JPH02179223A - Energizing device for induced load of automobile - Google Patents
Energizing device for induced load of automobileInfo
- Publication number
- JPH02179223A JPH02179223A JP1270527A JP27052789A JPH02179223A JP H02179223 A JPH02179223 A JP H02179223A JP 1270527 A JP1270527 A JP 1270527A JP 27052789 A JP27052789 A JP 27052789A JP H02179223 A JPH02179223 A JP H02179223A
- Authority
- JP
- Japan
- Prior art keywords
- field effect
- mos field
- effect transistor
- electronic control
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/06—Modifications for ensuring a fully conducting state
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H11/00—Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result
- H02H11/002—Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result in case of inverted polarity or connection; with switching for obtaining correct connection
- H02H11/003—Emergency protective circuit arrangements for preventing the switching-on in case an undesired electric working condition might result in case of inverted polarity or connection; with switching for obtaining correct connection using a field effect transistor as protecting element in one of the supply lines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H9/00—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
- H02H9/04—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
- H02H9/045—Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage adapted to a particular application and not provided for elsewhere
- H02H9/047—Free-wheeling circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/08—Modifications for protecting switching circuit against overcurrent or overvoltage
- H03K17/082—Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
- H03K17/0822—Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/687—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
- H03K17/6871—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
- H03K17/6874—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor in a symmetrical configuration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
- B60R16/03—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
Landscapes
- Electronic Switches (AREA)
- Emergency Protection Circuit Devices (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、信号人力鯵及び信号出力端を持つ電子制御回
路と、電子制御回路の前に接続されて誤った極性の車載
市、源隼圧の印加を防止する保護手段と、誘導負荷に実
質的に並列接続されている少なくとも1つの惰性通電手
段とををする、自動車の誘導負荷の付勢装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to an electronic control circuit having a signal output terminal and a signal output terminal, and an in-vehicle device that is connected in front of the electronic control circuit and has an incorrect polarity. The present invention relates to a device for energizing an inductive load of a motor vehicle, comprising protection means for preventing the application of pressure and at least one inertial energization means connected substantially in parallel to the inductive load.
警子装麹及び捕助装置の使用により自動車を完全なもの
にするために、特に誘導―荷の付勢のため従来の電気−
り極式継電器を固体半導体開閉器特に半導体出力段に代
える必要が増大している。In order to complete the vehicle by the use of guard loading and catching devices, in particular induction - conventional electric - for the energization of the load.
There is an increasing need to replace polarized relays with solid state semiconductor switches, in particular semiconductor output stages.
しかし大きい開rjI3s力の半導体出力段と共に電子
制御及び調整機能のワンチップ集積は、誤った極性の動
作電圧の影智に対して著しく損傷し易くする。なぜなら
ば、例えば出力段又はサボ回路から出る接続導線を介し
て、大きい電流が制御a装置の内部又は半導体チップま
で達する可能性があるからである。However, the one-chip integration of the electronic control and regulation functions together with the large open power semiconductor output stage makes it extremely susceptible to damage due to operating voltages of incorrect polarity. This is because, for example, large currents can reach the interior of the control device or the semiconductor chip via the connecting conductors emerging from the output stage or the servo circuit.
これに対し自動車の電子制御装■は、1s隼池を誤った
極性で接続しても、破壊不可能でなければならない。特
に誤った極性で車両の車載常体装置に接続される蓄隼池
は、電子制御装置の極性取り違え接続故障をひき起して
はならない。On the other hand, the electronic control system of a car must be indestructible even if the 1S Hayabusa is connected with the wrong polarity. In particular, an accumulator connected to a vehicle's on-board equipment with the wrong polarity must not cause a polarity misconnection failure of the electronic control unit.
重子部品の極性取り違え&IfPに対する大きい強度を
得るために、既に多数の方策が知られている。A number of strategies are already known in order to obtain greater strength against polarization & IfP of heavy components.
例えば電子制御装置に中央極性取り違え接続防止継S器
を設け、動作電圧が正しい極性で印加されている時にの
み、極性取り違え接続防止線を器によりこの動作電圧を
出力段へ到達させることが公知である。この継電器は、
その励磁巻線に付属する1つ又は複数の半導体ダイオー
ドと共に動作する。この公知の方策は、継電器の通電す
る開閉接点を非常に小さい抵抗で!成すことかできるの
で、損失電圧降下が非常に小さいという利点を持ってい
る。しかし腐食性大気中又は非常に変動する気候の下で
は、接点の信顆性が低下する。更に極性取り違え接続防
止継電器は高価で、貴重な取付は空間を必要とし、大抵
は自動取付けが不可能である。低抵抗の極性取り違え接
続防止接点は、その電圧降下による損失電力を所望のよ
うに小さくするが、このような継電器に必要な200
mA程度の励a電流のため、損失電力がこのような装置
の効率を悪化する。For example, it is known to provide an electronic control unit with a central polarity misconnection prevention relay and to allow this operating voltage to reach the output stage only when the operating voltage is applied with the correct polarity. be. This relay is
It operates in conjunction with one or more semiconductor diodes associated with its excitation winding. This known measure allows the energized switching contacts of the relay to be connected with very low resistance! It has the advantage that the loss voltage drop is very small. However, in corrosive atmospheres or highly variable climates, the reliability of the contacts decreases. Furthermore, mispolarity protection relays are expensive, require valuable installation space, and are often not capable of automatic installation. Low-resistance mispolarization contacts desirably reduce power losses due to voltage drops, but the
Due to excitation currents on the order of mA, power losses degrade the efficiency of such devices.
