶解、鋳造
から開始するために製造費が高くつくことは避けられず
、製品の形状が複雑になればなるほど加工費も著しく高
くなる。また型鍛造では製造可能な形状に制限がある。
Problems to be solved by the invention C] Among the conventional techniques, the cutting process method starts with melting and casting, which inevitably increases manufacturing costs, and the more complex the shape of the product, the higher the processing cost. is also significantly higher. Additionally, die forging has limitations on the shapes that can be manufactured.

CIP成形法は、ゴム製の型を使用して成形するため、
寸法精度が低く、また量産性が小さいため、工業的では
ない、プレス成形は、第2図に示すように、金型内の粉
末を上、下パンチにて加圧するもので、成形が可能な形
状には限度があり、比較的複雑な形状の成形には不向き
である。また、押出成形は第3図に示すように原料を押
出ダイスから連続的に押出して成形するため、製品形状
は長さ方向に対し、断面形状が一定のものに限られる。
The CIP molding method uses a rubber mold, so
Press molding, which is not industrially viable due to low dimensional accuracy and low mass productivity, is a process in which the powder in the mold is pressurized with upper and lower punches, as shown in Figure 2. There is a limit to the shape, and it is not suitable for molding relatively complicated shapes. Furthermore, in extrusion molding, raw materials are continuously extruded from an extrusion die to form the product as shown in FIG. 3, so the product shape is limited to one with a constant cross-sectional shape in the length direction.

さらに、近年脚光を浴びている射出成形法では、比較的
複雑な形状品が成形可能であるが、この方法では製造で
きる肉厚には制限があり、特にノズル径よりもキャビテ
ィ空間が広いか、または混練体の流動方向で混練体に対
して絞りや剪断の作用を与えない形状の物品では、第4
図に示すような混練体が紐状に噴出するジェツテイング
が生じて成形体内部に欠陥が発生する。
Furthermore, the injection molding method, which has been attracting attention in recent years, can mold products with relatively complex shapes, but there is a limit to the wall thickness that can be manufactured using this method, especially if the cavity space is wider than the nozzle diameter. Or, in the case of an article having a shape that does not exert squeezing or shearing action on the kneaded material in the flow direction of the kneaded material, the fourth
Jetting occurs in which the kneaded material ejects in a string shape as shown in the figure, and defects occur inside the molded product.

仮に成形が可能であったとしても、厚肉品は金型容量が
大きいため、射出機構の大型化や型締圧力の増大が避け
られず、成形機が非常に大きく高価になってしまう。
Even if molding were possible, thick-walled products require a large mold capacity, so it is inevitable that the injection mechanism would be larger and the mold clamping pressure would increase, making the molding machine very large and expensive.

本発明はかかる問題点に鑑み、押出成形法により厚肉で
比較的複雑な形状を有する金属焼結部品を、安価に高精
度でさらに小規模な装置により製造する方法および装置
を提供しようとするものである。
In view of these problems, the present invention aims to provide a method and apparatus for producing thick-walled metal sintered parts having a relatively complicated shape by extrusion molding at low cost and with high precision using a smaller-scale apparatus. It is something.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、原料金属粉末と水溶性有機バインダと水とを
混練し、可塑性混練体とした後、該混練体をシリンダに
直結されて脱気した状態の金型内にスクリューの回転に
よる押出し力で充填し、キャビティと相似形状で混練体
の接合からなる成形体を得たのち、該成形体から加熱に
よりバインダを除去し、焼結により該成形体を圧密化す
ることを特徴とする金属焼結部材の製造方法である。
The present invention involves kneading raw metal powder, a water-soluble organic binder, and water to form a plastic kneaded body, and then placing the kneaded body in a mold that is directly connected to a cylinder and deaerated, and then extruded by the rotation of a screw. A metal sintering method is characterized in that after a molded body is obtained by joining a kneaded body with a shape similar to the cavity, the binder is removed from the molded body by heating, and the molded body is consolidated by sintering. This is a method for manufacturing a binding member.

さらに本発明は、金型に充填される混練体の接合が該混
練体の表面に存在するバインダの接着力で主に行われる
ものであり、原料金属粉末が、50μmであり、所望す
る最終製品の組成に実質的に一致する単独または複数の
予備合金粉末を用いることを特徴としている。
Further, in the present invention, the kneaded body filled in the mold is mainly bonded by the adhesive force of the binder present on the surface of the kneaded body, and the raw metal powder is 50 μm thick, and the desired final product is formed. The invention is characterized by the use of one or more prealloy powders having a composition substantially corresponding to the composition of the present invention.

