[go: up one dir, main page]

JPH02182260A - Granular bone prosthetic material having bone forming activity - Google Patents

Granular bone prosthetic material having bone forming activity

Info

Publication number
JPH02182260A
JPH02182260A JP64000423A JP42389A JPH02182260A JP H02182260 A JPH02182260 A JP H02182260A JP 64000423 A JP64000423 A JP 64000423A JP 42389 A JP42389 A JP 42389A JP H02182260 A JPH02182260 A JP H02182260A
Authority
JP
Japan
Prior art keywords
bone
collagen
granular
forming protein
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP64000423A
Other languages
Japanese (ja)
Inventor
Yoshinori Kuboki
芳徳 久保木
Atsuro Yokoyama
敦郎 横山
Hiroo Yamaguchi
山口 博雄
Teruo Miyata
宮田 暉夫
Masayasu Furuse
古瀬 正康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koken Co Ltd
Original Assignee
Koken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koken Co Ltd filed Critical Koken Co Ltd
Priority to JP64000423A priority Critical patent/JPH02182260A/en
Publication of JPH02182260A publication Critical patent/JPH02182260A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Materials For Medical Uses (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

PURPOSE:To accelerate the formation of a new bone and to shorten a healing period by using a granular bone prosthetic material prepared by supporting bone forming protein by a collagen granular carrier having a specific particle size. CONSTITUTION:Bone forming protein is prepared by extracting a fresh cow bone with a 4M guanidine hydrochloride solution and separating the obtained extract by a molecular sieve method to obtain an active fraction and further purifying said fraction successively using carboxy methyl cellulose, a hydroxyapatite column and chromatography. As collagen, atherocollagen wherein a molecular terminal is removed is pref. used and a granular carrier C (particle) of collagen having a particle size of 100-2000mum is prepared by dispersing an aqueous collagen solution in a water immiscible org. solvent as a large number of droplets at 0-25 deg.C and raising the temp. of this suspension to 30-40 deg.C to solidify the droplets. The bone forming protein is supported by spraying the aqueous solution of the purified bone forming protein to collagen particles or immersing the collagen particles in said aqueous solution. Collagen and hydroxyapatite can be used together as a carrier.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、形成外科、口腔外科、歯周歯科などにおいて
、外傷や骨腫瘍の摘出、あるいは歯周疾患などによる骨
欠損部等に適用する骨補てっ材に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is applicable in plastic surgery, oral surgery, periodontal dentistry, etc., for the removal of trauma or bone tumors, or for bone defects caused by periodontal disease, etc. Regarding bone prosthesis materials.

(従来の技術) 従来、外傷や腫瘍の切除などによる骨欠損部の補てつに
は主に自家骨移植が行なわれている。しかし、自家骨移
植の場合、その採取量に限度があることや、採取のとき
に新たな傷を作ることとなり、患者の負担となることな
どから、最近は他の材料を採用することが検討されてい
る。特に骨の主成分であるハイドロキシアパタイトは良
く検討されており、すでにブロック状や粒状などの形状
で市販され、形成外科や口腔外科、歯周歯科などで使用
さねている。
(Prior Art) Conventionally, autologous bone grafting has been mainly used to compensate for bone defects caused by trauma or tumor resection. However, in the case of autologous bone grafting, there is a limit to the amount that can be harvested, and a new wound is created during harvesting, which is a burden on the patient, so recently, consideration has been given to using other materials. has been done. In particular, hydroxyapatite, which is the main component of bone, has been well studied and is already commercially available in block and granular forms, and is used in plastic surgery, oral surgery, periodontal dentistry, etc.