装置又は出力段の動作電圧供給の際有効な極性取り違え
接続防止ダイオードを使用することも公知である。自動
車の制御に使用される最近の集積駆動回路では、この駆
動回路が一部半導体出力段用内部保護ダイオードとして
一緒にチップ上に集積されている。It is also known to use active anti-polarity diodes in supplying the operating voltage of devices or output stages. In modern integrated drive circuits used for motor vehicle control, this drive circuit is partly integrated on a chip together with internal protection diodes for the semiconductor output stage.
最後にあげた方策は、極性取り違え接続防止ダイオード
の伽失亀圧降下が比較的大きいという欠点を持っている
。普通の1M類の自動車の最近の11磁弁において普通
であるような5Aの制tS電流では、制御を行なう半導
体出力段の閉じた状態では、主要損失電力はもはやその
開閉トランジスタに生ずるのではなく、極性取り違え接
続防止ダイオードに生ずる。即ち最悪条件の下で1.6
Vまでの電圧降下が極性取り違え接続防止ダイオード
に生じ、それにより8Wの極性取り違え接続防止損失電
力が生ずる。損失熱を放熱するe#造手段は、従来の極
性取り違え接続防止継電器を使用する場合より装置ケー
スを高価にする。The last mentioned solution has the disadvantage that the voltage drop due to the loss of polarity prevention diodes is relatively large. With a limiting tS current of 5 A, as is customary in modern 11 solenoid valves of ordinary 1M class motor vehicles, in the closed state of the controlling semiconductor output stage, the main power losses no longer occur in its switching transistors; , occurs in the polarity misconnection prevention diode. i.e. 1.6 under the worst conditions
A voltage drop of up to V occurs across the anti-polarity diode, resulting in an anti-mispolation power loss of 8W. The electronic means for dissipating lost heat makes the equipment case more expensive than using conventional mispolarization prevention relays.
自動車の誘導駆動インピーダンスを持つ操作器、及びス
テップモータは、パルス化された直流により操作される
。直流の準備及びパルス状断続は、最初に述べた固体半
導体開閉器特に半導体出力段により行なうのがよい。Automotive actuators with induction drive impedance and step motors are operated by pulsed direct current. Preparation and pulse-like switching on and off of the direct current is preferably carried out by means of the initially mentioned solid state semiconductor switches, in particular semiconductor output stages.
この半導体出力段を誘導遮断動圧ビークに対して保護し
、過言開閉スパイクが車載隼誠へ入るのを防止するため
、誘導負荷で閉じられる制御装置の出力端に従来の半導
体ダイオードを並列接続して、誘導負荷の付勢電流の遮
断により生ずる誘導衝sWL流をこの半導体ダイオード
を経て流し、消滅する磁界により危険な高さの電圧を生
じないようにすることが公知である。In order to protect this semiconductor output stage against inductive cut-off dynamic pressure peaks and to prevent excessive switching spikes from entering the onboard system, a conventional semiconductor diode is connected in parallel to the output of the control device that is closed by an inductive load. It is therefore known to route the inductive impulse sWL current resulting from interruption of the energizing current of the inductive load through this semiconductor diode, so that dangerously high voltages do not occur due to the dissipating magnetic field.
惰性通電手段
を磁石巻線用の餉消費を少なくするため、更に急速な電
流パルス化が行なわれると、それに応じて頻繁に、即ち
短い時間間隔で惰性通電?#撃市流が生ずる結果、その
電流積分がかなり大きくなる。この電流積分は、動作電
流により極性取り違え接続防止ダイオードに生ずる電圧
降下と同じように、通電の際惰性通電の順方向電圧から
損失電力を生ずる。実際に使用される市、流では、この
電圧降下はIV以上である。自動車の制御¥i!置は惰
性通電手段により保護される多数の出力端を持つ傾向が
あるので、惰性通電手段に生ずる損失熱も同様に可能な
限り少なくすることが望ましい。If more rapid current pulsing is performed in order to reduce the power consumption of the magnet winding, the inert energization means will be inert energized correspondingly frequently, i.e. at short time intervals. # As a result of the generation of the current, the current integral becomes considerably large. This current integral, like the voltage drop caused by the operating current across the polarity mismatch prevention diode, results in power loss from the forward voltage of freeloading when energized. In practical applications, this voltage drop is IV or higher. Car control ¥i! Since devices tend to have a large number of outputs that are protected by the free-flowing means, it is desirable that the heat losses occurring in the free-running means are likewise as low as possible.
〔発明が解決しようとする111i1)従って本発明の
課顧は、制vats流又は遮断動節の流れる極性取り違
え接続防止手段又は惰性通電手段に生じて電子制御回路
装置の製造価格に直接影響を及ばす損失電圧降下を最小
にする自動車の誘U#負荷付勢装障を提供することであ
る。更にこの装置が、従来の極性取り違え接続防止手段
及び惰性通を手段に直ちに代わるのに適し、即ち既存の
設計の制御装置へ容易に集積可能であるようにする。[111i1 to be solved by the invention] Therefore, the present invention is directed to the problem that occurs in the polarity mix-up prevention means or the inertia energization means in which the control flow or cut-off joint flows, which directly affects the manufacturing price of the electronic control circuit device. An object of the present invention is to provide an inductive U# load energizing system for an automobile that minimizes the loss voltage drop. Furthermore, this device is suitable for readily replacing conventional polarity misconnection prevention means and inertia means, ie it can be easily integrated into control equipment of existing designs.
この課題を解決するため本発明によれば、保護手段及び
惰性通電手段として、任意のチャネル形のMOS li
I界効果トランジスタの開聞通路即ちソース−ドレンが
使用され、これらのMOSN。In order to solve this problem, according to the invention, an arbitrary channel type MOS li
The open path or source-drain of I field effect transistors is used to connect these MOSNs.