そして、混練体を、金型に充填し成形する装置は、シリ
ンダと該シリンダ内で回転し混練体に押出力を与えるス
クリューと、シリンダに直結されて開閉および脱気機構
を有する金型とからなることを特徴としている。
The apparatus for filling and molding the kneaded material into a mold consists of a cylinder, a screw that rotates within the cylinder and applies an extrusion force to the kneaded material, and a mold that is directly connected to the cylinder and has an opening/closing and degassing mechanism. It is characterized by becoming.

原料粉末としては、混線時の粉末の均一分散度の確保、
成形体の脱脂体強度の確保、焼結密度の向上という点で
50μm以下の水アトマイズ粉末がよい。しかし、あま
り微細であると脱バインダが困難になるため、水アトマ
イズ粉末の平均粒径は、1.0〜20μmとすることが
さらに望ましい。
As a raw material powder, ensure uniform dispersion of the powder at the time of crosstalk,
Water atomized powder with a particle diameter of 50 μm or less is preferable in terms of ensuring the strength of the degreased body of the molded body and improving the sintered density. However, if the particles are too fine, it becomes difficult to remove the binder, so it is more desirable that the average particle size of the water atomized powder is 1.0 to 20 μm.

混練体を脱気状態の金型内に充填する装置としては、ス
クリュータイプの押出成形機から、押出ダイスを取り除
いたものを用いる。これによって、混練体が塊状となる
ので、金型への充填が断続的となって、混練体に剪断作
用を与え、混練体表面に新生面を生じさせて、混練体同
志の確実な接合が得られる。
As a device for filling the kneaded material into a deaerated mold, a screw type extrusion molding machine with the extrusion die removed is used. As a result, the kneaded material becomes lumpy, and the filling into the mold becomes intermittent, giving a shearing effect to the kneaded material, creating a new surface on the surface of the kneaded material, and ensuring reliable bonding of the kneaded materials to each other. It will be done.

このように本発明の特徴の中でも特に重要な点は、装置
としてスクリュータイプの押出成形機に通常は付属され
ている押出ダイスを取付けず、スクリューを内装するシ
リンダが金型に直結されている押出成形機を使用する点
にある。
As described above, a particularly important point among the features of the present invention is that an extrusion die, which is normally attached to a screw type extrusion molding machine, is not attached to the extrusion molding machine, and the cylinder containing the screw is directly connected to the mold. The point is that a molding machine is used.

本発明の他の重要な点は、前記のような押出成形機を用
いて、スクリューでシリンダから直接、金型に充填する
と、混練体はスクリューの押出し時の剪断応力と、混練
体が金型に充填される時の断続化による剪断応力を受け
ることである。
Another important point of the present invention is that when an extrusion molding machine such as the one described above is used and the screw is used to fill the mold directly from the cylinder, the kneaded material is affected by the shear stress during extrusion of the screw, and the kneaded material is absorbed by the mold. It is subject to shear stress due to discontinuity when filling.

本発明は、金属粉末と水溶性有機バインダと水とを混練
した可塑性混練体が、前述のような剪断応力下では、低
い圧力でほとんどがバインダの接着力のみで容易に圧着
することを見出した結果に基づいて達成されたものであ
る。
The present invention has found that a plastic kneaded body made by kneading metal powder, a water-soluble organic binder, and water can be easily crimped under the above-mentioned shear stress at low pressure almost solely by the adhesive force of the binder. This was achieved based on results.

以上に説明したように、本発明の押出成形機から断続的
に押出される混練棒相互の接合は、バインダの接合力に
よって行われるため、実質的に金型に混練体が充滴され
るままで加圧力は必要としない。
As explained above, since the kneading rods that are intermittently extruded from the extrusion molding machine of the present invention are bonded to each other by the bonding force of the binder, the kneading material remains substantially filled in the mold. No pressure is required.

最終的な圧着は、混練体が金型に充滴した後のスクリュ
ーの回転による押出力で加圧し、熱による混練体の固化
方法は用いない。このため、金型への充填速度には制限
はない。
For the final compression, pressure is applied by the extrusion force generated by the rotation of the screw after the kneaded material is filled into the mold, and a method of solidifying the kneaded material by heat is not used. Therefore, there is no limit to the filling speed into the mold.

また、金型内に押出された混練体相互の圧着をより密に
するためには、金型内を脱気状態にしておくことが必要
となる。
Further, in order to make the kneaded bodies extruded into the mold more closely bonded to each other, it is necessary to keep the inside of the mold in a deaerated state.