また近年は、骨誘導能を持たないハイドロキシアパタイ
トに代えて、骨誘導能を有する骨形成蛋白質(bone
 morphogenetic protein、 B
MPと略称される)を骨補てつ材に用いて治癒効果を向
上させる研究が進められており、この骨形成蛋白質を骨
補てつ材に使用するにあたり、その担体としてハイドロ
キシアパタイト、又はハイドロキシアパタイトと同様骨
の主成分でもあるコラーゲン、又は両者の複合体を用い
ることが検討されている(特開昭60−253455号
公報、特開昭61−259675号公報、特開昭62−
135431号公報)。
In addition, in recent years, bone morphogenetic protein (bone morphogenetic protein), which has osteoinductive ability, has been used instead of hydroxyapatite, which does not have osteoinductive ability.
morphogenetic protein, B
Research is underway to improve the healing effect of bone morphogenetic proteins (abbreviated as MP) in bone prosthetic materials. The use of collagen, which is a main component of bone like apatite, or a composite of both is being considered (Japanese Patent Application Laid-Open No. 60-253455, JP-A No. 61-259675, JP-A-62-
135431).

(発明が解決しようとする課題) 本発明は、コラーゲン等の担体に骨形成蛋白質を担持さ
せた骨補てっ材を使用して治療するに当リ、新生骨形成
を早め、治癒期間を短縮することを目的とするものであ
る。
(Problems to be Solved by the Invention) The present invention accelerates new bone formation and shortens the healing period when performing treatment using a bone prosthesis material in which bone morphogenetic proteins are supported on a carrier such as collagen. The purpose is to

(課題を解決するための手段) 骨形成蛋白質は骨基質中に存在し、未分化間葉系細胞を
軟骨芽細胞、骨芽細胞に分化させる能力がある。骨補て
っ材に含有させた骨形成蛋白質の能力を十分に発揮させ
て新生骨形成を早め、骨欠損部の治癒を早めるためには
、骨形成蛋白質と間葉系細胞の接触を多くすると良いこ
とを知見した。
(Means for Solving the Problems) Bone morphogenetic proteins exist in bone matrix and have the ability to differentiate undifferentiated mesenchymal cells into chondroblasts and osteoblasts. In order to fully demonstrate the ability of the bone morphogenetic proteins contained in the bone grafting material to accelerate new bone formation and speed up the healing of bone defects, increasing the contact between the bone morphogenetic proteins and mesenchymal cells is essential. I learned something good.

そして、骨形成蛋白質と間葉系細胞の接触を多くするに
は、骨形成蛋白質を表面積のできるだけ大きい担体と複
合化させることが必要である。そして、この表面積を大
きくするには、担体をスポンジ状にするか、粒状にする
かが考えられる。しかして、スポンジ状にした場合には
、骨欠損部の形状にあうよう加工する必要があり、使用
に際し煩雑である。その為に本発明では、骨欠損部の形
状と関係なく使用できる粒状にして用いるものである。
In order to increase the contact between bone morphogenetic proteins and mesenchymal cells, it is necessary to complex the bone morphogenetic proteins with a carrier having as large a surface area as possible. In order to increase this surface area, it is possible to make the carrier sponge-like or granular. However, if it is made into a sponge shape, it must be processed to fit the shape of the bone defect, which is complicated to use. Therefore, in the present invention, it is used in the form of granules that can be used regardless of the shape of the bone defect.

そして担体を粒状にして用いる場合にはその粒径が大き
く影響し、本発明者等は種々検討の結果、100〜20
00μの粒径の粒状にしたときに最も良好な治癒短縮効
果が得られることを見出し、本発明を完成した。
When the carrier is used in the form of particles, the particle size greatly affects the carrier, and as a result of various studies, the present inventors found that
The present invention was completed based on the discovery that the best healing shortening effect can be obtained when the granules have a particle size of 00 μm.

すなわち、本発明は、粒径100〜2000μのコラー
ゲン粒状担体に骨形成蛋白質を担持させた粒状骨補てつ
材である。
That is, the present invention is a granular bone prosthesis material in which bone morphogenetic proteins are supported on collagen granular carriers having a particle size of 100 to 2000 microns.