界効果トランジスタが順方向には導通した逆方向動作で
、また逆方向には不導通正常動作で動作可能なように、
MOS電界効果トランジスタの開閉通路が接続されてい
る。So that a field effect transistor can operate in reverse operation with conduction in the forward direction and normal operation with non-conduction in the reverse direction,
The switching paths of the MOS field effect transistors are connected.
本発明によれば、極性取り違え接続防止又は惰性通電の
ために設けられる従来の半導体ダイオード開閉通路が、
逆方向動作のS刃用MOS電界効果トランジスタ(以下
電力用MOSトランジスタと称する)の開閉通路によっ
て代えられる。According to the present invention, the conventional semiconductor diode opening/closing path provided for preventing polarity misconnection or inert energization,
It is replaced by an opening/closing path of an S-blade MOS field effect transistor (hereinafter referred to as a power MOS transistor) operating in the opposite direction.
通電は回避されるこの動作態様では、最近の電力用MO
Sトランジスタは約20〜100mΩの程度の非常に小
さい導通抵抗しか持たず、自動車において普通の付勢電
流では、この抵抗に0.1〜0.5vの電圧降下従って
2乗も少ない損失を力しか生じない。In this mode of operation in which energization is avoided, modern power MO
The S transistor has a very small conduction resistance of about 20 to 100 mΩ, and with the normal energizing current in a car, the voltage drop across this resistance is only 0.1 to 0.5 V, and therefore the loss is less than the square of the power. Does not occur.
制御装置にこのように使用される多数の電力用MOSト
ランジスタに、なるべく中央電荷ポンプを使用して、逆
方向動作に必要な制御信号を印加でき、大した損失電力
を生ずることなく、この電荷ポンプの極性取り違え接続
防止を従来のように安価に行なデとができる。The control signals necessary for reverse operation can be applied to the large number of power MOS transistors thus used in the control device, preferably using a central charge pump, without causing significant power losses. It is possible to prevent connection due to polarity mismatch at a low cost as in the conventional method.
第1図には、負荷、2特にインピーダンスに誘導成分を
持つ操作器又は操作部を開閉−私して又はパルスにより
付勢するための電子制御装置における典型的な回路装置
が示されている。常子制園回路1はその制御端子IC及
びldに制御信号を受け、その供給端子1a及び1bは
、端子IOに印加される車載電源電圧UBattから得
られる正の動作電圧uvとアース20との間に接続され
ている。この電子制御回路は、半導体開閉器3を介して
負荷2へ時々動作電圧Uvを印加するのに使用される。FIG. 1 shows a typical circuit arrangement in an electronic control unit for energizing a load, in particular an actuator or actuator having an inductive component in its impedance, either by opening/closing or by means of pulses. The regular control circuit 1 receives control signals at its control terminals IC and ld, and its supply terminals 1a and 1b are connected to the positive operating voltage uv obtained from the on-board power supply voltage UBatt applied to the terminal IO and the ground 20. connected between. This electronic control circuit is used to apply an operating voltage Uv from time to time to the load 2 via the semiconductor switch 3.
半導体開閉器3として、例えは電極としてのソース38
、ドレン3b及びゲート3Cと寄生的に作用するチャネ
ルダイオード3dとを持つNチャネル電力用MOS)−
ランジスタが設けられている。必要な場合には、トラン
ジスタ3のゲート3Cは、ここでは記号的にのみ示され
ておりt子制御回路lの構I!4部分と解すべき電荷ポ
ンプ7Cにより、例えばシーメンス社の集積出力段モジ
ュールBTS412Aにより公知のように制御する2が
できる。このモジュール自体は極性取り違え接続に対し
て保護されている。As the semiconductor switch 3, for example, a source 38 as an electrode
, an N-channel power MOS having a drain 3b, a gate 3C, and a channel diode 3d acting parasitically)
A transistor is provided. If necessary, the gate 3C of the transistor 3 is shown here only symbolically and the structure of the t-child control circuit I! The charge pump 7C, to be understood as a four-part component, allows for example 2 to be controlled in a known manner by a Siemens integrated output stage module BTS412A. The module itself is protected against reverse polarity connections.
負荷2及び開閉トランジスタ3を持つ電子制御回路lに
関して、車載*S電圧’Ba t tを誤った極性で端
子IO及び20へ接続するのを防止するため、公知のよ
うにダイオード4が設けられている。ダイオード5も公
知のように惰性逸物ダイオードとして作用して、負荷2
の誘導成分における電流消滅を時間的に延ばすことによ
り、負荷2に誘導される遮断電圧を開隔する。Regarding the electronic control circuit l with the load 2 and the switching transistor 3, a diode 4 is provided in a known manner in order to prevent the on-board *S voltage 'Ba t t from being connected to the terminals IO and 20 with incorrect polarity. There is. As is well known, the diode 5 also acts as an inertia diode, and the load 2
By extending the extinction of the current in the induced component over time, the cut-off voltage induced in the load 2 is separated.
第2図による本発明の装置により同じ機能が得られる。 The same functionality is obtained with the device of the invention according to FIG.
この機能は、導通した逆方向動作におけるt刃用MOS
)−ランジスタのチャネル抵抗が、正常動作の際のチャ
ネル抵抗に実際上等しいことを利用している(内部寄生
ダイオードは、小さい縦抵抗のため通電は導通しない)
。第1図による公知の装置に対し、対応するダイオード
の開閉通路は、普通の極性に関してそれぞれ逆方向に電
圧を受けるNチャネル電力用MOSトランジスタの開閉
通路により代えられている。This function is for t-blade MOS in conducting reverse direction operation.