成形体の固化機構は、基本的には混練体の接合後の脱気
によって水分の蒸発を利用し、さらに成形体強度を必要
とする場合は、成形後金型を加熱して水分を除去しても
よい。
The solidification mechanism of the compact basically utilizes the evaporation of moisture by degassing after the kneaded bodies are joined, and if further strength of the compact is required, the mold is heated after molding to remove moisture. You can.

本発明に適する製品形状としては、射出成形法を用いる
とジェツテイング等の成形不良がでやすい厚肉製品また
はCIP成形によると、形状的に成形不可能もしくは精
度がでない形状品があげられる。
Examples of product shapes suitable for the present invention include thick-walled products that are prone to molding defects such as jetting when injection molding is used, and products that cannot be shaped or have poor precision when using CIP molding.

〔実施例〕〔Example〕

本発明を実施例と図面により詳細に説明する。 The present invention will be explained in detail with reference to examples and drawings.

Al5rT15相当の組成からなる水アトマイズ予備合
金粉末を作成した。平均粒径は、45μmでC含有量1
.5%、0.含有量2000ppmであった。該粉末に
黒鉛粉末の0.3%を添加し、乾式アトライタにて混合
粉砕して平均粒径を15μmとした。
A water atomized preliminary alloy powder having a composition equivalent to Al5rT15 was prepared. The average particle size is 45 μm and the C content is 1.
.. 5%, 0. The content was 2000 ppm. 0.3% of graphite powder was added to the powder, and mixed and pulverized using a dry attritor to give an average particle size of 15 μm.

この粉末にメチルセルロース(信越化学製5M400)
を3%、水8%、マイクロクリスタラインワックス2%
、ステアリン酸エマルジョン1%、グリセリン0.7%
を添加し、ヘンシェルミキサーで予備混練体を作った後
、ニーダ混練機で15分間混線し混練体を得た。
Methylcellulose (Shin-Etsu Chemical 5M400) is added to this powder.
3%, water 8%, microcrystalline wax 2%
, stearic acid emulsion 1%, glycerin 0.7%
was added to prepare a preliminary kneaded body using a Henschel mixer, and then kneaded for 15 minutes using a kneader kneader to obtain a kneaded body.

この混練体を第1図に示す成形機にて、真空引した金型
内で外径25Mφ、ねじれ角30@   リード152
間のエンドミル用のグリーン成形体を得た。
This kneaded body was molded into a mold with an outer diameter of 25 Mφ and a helix angle of 30 @ lead 152 in a vacuum mold using the molding machine shown in Fig. 1.
A green molded body for an end mill between the two was obtained.

第1図に本発明の実施例に用いた成形装置を示す6第1
図の1−1は、原料投入口、1−2は押出スクリュー 
1−3は押出シリンダを示す、1−4は金型、1−5は
パーティングラインを示し、アンダーカットとなる部分
は、アンギュラピンl−6とスライドコア1−7により
形成される。金型構造は、一般のプラスチック金型と同
様に型開閉シリンダ1−8により型を開閉し、エジェク
ターシリンダ1−9により、エジェクタープレート1−
10を介し、エジェクタービン1−11により成形体は
金型外に取り出(エジェクト)される。エジェクト前に
切断刃1−12により成形体を切り出す切断工程が入る
。充填成形完了の検知は、金型内部に設置した圧力セン
サ1−13により検知する。
Fig. 1 shows the molding apparatus used in the embodiment of the present invention.
1-1 in the diagram is the raw material input port, 1-2 is the extrusion screw
1-3 indicates an extrusion cylinder, 1-4 a mold, 1-5 a parting line, and an undercut portion is formed by an angular pin l-6 and a slide core 1-7. The mold structure is similar to general plastic molds, with a mold opening/closing cylinder 1-8 opening and closing the mold, and an ejector cylinder 1-9 opening and closing the mold with an ejector plate 1-9.
10, the molded body is ejected from the mold by an ejector turbine 1-11. Before ejecting, a cutting step is performed in which the molded body is cut out using the cutting blade 1-12. The completion of filling molding is detected by a pressure sensor 1-13 installed inside the mold.

上記装置により得た成形体をX線検査および破壊検査し
たところ、気泡、割れ、未圧着部等の内部欠陥は見られ
なかった。また外観も正常であった。
When the molded product obtained by the above apparatus was subjected to X-ray inspection and destructive inspection, no internal defects such as bubbles, cracks, and unpressed areas were found. The appearance was also normal.