骨形成蛋白質は、一般に新鮮な牛骨から4Mグアーシン
塩酸溶液で抽出される。この抽出物を5ephacry
l S−200で(ファルマシア社製)を用いた分子f
”6 ’11で分離し、得られる活性画分を更にカルボ
キシメチルセルローズ、最後にハイドロキシアパタイト
カラム、クロマ1−クラフィーを用いて精製した。精製
はハイドロキシアパタイトカラムのみでも行なえる。ま
た、上記抽出物も骨誘導性を有している。
Bone morphogenetic proteins are generally extracted from fresh bovine bone with a 4M guarcine hydrochloride solution. 5ephacry this extract
Molecule f using l S-200 (manufactured by Pharmacia)
The active fraction obtained was further purified using carboxymethyl cellulose, and finally using a hydroxyapatite column and chroma 1-craphy. Purification can also be performed using a hydroxyapatite column alone. It also has osteoinductive properties.

コラーゲンは、生体の主要タンパク質の一つであり、生
体の細胞間マトリックスを構成しているものであって、
生体材料として既に多方面で研究応用されており、その
安全性については既に確立されている。また、コラーゲ
ン自身は抗原性の非常に低い蛋白質であるが、その主要
な抗原部位は分子末端のごく一部である。本発明におい
ては、この分子末端を除いた、所Ji7アテロコラーゲ
ンを用いるのが好ましい。粒径100〜2000μのコ
ラーゲンの粒状担体(粒子)は、例えば、コラーゲン水
溶液を水と混和しない有機溶媒中に0〜25°Cの温度
で多数の小滴として分散させて乳濁液を形成し、この乳
濁液の温度を30〜40’Cに上昇させて前記小滴を固
化させてつくる。固化したコラーゲン粒子をヘキサメチ
レンジイソシアナー1〜、ゲルタールアルデヒド等で架
橋処理して、耐熱変性、貯蔵安定性を改善して使用して
も良い。
Collagen is one of the main proteins in living organisms and constitutes the intercellular matrix of living organisms.
It has already been researched and applied as a biomaterial in many fields, and its safety has already been established. Furthermore, although collagen itself is a protein with very low antigenicity, its main antigenic site is only a small part of the terminal end of the molecule. In the present invention, it is preferable to use Ji7 atelocollagen with this molecular terminal removed. Granular carriers (particles) of collagen with a particle size of 100 to 2000 μ can be prepared, for example, by dispersing an aqueous collagen solution as a large number of droplets in a water-immiscible organic solvent at a temperature of 0 to 25° C. to form an emulsion. , by raising the temperature of the emulsion to 30-40'C to solidify the droplets. The solidified collagen particles may be crosslinked with hexamethylene diisocyaner 1 or more, geltaraldehyde, etc. to improve heat resistance and storage stability before use.

本発明でコラーゲン粒状担体の粒径を100〜2000
μとするのは、後述の実施例1で明らかなように、この
範囲の粒径のものが治癒期間短縮効果に最も優れている
からである。
In the present invention, the particle size of the collagen granular carrier is 100 to 2000.
The reason why μ is used is because, as will be clear from Example 1 below, particles with a particle size within this range are most effective in shortening the healing period.

コラーゲン粒子を担体にし、これに骨形成蛋白質を担持
させるには、精製した骨形成蛋白質の水溶液をコラーゲ
ン粒子にスプレーしたり、或は該水溶液にコラーゲン粒
子を浸漬したりすることにより行なう。また、コラーゲ
ン溶液に混合してから造粒することもできる。
Collagen particles are used as carriers to support bone morphogenetic proteins by spraying the collagen particles with an aqueous solution of purified bone morphogenetic proteins or by immersing the collagen particles in the aqueous solution. Alternatively, it can be mixed into a collagen solution and then granulated.