) - takes advantage of the fact that the transistor's channel resistance is practically equal to the channel resistance during normal operation (internal parasitic diodes do not conduct current due to their small longitudinal resistance)
. For the known device according to FIG. 1, the switching paths of the corresponding diodes are replaced by the switching paths of N-channel power MOS transistors each receiving a voltage in the opposite direction with respect to the normal polarity.
電極としてのソース6a 、ドレン6b 、ゲート6c
及び寄生的に作用するチャネルダイオード6dを持つ電
力用MOSトランジスタ6は、極性取り違え接続防止ダ
イオード4に代えられている。ゲート6cはこれにバイ
アス電圧を印加する電荷ポンプ7aに接続され、このバ
イアス電圧は、端子10及び20にかかる車載電源電圧
UBattの極性が正しい場合、ソース6aとドレン6
bとの間で電力用MOSトランジスタ6の低抵抗導通を
行なわせるような大きさである。例えば車載電源電圧U
Ba t tの正しい極性においてトランジスタ6のゲ
ート6cがソース6aに対して正にバイアスされてい□
ると、トランジスタ6のソース6aとドレン6bとの間
の開閉通路は導通伏態に切換えられている。Source 6a, drain 6b, gate 6c as electrodes
The power MOS transistor 6 having a parasitic channel diode 6d is replaced by a polarity misconnection prevention diode 4. The gate 6c is connected to a charge pump 7a that applies a bias voltage to it, and this bias voltage is applied to the source 6a and the drain 6 when the polarity of the on-vehicle power supply voltage UBatt applied to the terminals 10 and 20 is correct.
The size is such that low resistance conduction of the power MOS transistor 6 is achieved between the power MOS transistor 6 and the power MOS transistor 6. For example, onboard power supply voltage U
At the correct polarity of B t t the gate 6c of the transistor 6 is positively biased with respect to the source 6a □
Then, the open/close path between the source 6a and drain 6b of the transistor 6 is switched to a closed state.
端子IO及び20に車g電源電圧UBattが誤った極
性で接続されていると、例えば電荷ポンプ7aの作用の
制御される解除によって、トランジスタ6のソース6a
とゲート6cとが例えばほば同じ電位になる。従ってこ
の場合正常動作用の極性を持つトランジスタ6は不導通
にされ、それにより極性取り違え接続防止装置として作
用する。If the vehicle g supply voltage UBatt is connected to the terminals IO and 20 with the wrong polarity, the source 6a of the transistor 6, for example by a controlled release of the action of the charge pump 7a,
For example, the potential of the gate 6c and the gate 6c are almost the same. In this case, therefore, the transistor 6 having the polarity for normal operation is made non-conducting, thereby acting as a polarity misconnection prevention device.
電荷ポンプ7aは、直流電圧変成器と類似な機能を持ち
かつ別個に胎動される補助回路であり、アースと車載電
源電圧UBa t tとの間の任意の制御信号レベルに
所定の電位を加算して、ゲート6cがソース6aより高
い(正の)電圧をアースに対してと妃とができるように
する。このような補助回路は、加算可能な電位を、変圧
器によるか、又は適当に制御される開閉手段により周期
的に制御信号へ加えyができる充電コンデンサの充電1
圧として発生して、和電圧をフィルタコンデンサに保持
す改とができる。このような電荷ポンプ回路の作用の解
除は、例えば記号的に示した別個の公知の極性取り違え
接続防止ダイオード9aにより従来のように端子10か
らこの電荷ポンプ回路に給電することによって可能であ
る。電力用MOSトランジスタの非常に高い固有抵抗が
ほぼ静電的な制御を可能にし、従ってこのような電荷ポ
ンプ回路の電力消費はmWの範囲にあるので、装置全体
の効率は前記の給電によって殆ど低下しない。を荷ポン
プ用極性取り違え接続防止ダイオード9aにおける電圧
損失は従って無視できる損失熱しか生じない。The charge pump 7a is an auxiliary circuit that has a similar function to a DC voltage transformer and is operated separately, and adds a predetermined potential to an arbitrary control signal level between the ground and the vehicle power supply voltage UBatt. This allows the gate 6c to have a higher (positive) voltage with respect to ground than the source 6a. Such an auxiliary circuit can be used to charge a charging capacitor by adding a summable potential periodically to the control signal by means of a transformer or by suitably controlled switching means.
The sum voltage can be generated as a voltage and held in a filter capacitor. Deactivation of such a charge pump circuit is possible, for example, by supplying this charge pump circuit in a conventional manner from terminal 10 by means of a symbolically indicated separate, known, anti-polarity diode 9a. Since the very high resistivity of the power MOS transistors allows an almost electrostatic control and the power consumption of such charge pump circuits is therefore in the mW range, the overall efficiency of the device is reduced almost exclusively by said power supply. do not. The voltage loss in the polarity misconnection prevention diode 9a for the load pump therefore results in negligible heat loss.
電荷ポンプ7aにより援助されて、トランジスタ6は従
来の極性取り違え接続防止ダイオードの代わりをするが
、その熱発生は極めて少ない。トランジスタ6の50■
Ωの逆方向チャネル抵抗と、IAの開閉電流に関して従
来の極性取り違え接続防止ダイオードに生ずるIVの損
失電圧とを根拠として、本発明により逆方向に導通動作
せしめられるトランジスタに生ずる損失1a力は、従っ
て約20倍も少ないことになる。Assisted by charge pump 7a, transistor 6 replaces a conventional anti-polarity diode, but its heat generation is extremely low. Transistor 6 50■
Based on the reverse channel resistance of Ω and the loss voltage of IV that occurs in a conventional anti-polarity diode with respect to the switching current of IA, the loss 1a force that occurs in a transistor operated in reverse conduction according to the present invention is therefore: That's about 20 times less.