この成形体を水素雰囲気において500℃に加熱し、2
時間保持して脱バインダした後、10’ Torrの真
空中で1220℃に昇温しで、2時間保持する焼結を行
った。焼結体の密度は8.21 g /attで、はぼ
真密度であり、XM検査、破壊検査、外観検査において
も異状は見られなかった。
This molded body was heated to 500°C in a hydrogen atmosphere, and
After holding for a time to remove the binder, the temperature was raised to 1220°C in a vacuum of 10' Torr, and sintering was performed by holding for 2 hours. The density of the sintered body was 8.21 g/att, which was approximately the true density, and no abnormalities were observed in the XM inspection, destructive inspection, and visual inspection.

また寸法精度は、各寸法とも±0.5%以内で他の射出
成形焼結部品と同一レベルであった。
Furthermore, the dimensional accuracy was within ±0.5% for each dimension, which was at the same level as other injection molded sintered parts.

比較工程として実施例と同様の混練体と装置を用い金型
内を真空引きしないで成形を行ない、該成形体を検査し
た結果、外観での異状は認められなかったが、破壊検査
を行なったところ、気泡、未圧着部が確認された。
As a comparison process, molding was performed using the same kneaded body and equipment as in the example without evacuation of the inside of the mold, and as a result of inspecting the molded body, no abnormality was observed in the appearance, but a destructive test was performed. However, bubbles and unbonded areas were confirmed.

この成形体を脱バインダー、焼結を行なったが、成形体
で確認された気泡、未圧着部はそのまま欠陥として残存
した。
Although the molded body was subjected to binder removal and sintering, the bubbles and unpressed areas observed in the molded body remained as defects.

さらに、実施例と同様の混練体と金型を用い、プランジ
ャータイプの押出成形機を使用し、成形を行なった。得
られた成形体の外観には多数の未圧着部が見られ、xm
検査、破壊検査によっても多数の欠陥が認められた。
Furthermore, using the same kneaded body and mold as in the example, molding was performed using a plunger type extrusion molding machine. The appearance of the obtained molded product showed many unbonded parts, xm
Many defects were also found through inspection and destructive testing.

なお、本実施例は原料粉末を高速度工具鋼とした場合を
取り上げたが、本発明は高速度工具鋼に限らずステンレ
ス鋼その他の鋼にも適用できることは言うまではない。
Although this embodiment deals with the case where the raw material powder is high-speed tool steel, it goes without saying that the present invention is applicable not only to high-speed tool steel but also to stainless steel and other steels.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来法では品質、精度、価格面におい
て問題点の多い厚肉の金属焼結部材の成形が小規模装置
で半連続的に製造でき、しかも高精度であるため大幅な
原価低減が可能で産業上多いに有益である。
According to the present invention, thick-walled sintered metal parts, which conventional methods have many problems with in terms of quality, precision, and cost, can be manufactured semi-continuously using small-scale equipment.Moreover, due to the high precision, the manufacturing cost can be significantly reduced. This can be reduced and is of great industrial benefit.

さらに本発明による金属焼結部材の製造装置は。Furthermore, there is a manufacturing apparatus for a metal sintered member according to the present invention.