またコラーゲンとハイ1くロキシアパタイトを併用して
担体に用いることもできる。ハイドロキシアパタイトは
歯科関連の骨補てつ材として常用されているが、新生骨
が結合組織を介さず直接ハイドロキシアパタイトに結合
するなど骨親和性が高い。更に、これをコラーゲンと併
用することによって治癒のより一層の短期化が期待でき
る。この併用した担体は1例えば、100〜2000μ
の粒状のハイドロキシアパタイトにコラーゲンをスプレ
ー浸漬などにより塗布して調製する。ハイドロキシアパ
タイトは合成したもの又は天然骨を焼成したものを粉砕
などにより粒状にしたものでよいが、天然骨から得たも
のが好ましい。
Further, collagen and high-loxyapatite can be used in combination as a carrier. Hydroxyapatite is commonly used as a dental prosthetic material, and has high bone compatibility, with new bone directly bonding to hydroxyapatite without the use of connective tissue. Furthermore, by using this in combination with collagen, it is expected that the healing time will be further shortened. The carrier used in combination is 1, for example, 100 to 2000μ
It is prepared by applying collagen to granular hydroxyapatite by spray dipping or the like. Hydroxyapatite may be synthesized or calcined from natural bone and pulverized into granules, but hydroxyapatite obtained from natural bone is preferred.

実施例1 (1,)骨形成蛋白質の調製 新鮮牛骨を液体窒素で凍結し、約0.5mmに粉砕する
。これをクロロホルムとメタノールとの1:1混合溶剤
で脱脂し、0.5M HCQで脱灰した。この残渣を蛋
白質分解酵素阻害剤を含む4Mグアニジン−塩酸及び0
.05M +−リス−塩酸のPI−17,4の水溶液で
抽出し、遠心分離後透析、凍結乾燥を行ない粗管形成蛋
白質を得た。
Example 1 (1.) Preparation of bone morphogenetic protein Fresh bovine bone is frozen in liquid nitrogen and ground to approximately 0.5 mm. This was degreased with a 1:1 mixed solvent of chloroform and methanol, and deashed with 0.5M HCQ. This residue was mixed with 4M guanidine-hydrochloric acid containing a protease inhibitor and 0%
.. It was extracted with an aqueous solution of PI-17,4 in 05M+-Lis-HCl, centrifuged, dialyzed, and freeze-dried to obtain crude tube-forming protein.

この粗管形成蛋白質を4阿グアニジン−塩酸及び0.0
5M l−リス−塩酸を含むp H7、4の水溶液に溶
解し、5ephacry1. S−200カラム(4X
 150cm)に添加し、同溶液にて溶出した。5ep
hacryl S−200で得られた活性画分を、6M
尿素及び0.05M酢酸ナトリウムを含むPI、8の水
溶液に溶解し、CM52(カルボキシメチルセルロース
)カラム(1、6X 6cm)に添加し、これに吸着す
る蛋白質を0〜0.5MのNaCQ濃度勾配(100m
Ω)をかけ分画した。さらに、CM52で得られた活性
画分を6M尿素及び0.01Mリン酸二水素カリウムを
含むpu60gの水溶液に溶解し、ハイドロキシアパタ
イトカラムに添加し、これに吸着する蛋白質を0.01
〜0.400MのKH2PO4濃度勾配(100m Q
 )をかけ分画した。
This rough tube forming protein was dissolved in 4-guanidine-hydrochloric acid and 0.0
5 ephacry1. S-200 column (4X
150 cm) and eluted with the same solution. 5ep
The active fraction obtained with hacryl S-200 was added to 6M
It was dissolved in an aqueous solution of PI, 8 containing urea and 0.05 M sodium acetate and applied to a CM52 (carboxymethylcellulose) column (1,6X 6 cm), and the protein adsorbed thereon was subjected to a 0-0.5 M NaCQ concentration gradient ( 100m
Ω) and fractionated. Furthermore, the active fraction obtained with CM52 was dissolved in an aqueous solution of 60 g of pu containing 6 M urea and 0.01 M potassium dihydrogen phosphate, and added to a hydroxyapatite column, and the protein adsorbed thereon was reduced to 0.01 g.
~0.400M KH2PO4 concentration gradient (100m Q
) and fractionated.