同じように、電子制御回路lにより制御されて電極とし
てのソース8a 、ドレン8b及びゲート8cと寄生的
に作用するチャネルダイオード8dとを持つ電力用MO
S)−ランジスタ8も、第1図による惰性通電ダイオー
ド5の代わりをする。ゲート8cも適当な電荷ポンプ7
bにより電圧を印加するとかできる。ゲート8cの適当
なバイアスにより、トランジスタ3の開いた後負荷2の
電圧の極性反転の際、ソース8aとドレン8bとの間に
非常に低い抵抗が生じ、負荷2のインダクタンスにおけ
る遮断衝s電圧の制限が行なわれる。Similarly, a power MO is controlled by an electronic control circuit l and has a source 8a, a drain 8b and a gate 8c as electrodes, and a channel diode 8d acting parasitically.
S)-transistor 8 also replaces the inertial current-carrying diode 5 according to FIG. Gate 8c is also a suitable charge pump 7
It is possible to apply a voltage using b. Due to the appropriate biasing of the gate 8c, upon polarity reversal of the voltage of the load 2 after the opening of the transistor 3, a very low resistance will be created between the source 8a and the drain 8b, resulting in a cut-off s voltage at the inductance of the load 2. Restrictions are in place.
同様に電力用MOSトランジスタ3のゲート3Cも電荷
ポンプ7Cにより補助電位でバイアスをかけられて、ゲ
ート3Cとソース3aとの間の創部電圧の電圧範囲が、
申し分のない開開動作にとって最適な範囲にあるように
している。このような電荷ポンプは、記号的に示すよう
に、複合集積電子制御回路lの構成部分とすごとができ
る。必要な場合には、このような電荷ポンプ7Cが両方
のトランジスタ3及び8に異なる静電位でバイアスをか
けて、電荷ポンプ7bを省略す仮止ができる。破線の接
続線がこの場合を示している。Similarly, the gate 3C of the power MOS transistor 3 is also biased with an auxiliary potential by the charge pump 7C, so that the voltage range of the wound voltage between the gate 3C and the source 3a is
It is kept in the optimum range for perfect opening/opening action. Such a charge pump can act as a component of a complex integrated electronic control circuit l, as indicated symbolically. If necessary, such a charge pump 7C biases both transistors 3 and 8 at different electrostatic potentials, making it possible to omit charge pump 7b. The dashed connection line indicates this case.
両方のトランジスタ3及び8は、負荷2を短絡するか、
又は動作電圧UVへ接続即ち極性取り違え接続防止ダイ
オード6を介して車載隼誠電圧UBattへ接続する制
御可能な半ブリッジを形成でいる。両方のトランジスタ
3及び8は、電子側台回路!により交互にプッシュ・プ
ル制御されて、両方のトランジスタが同時に導通するの
を防止するが、両方のトランジスタの交互の導通段階の
間に大したむだ時間のないようにする。Both transistors 3 and 8 short-circuit the load 2 or
Alternatively, it is possible to form a controllable half-bridge connected to the operating voltage UV, ie, connected to the on-board voltage UBatt via the polarity misconnection prevention diode 6. Both transistors 3 and 8 are electronic sideboard circuits! are alternately push-pull controlled to prevent both transistors from conducting at the same time, but without significant dead time between alternate conduction phases of both transistors.
実際の使用では、誘導負荷2は例えば5 kHz又はこ
れより高い周波数でパルス化される比例11ilfi!
i弁である。このように高速でパルス化される給電では
、第1図による惰性通電ダイオード5の熱発生は比較的
大きい。本発明による装置はまずこれを著しく減少する
のを可能にする。In practical use, the inductive load 2 is a proportional 11ilfi! which is pulsed at a frequency of, for example, 5 kHz or higher.
It's an i dialect. With such a rapidly pulsed power supply, the heat generation of the free-flowing diode 5 according to FIG. 1 is relatively large. The device according to the invention firstly makes it possible to significantly reduce this.
本発明による装置は、非常に小さい値に制限可能な励磁
巻線の遮断誘導物、圧により、比例慣磁弁において非常
に望ましい低域フィルタ作用を可動弁素子に生じて、パ
ルス周波数による振動を抑制する。The device according to the invention produces a very desirable low-pass filtering effect on the movable valve element in proportional inertia valves due to the cut-off inducer, pressure of the excitation winding, which can be limited to a very small value, thereby suppressing vibrations due to pulse frequencies. suppress.
第3図によれば、MOS電界効果トランジスタ3.6及
び8の複数の個々の補助電圧用の複数の互いに無関係で
場合によっては異なる零位1211+12b、 12c
を発生する共通な電荷ポンプ回路7が、必要な場合には
3つの電力用MOSトランジスタすべてに対して設けら
れている。このような共通な電荷ポンプ回路7は、電荷
ポンプ回路7aと同じように、例えばダイオード9によ
り、極性取り違え接続を防止されて端子10と20との
間に接続されて、トランジスタ3及び8の導通のための
規則正しいバイアス電圧発生が、誤った極性では全く行
なわれないか、又は阻止されるようにすffができる。According to FIG. 3, several mutually independent and possibly different zero points 1211+12b, 12c for the individual auxiliary voltages of the MOS field effect transistors 3.6 and 8 are shown.
A common charge pump circuit 7 is provided for all three power MOS transistors if necessary. Similar to the charge pump circuit 7a, such a common charge pump circuit 7 is connected between the terminals 10 and 20 with a diode 9, for example, to prevent polarity misconnection, and is connected between the terminals 10 and 20 to prevent conduction of the transistors 3 and 8. The orderly bias voltage generation for the FF can be made such that it does not occur at all or is blocked with incorrect polarity.