加圧機構は実質的に必要としないので射出成形機または
CIP成形機と比べ非常にコンパクトでかつ安価で製造
でき、工業的価値は大である。
Since a pressurizing mechanism is not substantially required, it is much more compact and can be manufactured at a lower cost than an injection molding machine or a CIP molding machine, and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る成形装置の一実施例を示す断面図
、第2図は粉末プレス成形の断面図、第3図は押出成形
の断面図、第4図は射出成形によるジェツテイングの例
を示す断面図である。 1−1=原料投入口、1−2:押出スクリュー1−3:
押出シリンダ、l−4:金型、1−5:バーティングラ
イン、1−6:アンギュラビン、:1−7=スライドコ
ア、1−8:型開閉シリンダ、l−9:エジェクターシ
リンダ、1−10:エジェクタープレート、l−117
エジエクタービン、1−12 :切断刃、1−13:圧
力センサ第2図 /1改わ2′う4:/ 第3図 第4図
Fig. 1 is a sectional view showing an embodiment of the molding apparatus according to the present invention, Fig. 2 is a sectional view of powder press molding, Fig. 3 is a sectional view of extrusion molding, and Fig. 4 is an example of jetting by injection molding. FIG. 1-1=raw material input port, 1-2: extrusion screw 1-3:
Extrusion cylinder, 1-4: Mold, 1-5: Parting line, 1-6: Angular bin, 1-7 = Slide core, 1-8: Mold opening/closing cylinder, 1-9: Ejector cylinder, 1- 10: Ejector plate, l-117
Engine turbine, 1-12: Cutting blade, 1-13: Pressure sensor Fig. 2/1 revised 2' U4: / Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】 1 原料金属粉末と水溶性有機バインダと水とを混練し
、可塑性混練体とした後、該混練体をシリンダに直結さ
れて脱気した状態の金型内にスクリューの回転による押
出し力で充填し、キャビティと相似形状で混練体の接合
からなる成形体を得たのち、該成形体から加熱によりバ
インダを除去し、焼結により該成形体を圧密化すること
を特徴とする金属焼結部材の製造方法。 2 金型に充填される混練体の接合が該混練体の表面に
存在するバインダの接着力で主に行われることを特徴と
する請求項1に記載の金属焼結部材の製造方法。 3 原料金属粉末が、50μmであり、所望する最終製
品の組成に実質的に一致する単独または複数の予備合金
粉末を用いることを特徴とする請求項1または2に記載
の金属焼結部材の製造方法。 4 原料金属粉末と水溶性有機バインダと水とを混練し
た混練体を、金型内に充填し成形する装置であって、シ
リンダと該シリンダ内で回転し混練体に押出力を与える
スクリューとシリンダに直結された開閉および脱気機構
を有する金型とからなることを特徴とする金属焼結部材
の製造装置。
[Scope of Claims] 1. After kneading raw metal powder, a water-soluble organic binder, and water to form a plastic kneaded body, the kneaded body is directly connected to a cylinder and placed in a deaerated mold with a rotating screw. The molded body is filled with an extrusion force of A method for manufacturing a sintered metal member. 2. The method for manufacturing a metal sintered member according to claim 1, wherein the kneaded bodies filled in the mold are joined mainly by the adhesive force of the binder present on the surface of the kneaded bodies. 3. Production of a metal sintered member according to claim 1 or 2, characterized in that the raw metal powder has a diameter of 50 μm and uses one or more pre-alloyed powders that substantially match the composition of the desired final product. Method. 4. A device that fills a mold with a kneaded material obtained by kneading raw metal powder, a water-soluble organic binder, and water and molds the material, comprising a cylinder, a screw that rotates within the cylinder, and a cylinder that applies extrusion force to the kneaded material. 1. An apparatus for manufacturing a metal sintered member, comprising a mold having an opening/closing and degassing mechanism directly connected to the mold.
JP303789A 1989-01-10 1989-01-10 Method and device producing metallic sintered member Pending JPH02182802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP303789A JPH02182802A (en) 1989-01-10 1989-01-10 Method and device producing metallic sintered member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP303789A JPH02182802A (en) 1989-01-10 1989-01-10 Method and device producing metallic sintered member

Publications (1)

Publication Number Publication Date
JPH02182802A true JPH02182802A (en) 1990-07-17

Family

ID=11546113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP303789A Pending JPH02182802A (en) 1989-01-10 1989-01-10 Method and device producing metallic sintered member

Country Status (1)

Country Link
JP (1) JPH02182802A (en)

Similar Documents

Publication Publication Date Title
JPS587683B2 (en) Funmatsu
KR20160094435A (en) Method and plant for producing extrusion billets
US4609527A (en) Powder consolidation and machining
JP2001501254A (en) Die and mold with net shape, and manufacturing method therefor
JPS6254162B2 (en)
JPH02182802A (en) Method and device producing metallic sintered member
JPH03100103A (en) Powder-metallurgical manufacture of workpiece
JPS62287002A (en) Powder molding method
JPS5853043B2 (en) Method of forming articles
JP2000144210A (en) Forging method of metal powder
JP3006263B2 (en) Method for producing metal powder sintered body
RU2533578C1 (en) Method of making billets from metal and composite powders
JPH0826366B2 (en) Mold made of metal powder compact and manufacturing method thereof
JPH10298610A (en) Mold and its manufacturing method
JPH0196353A (en) Material for electric discharge machining and its manufacture
JP4706980B2 (en) Manufacturing method of Mo target material
JPH06165705A (en) Manufacture of metallic button
JPH08120307A (en) Production of powder sintered impeller
JPH05195012A (en) Production of aluminum alloy member
JP2003154494A (en) Compaction manufacturing method
JPH0826364B2 (en) Extrusion molding method of rapidly solidified metal powder
JPH06207202A (en) Production of molded article
WO2006114849A1 (en) Miniature bearing and method for manufacturing the same
EP0482220A1 (en) Process for preparing complex-shape workpieces from metallic or ceramic powder
JP2601525B2 (en) Extrusion molding method for Al-based rapidly solidified powder