(2)コラーゲン粒子の調製 新鮮な仔牛の真皮を無菌的に取り出し細断し、コラーゲ
ンに対し1%のペプシンを加え溶解し、精製して得た無
菌で発熱性物質を含まないアテロコラーゲンをpH3゜
5の塩酸水溶液に2%濃度に溶解し、次いで0.3M塩
化すI−リウムと0.04Mリン酸水素二す1−リウム
を含む水溶液を同量加えてアテロコラーゲンの1%中性
溶液を調製した。この溶液を、比重を調製した1〜ルエ
ンに小滴になるよう分散させ、その後37°Cに加温し
た。アテロコラーゲンの小滴が固化してコラーゲンの粒
子が得られた。
(2) Preparation of collagen particles Fresh calf dermis is aseptically removed and shredded, 1% pepsin is added to the collagen to dissolve it, and the resulting sterile, pyrogen-free atelocollagen is purified at pH 3°. A 1% neutral solution of atelocollagen was prepared by dissolving No. 5 in an aqueous hydrochloric acid solution to a 2% concentration, and then adding the same amount of an aqueous solution containing 0.3M I-lium chloride and 0.04M di-1-lium hydrogen phosphate. did. This solution was dispersed into small droplets in toluene having an adjusted specific gravity, and then heated to 37°C. The atelocollagen droplets solidified to obtain collagen particles.

この粒子をメタノールで脱水後、ヘキサメチレンジイソ
シアナートで架橋を行ない、良く洗浄後PBS(Pho
sphate Bufferecl 5alin)に置
換した。
After dehydrating the particles with methanol, crosslinking them with hexamethylene diisocyanate, washing well, and adding PBS (Pho
sphate Buffercl 5alin).

得られた粒状物を篩で、100μ以下、100〜500
μ、500〜1000μ、1000〜2000μの4ク
ラスに分級した。
The obtained granules are sieved to 100μ or less, 100 to 500
It was classified into four classes: μ, 500-1000μ, and 1000-2000μ.

(3)骨補てつ材の調製 前記(2)で得た各分級の粒状物2mgづつに、前記(
1)で得た粗管形成蛋白質2mgに0.05M酢酸0.
1n+Qを加えたものを混合し、次いで凍結乾燥した。
(3) Preparation of bone prosthesis material Add 2 mg of each classification of granules obtained in (2) above to (
Add 0.05M acetic acid to 2mg of the crude tube-forming protein obtained in 1).
1n+Q was mixed and then lyophilized.

(4)試験とその結果 一 このように処理した各分級の粒状物0.2mgをウィス
ター系ラット(雄、4週齢)の左右の胸部皮下に埋入し
、2週間後に層殺し、軟X線による検索、生化学的検索
(アルカリフォスファターゼ活性=ALP活性、カルシ
ウム含楚の測定)を行なった。
(4) Tests and Results - 0.2 mg of the granules of each classification treated in this way were subcutaneously implanted into the left and right chests of Wistar rats (male, 4 weeks old), and after 2 weeks, they were delaminated and soft X-rayed. Line search and biochemical search (alkaline phosphatase activity = ALP activity, measurement of calcium content) were performed.

その結果は次の通りであった。The results were as follows.