第4図は本発明による装置の変形例を示している。ここ
では、極性取り違え接続防止装置として作用する電力用
MOS)−ランジスタロを動作させる電荷ポンプなしで
すむ。導通した逆方向動作における制御用のバイアス電
圧を非常に簡単に発生するため、ここではアース導線の
遮断を行なう。バイアス電圧として、端子IOへ印加さ
れる通電圧の動作電圧が、保護前置抵抗13を介して電
力用MOSトランジスタ6のゲート6cへ達する。この
実施例は、例えばアースに対して給電するため誘導負荷
をパルス化する場合に、有利に使用す妃とができる。相
補特性曲線を持つ相M1m力用MOS)−ランジスタを
使用すると、このようなトランジスタのソース−ドレン
開閉通路が正の給電導線に挿入され、そのゲートが適当
な抵抗を介してアース接続端子20に直接接続可能であ
るならば、この変形例をアース導線を遮断されないもの
にも適用することができる。FIG. 4 shows a variant of the device according to the invention. Here, there is no need for a charge pump to operate the power MOS transistor, which acts as a polarization prevention device. In order to generate a control bias voltage in a conductive reverse operation in a very simple manner, the earth conductor is disconnected here. The operating voltage of the conduction voltage applied to the terminal IO as a bias voltage reaches the gate 6c of the power MOS transistor 6 via the protective front resistor 13. This embodiment can be used advantageously, for example, when pulsing an inductive load for powering to ground. When using phase M1m power MOS) transistors with complementary characteristic curves, the source-drain switching path of such a transistor is inserted into the positive supply conductor, and its gate is connected to the earth connection terminal 20 through a suitable resistor. If direct connection is possible, this modification can also be applied to those in which the ground conductor is not interrupted.
第1図は遮断電圧ピークを抑制する惰性通−1ダイオー
ドとしての極性取り違え接続防止ダイオードを持つ自動
車の誘導負荷のなるべくパルス付勢装置の公知例の原理
的接続図、第2図は極性取り違え接続防止ダイオード及
び惰性通電ダイオードを逆方向に動作する電力用MO3
)−ランジスタにより代えた°本発明による装置の原理
的接続図、第3図は複数の電力用MOSトランジスタの
バイアス電圧用に中央電荷ポンプを使用する装置の原理
的接続図、第4図はt荷ポンプ回路なしですむ実施例の
原理的接続図である。
l・・・電子制御回路、2・・・誘導負荷、6,8・・
−MOS亀界効果トランジスタ、6a−6b、 8a−
8b・・・開閉通路(ソース−ドレン)。Fig. 1 is a principle connection diagram of a known example of a pulse energizing device for an inductive load of an automobile having a polarity misconnection prevention diode as an inertia-1 diode to suppress the cut-off voltage peak, and Fig. 2 shows a polarity misconnection prevention diode. MO3 for power with reverse operation of prevention diodes and inert current carrying diodes
) - the principle connection diagram of a device according to the invention replaced by a transistor; FIG. 3 is a principle connection diagram of a device using a central charge pump for the bias voltage of several power MOS transistors; FIG. FIG. 3 is a basic connection diagram of an embodiment that does not require a load pump circuit; l...Electronic control circuit, 2...Inductive load, 6, 8...
-MOS turtle field effect transistor, 6a-6b, 8a-
8b...Opening/closing passage (source-drain).
Claims (1)
電子制御回路の前に接続されて誤つた極性の車載電源電
圧の印加を防止する保護手段と、誘導負荷に実質的に並
列接続されている少なくとも1つの惰性通電手段とを有
するものにおいて、保護手段及び惰性通電手段として、
任意のチャネル形のMOS電界効果トランジスタ(6、
8)の開閉通路即ちソース−ドレンが使用され、これら
のMOS電界効果トランジスタ(6、8)が順方向には
導通した逆方向動作で、また逆方向には不導通正常動作
で動作可能なように、MOS電界効果トランジスタの開
閉通路(6a−6b、8a−8b)が接続されているこ
とを特徴とする、自動車の誘導負荷の付勢装置。 2 電子制御回路(1)の前に接続されるMOS電界効
果トランジスタ(6)のゲート(6c)が、付勢装置の
車載電源端子(10、20)の間に接続される電荷ポン
プ(7a)に接続されていることを特徴とする、請求項
1に記載の装置。 3 誤つた極性の車載電源電圧が車載電源端子(10、
20)に印加されると、電荷ポンプ(7a)がMOS電
界効果トランジスタ(6)のゲート(6c)へこのMO
S電界効果トランジスタを不導通にする電位を与えるよ
うに、電荷ポンプ(7a)が極性取り違え接続防止を行
なうことを特徴とする、請求項2に記載の装置。 4 電荷ポンプ(7a)が集積電子制御回路(1)の構
成部分として大体モノリシックに構成されていることを
特徴とする、請求項2に記載の装置。 5 惰性通電手段として誘導負荷(2)に並列接続され
るMOS電界効果トランジスタ(8)のゲート(8c)
が、電子制御回路(1)に少なくとも間接に接続されて
いることを特徴とする、請求項1に記載の装置。 6 MOS電界効果トランジスタ(8)のゲート(8c
)が電荷ポンプ(7b)と共同作用して電子制御回路(
1)に接続されていることを特徴とする、請求項5に記
載の装置。 7 誘導負荷に動作電圧を印加する開閉器として、この
誘導負荷の前に直列接続されて正常な方向に導通可能な
MOS電界効果トランジスタ(3)が設けられ、このM
OS電界効果トランジスタのゲート(3c)が電子制御
回路 (1)により制御可能であることを特徴とする、請求項
1に記載の装置。 8 両方のMOS電界効果トランジスタ(3.8)が電
子制御回路(1)によりプッシュ・プルに制御可能であ
ることを特徴とする、請求項5及び7に記載の装置。 9 両方のMOS電界効果トランジスタ(3.8)が、
同時に導通しないように、交互に相補的に可変マーク対
スペース比で制御可能であることを特徴とする、請求項
8に記載の装置。 10 両方の電荷ポンプ(7a、7b)が同一で、ただ
1つの電荷ポンプ(7)により複数の異なる電位(12
a、12b、12c)を発生可能であることを特徴とす
る、請求項2及び6に記載の装置。 11 電子制御回路(1)の前に接続されるMOS電界
効果トランジスタ(6)のゲート(6c)が、保護抵抗
(13)を介して他方の車載電源端子(10)に接続さ
れていることを特徴とする、請求項1に記載の装置。[Claims] 1. An electronic control circuit having a signal input terminal and a signal output terminal;
protective means connected before the electronic control circuit to prevent the application of an on-board power supply voltage of incorrect polarity; and at least one inertial current-carrying means connected substantially in parallel to the inductive load. and as an inertial energizing means,
MOS field effect transistor of arbitrary channel shape (6,
8) is used to enable these MOS field effect transistors (6, 8) to operate in reverse operation with conduction in the forward direction and non-conduction normal operation in the reverse direction. An inductive load energizing device for an automobile, characterized in that an opening/closing path (6a-6b, 8a-8b) of a MOS field effect transistor is connected to the energizing device. 2. The gate (6c) of the MOS field effect transistor (6) connected in front of the electronic control circuit (1) is connected to the charge pump (7a) between the on-vehicle power supply terminals (10, 20) of the energizing device. Device according to claim 1, characterized in that it is connected to. 3 If the on-board power supply voltage with the wrong polarity is connected to the on-board power supply terminal (10,