100μ以下     105 100〜500μ       170       
    98500−1000μ      300 
         1031000〜2000μ   
   110           23このように、
粒径100μ以下の粒子ではALP活性、カルシウム量
がわずかに検出されたにすぎず、満足すべきものではな
かった。そして、粒径が大きくなるに従って良くなり、
ALP活性は粒径500〜1000μのものが最高にな
り、また、カルシウム量も粒径500〜1000μのも
のが最高になった。粒径1000〜2000μのものは
粒径500〜1000μのものより劣る傾向を示した。
100μ or less 105 100-500μ 170
98500-1000μ 300
1031000~2000μ
110 23 In this way,
For particles with a particle size of 100 μm or less, only a small amount of ALP activity and calcium was detected, which was not satisfactory. And as the particle size increases, it gets better,
The ALP activity was highest when the particle size was 500 to 1000 μm, and the amount of calcium was also highest when the particle size was 500 to 1000 μm. Those with a particle size of 1000 to 2000μ showed a tendency to be inferior to those with a particle size of 500 to 1000μ.

実施例2 新鮮な牛骨を煮沸し脂質などを取り除き1%過酸化水素
水溶液及び1%水酸化ナトリウム水溶液に浸漬し、水洗
後、600℃に加熱して有機物を除去した。次いでこれ
を1100℃で焼成した。次いでこの焼成物を粉砕し、
篩で600〜1000μに分級して洗浄した。これにコ
ラーゲン3%水溶液及び実施例1の(1)で調製した骨
形成蛋白質0.1%水溶液を順次スプレーによりコーテ
ィングして骨補てっ材を作った。
Example 2 Fresh beef bones were boiled to remove lipids and the like, immersed in a 1% aqueous hydrogen peroxide solution and a 1% aqueous sodium hydroxide solution, washed with water, and then heated to 600°C to remove organic matter. This was then fired at 1100°C. Next, this fired product is crushed,
It was classified with a sieve to a size of 600 to 1000μ and washed. This was coated with a 3% collagen aqueous solution and a 0.1% bone morphogenetic protein aqueous solution prepared in Example 1 (1) sequentially by spraying to prepare a bone prosthetic material.

ラットの頭蓋骨に直径8mmの骨欠損を作り、上記の骨
補てっ材を埋入した。対照として上記のコーティングを
行なわないものを骨補てつ材として埋入した。
A bone defect with a diameter of 8 mm was created in the skull of a rat, and the above bone replacement material was implanted. As a control, one without the above coating was implanted as a bone prosthesis.

その結果、対照のものは4週で骨欠損部の中央まで骨の
新生が認められたのに対し、上記のコーティングしたも
のは3週で既に同じ結果が認められた。
As a result, new bone formation was observed in the control sample up to the center of the bone defect after 4 weeks, whereas the same result was observed in the coated sample after 3 weeks.

(発明の効果) 本発明においては、骨形成蛋白質を担持する担体として
コラーゲン又はコラーゲンとハイドロキシアパタイトと
の併用物の粒状物を使用したために、骨形成蛋白質と未
分化間葉系細胞との接触がよくなり、しかもその粒径を
100〜2000μにしたため、新生骨形成が円滑に行
なわれ、したがって本発明の骨補てつ材を使用すること
により、治癒の期間を短縮化することができる。
(Effects of the Invention) In the present invention, since collagen or a granular material of a combination of collagen and hydroxyapatite is used as a carrier for carrying bone morphogenetic proteins, contact between bone morphogenetic proteins and undifferentiated mesenchymal cells is prevented. Moreover, since the particle size is set to 100 to 2000 microns, new bone formation is performed smoothly, and therefore, by using the bone prosthetic material of the present invention, the healing period can be shortened.

Claims (1)

【特許請求の範囲】 1 粒径100〜2000μのコラーゲン粒状担体に骨
形成蛋白質を担持させた粒状骨補てつ材。 2 コラーゲン粒状担体がコラーゲンとハイドロキシア
パタイトとからなる請求項第1項記載の粒状骨補てつ材
[Scope of Claims] 1. A granular bone prosthesis material in which bone morphogenetic protein is supported on collagen granular carriers having a particle size of 100 to 2000 μm. 2. The granular bone prosthetic material according to claim 1, wherein the collagen granular carrier comprises collagen and hydroxyapatite.
JP64000423A 1989-01-06 1989-01-06 Granular bone prosthetic material having bone forming activity Pending JPH02182260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP64000423A JPH02182260A (en) 1989-01-06 1989-01-06 Granular bone prosthetic material having bone forming activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP64000423A JPH02182260A (en) 1989-01-06 1989-01-06 Granular bone prosthetic material having bone forming activity