20), the charge pump (7a) transfers this MO to the gate (6c) of the MOS field effect transistor (6).
3. Device according to claim 2, characterized in that the charge pump (7a) provides misconnection protection so as to provide a potential that renders the S field effect transistor non-conducting. 4. Device according to claim 2, characterized in that the charge pump (7a) is constructed essentially monolithically as a component of the integrated electronic control circuit (1). 5 Gate (8c) of MOS field effect transistor (8) connected in parallel to inductive load (2) as inertial current supply means
2. Device according to claim 1, characterized in that the is at least indirectly connected to the electronic control circuit (1). 6 Gate (8c) of MOS field effect transistor (8)
) cooperates with the charge pump (7b) to generate the electronic control circuit (
6. Device according to claim 5, characterized in that it is connected to 1). 7 As a switch that applies an operating voltage to the inductive load, a MOS field effect transistor (3) connected in series and capable of conducting in the normal direction is provided in front of the inductive load, and this M
2. Device according to claim 1, characterized in that the gate (3c) of the OS field effect transistor is controllable by an electronic control circuit (1). 8. Device according to claims 5 and 7, characterized in that both MOS field effect transistors (3.8) are push-pull controllable by the electronic control circuit (1). 9 Both MOS field effect transistors (3.8) are
9. Device according to claim 8, characterized in that it is controllable with a variable mark-to-space ratio in an alternating and complementary manner so as not to be conductive at the same time. 10 Both charge pumps (7a, 7b) are identical and only one charge pump (7) can handle several different potentials (12
Device according to claims 2 and 6, characterized in that it is capable of generating a, 12b, 12c). 11 Make sure that the gate (6c) of the MOS field effect transistor (6) connected in front of the electronic control circuit (1) is connected to the other vehicle power supply terminal (10) via the protective resistor (13). A device according to claim 1, characterized in that:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19883835662 DE3835662A1 (en) | 1988-10-20 | 1988-10-20 | Device for actuating inductive loads in a motor vehicle |
DE3835662.7 | 1988-10-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02179223A true JPH02179223A (en) | 1990-07-12 |
Family
ID=6365487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1270527A Pending JPH02179223A (en) | 1988-10-20 | 1989-10-19 | Energizing device for induced load of automobile |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPH02179223A (en) |
DE (1) | DE3835662A1 (en) |
SE (1) | SE8903437L (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005019532A (en) * | 2003-06-24 | 2005-01-20 | Nec Electronics Corp | On-vehicle power supply control device and controlling chip |
JP2008244487A (en) * | 2008-04-21 | 2008-10-09 | Renesas Technology Corp | Compound type mosfet |
DE112009000142T5 (en) | 2008-08-11 | 2010-11-18 | Autonetworks Technologies, Ltd., Yokkaichi-shi | Circuit for driving an inductive load |
CN102142681A (en) * | 2010-12-23 | 2011-08-03 | 聚信科技有限公司 | Method and device for preventing input reverse-connection damage |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4034845A1 (en) * | 1990-11-02 | 1992-05-07 | Bayerische Motoren Werke Ag | SWITCHING ARRANGEMENT IN MOTOR VEHICLES FOR THE CLOCKED SWITCHING ON OF INDUCTIVE CONSUMERS |
EP0495142B1 (en) * | 1991-01-16 | 1994-10-12 | Siemens Aktiengesellschaft | Protection against inverted polarity and overvoltage for circuit arrangements |
DE4137452A1 (en) * | 1991-11-14 | 1993-05-19 | Bosch Gmbh Robert | POLE PROTECTION ARRANGEMENT FOR POWER AMPLIFIER FIELD EFFECT TRANSISTORS |
DE4139378A1 (en) * | 1991-11-29 | 1993-06-03 | Hella Kg Hueck & Co | FET protective circuit against faulty polarisation - has diode incorporated between consumer junction point to DC voltage source and FET gate-terminal |
US5508906A (en) * | 1993-01-04 | 1996-04-16 | Motorola, Inc. | Low loss recirculation apparatus |
DE4432957C1 (en) * | 1994-09-16 | 1996-04-04 | Bosch Gmbh Robert | Switching means |
DE4434179A1 (en) * | 1994-09-24 | 1996-03-28 | Teves Gmbh Alfred | Circuit arrangement for monitoring a control circuit |