Publications (1)

Publication Number Publication Date
JPH02182260A true JPH02182260A (en) 1990-07-16

Family

ID=11473395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP64000423A Pending JPH02182260A (en) 1989-01-06 1989-01-06 Granular bone prosthetic material having bone forming activity

Country Status (1)

Country Link
JP (1) JPH02182260A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004098540A1 (en) * 1993-09-16 2004-11-18 Hiroyuki Kitamura Material for treating paradental diseases
WO2005052541A3 (en) * 2003-11-28 2005-08-04 Nat Food Res Method of separation and collection and apparatus therefor
CN1302822C (en) * 2002-11-28 2007-03-07 上海瑞邦生物材料有限公司 In-situ osteoplastic active calcium phosphate cement and its prepn and application
USD849946S1 (en) 2015-12-30 2019-05-28 Nuvasive, Inc. Interspinous process spacer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62501132A (en) * 1984-12-14 1987-05-07 ドレナ−ト・クラウス bone substitute material
JPS63125258A (en) * 1986-11-14 1988-05-28 三菱マテリアル株式会社 Bone deficient part, gap part and absorbing part filler

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62501132A (en) * 1984-12-14 1987-05-07 ドレナ−ト・クラウス bone substitute material
JPS63125258A (en) * 1986-11-14 1988-05-28 三菱マテリアル株式会社 Bone deficient part, gap part and absorbing part filler

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004098540A1 (en) * 1993-09-16 2004-11-18 Hiroyuki Kitamura Material for treating paradental diseases
CN1302822C (en) * 2002-11-28 2007-03-07 上海瑞邦生物材料有限公司 In-situ osteoplastic active calcium phosphate cement and its prepn and application
WO2005052541A3 (en) * 2003-11-28 2005-08-04 Nat Food Res Method of separation and collection and apparatus therefor
USD849946S1 (en) 2015-12-30 2019-05-28 Nuvasive, Inc. Interspinous process spacer

Similar Documents

Publication Publication Date Title
US9138508B2 (en) Bone graft materials derived from mineralized gelatin
US7785634B2 (en) Bone graft materials derived from mineralized gelatin
US4789663A (en) Methods of bone repair using collagen
US8394419B2 (en) Bone graft materials derived from mineralized gelatin
CA1259914A (en) Methods of bone repair using collagen
US5001169A (en) Inductive collagen-based bone repair preparations
US4968590A (en) Osteogenic proteins and polypeptides
US5496552A (en) Osteogenic devices
AU618357B2 (en) Osteogenic devices
US5108753A (en) Osteogenic devices
US5324819A (en) Osteogenic proteins
JP4408603B2 (en) Organic-inorganic composite biomaterial and method for producing the same
JPS60253455A (en) Living body material containing bone forming factor
JP2010075718A (en) Resorbable extracellular matrix for reconstruction of bone
JPH0824710B2 (en) Bone collagen matrix for transplantation
JPH04246359A (en) Osteogenic composition and interplanted tissue containing it
JP2003501217A (en) Biomaterials based on insolubilized dextran derivatives and growth factors
WO2000029484A1 (en) Process for preparing high density mechanically resistant insoluble collagen material in pure and combined forms
US7728116B2 (en) Method of preparing an osteogenic protein fraction
CN1440731A (en) Regenerative bone implant
JPH07246235A (en) Transplanting body for ossification
JPH02182260A (en) Granular bone prosthetic material having bone forming activity
JP3420634B2 (en) Collagen lumber and bone defect prosthesis
JPH04235197A (en) Purification of bone inducing active substance
JPH06296677A (en) Transplant for osteogenesis