JP3485655B2 (en) * | 1994-12-14 | 2004-01-13 | 株式会社ルネサステクノロジ | Composite MOSFET |
DE19532484B4 (en) * | 1995-02-03 | 2005-08-25 | Robert Bosch Gmbh | Starting device for starting an internal combustion engine |
DE19506074A1 (en) * | 1995-02-22 | 1996-09-05 | Telefunken Microelectron | Circuit to protect vehicle components from inadvertent reversal of battery polarity or from negative voltage spikes |
DE19706946C2 (en) * | 1997-02-21 | 2000-06-21 | Daimler Chrysler Ag | Battier monitoring unit |
DE19715024B4 (en) * | 1997-04-11 | 2006-03-09 | Continental Teves Ag & Co. Ohg | Circuit arrangement for connecting electrical consumers to the power supply |
DE19851367C2 (en) * | 1998-11-06 | 2002-01-17 | Isad Electronic Sys Gmbh & Co | Functional group in a motor vehicle with an electrical energy store and an inductive load connected to it |
US6587027B1 (en) * | 2002-01-23 | 2003-07-01 | International Rectifier Corporation | Solid state fuse |
DE10349629B4 (en) * | 2003-10-24 | 2015-09-03 | Robert Bosch Gmbh | Electronic circuit |
SI23247A (en) * | 2009-12-18 | 2011-06-30 | Hidria AET DruĹľba za proizvodnjo vĹľignih sistemov in elektronike d.o.o. | Power circuit for controlling the flame glowing plug and magnetic valve |
JP5638488B2 (en) | 2011-09-07 | 2014-12-10 | 株式会社東芝 | Switch drive circuit, inverter device and power steering device |
DE102014218551B4 (en) * | 2014-09-16 | 2021-11-25 | Vitesco Technologies GmbH | Reverse polarity protection circuit for a motor vehicle electrical system and motor vehicle electrical system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3139987A1 (en) * | 1981-10-08 | 1983-04-28 | Robert Bosch Gmbh, 7000 Stuttgart | CONTROL DEVICE FOR AN ELECTROMAGNETIC CONSUMER IN A MOTOR VEHICLE, IN PARTICULAR A SOLENOID VALVE OR A CONTROL SOLENOID |
DE3535788A1 (en) * | 1985-09-03 | 1986-02-20 | Siemens AG, 1000 Berlin und 8000 München | Incorrect polarity protection for circuit arrangements |
-
1988
- 1988-10-20 DE DE19883835662 patent/DE3835662A1/en active Granted
-
1989
- 1989-10-18 SE SE8903437A patent/SE8903437L/en not_active Application Discontinuation
- 1989-10-19 JP JP1270527A patent/JPH02179223A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005019532A (en) * | 2003-06-24 | 2005-01-20 | Nec Electronics Corp | On-vehicle power supply control device and controlling chip |
JP2008244487A (en) * | 2008-04-21 | 2008-10-09 | Renesas Technology Corp | Compound type mosfet |
DE112009000142T5 (en) | 2008-08-11 | 2010-11-18 | Autonetworks Technologies, Ltd., Yokkaichi-shi | Circuit for driving an inductive load |
CN102142681A (en) * | 2010-12-23 | 2011-08-03 | 聚信科技有限公司 | Method and device for preventing input reverse-connection damage |
WO2012083738A1 (en) * | 2010-12-23 | 2012-06-28 | 华为技术有限公司 | Method and device for preventing input reverse-connection damage |
Also Published As
Publication number | Publication date |
---|---|
DE3835662C2 (en) | 1991-09-26 |
SE8903437L (en) | 1990-04-21 |
DE3835662A1 (en) | 1990-04-26 |
SE8903437D0 (en) | 1989-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02179223A (en) | Energizing device for induced load of automobile | |
CN102684140B (en) | Controlling a current between a source and a load | |
JP5311670B2 (en) | Semiconductor precharge module | |
US5999387A (en) | Current limiting device | |
US7593198B2 (en) | Relay circuit | |
JPH10150354A (en) | Switch device having power fet and short-circuit recognition part | |
US11400824B2 (en) | Electrical propulsion system architecture | |
JPS6215928A (en) | Control circuit for solid state power controller | |
US5109162A (en) | Reverse polarity flyback switch | |
US6369533B1 (en) | Piloting circuit for an inductive load in particular for a DC electric motor | |
US4839769A (en) | Driver protection circuit | |
CN111418148B (en) | Control circuit of multi-phase motor | |
KR20050044542A (en) | Circuit arrangement for the reliable switching of electrical circuits | |
WO2020217780A1 (en) | Load driving device | |
CN112075001B (en) | Motor ground protection | |
US20100127645A1 (en) | Electrical full bridge circuit configuration | |
JP2007014165A (en) | Reverse connection protection device for vehicles | |
JP2002175124A (en) | Power circuit for vehicle | |
US11716072B1 (en) | Time multiplexing voltage clamping in coil driving circuit for a contactor during quick turn off | |
JPH04354374A (en) | Hybrid switch | |
JP2014519306A (en) | Power supply circuit and reverse polarity protection circuit | |
CN113572345B (en) | Circuit assembly for a rectifier, rectifier, electric machine and method for operating an electric machine | |
JPH0389897A (en) | Drive for variable-reluctance motor | |
KR102613129B1 (en) | Power Transistor Protection Circuit And Electric Power Steering System Comprising The Protection Circuit | |
KR101178018B1 (en) | Solid state pre-charge module |