[go: up one dir, main page]

JPH02176458A - Inductively coupled plasma mass spectrometer - Google Patents

Inductively coupled plasma mass spectrometer

Info

Publication number
JPH02176458A
JPH02176458A JP63330419A JP33041988A JPH02176458A JP H02176458 A JPH02176458 A JP H02176458A JP 63330419 A JP63330419 A JP 63330419A JP 33041988 A JP33041988 A JP 33041988A JP H02176458 A JPH02176458 A JP H02176458A
Authority
JP
Japan
Prior art keywords
gas
flow rate
inductively coupled
coupled plasma
mass spectrometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63330419A
Other languages
Japanese (ja)
Inventor
Kazuo Yamanaka
一夫 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP63330419A priority Critical patent/JPH02176458A/en
Publication of JPH02176458A publication Critical patent/JPH02176458A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/105Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation, Inductively Coupled Plasma [ICP]

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To ensure the alignment of the axis of a torch readily and to make it possible to perform the optimum tuning of the mass by mixing a specified amount of standard gas into carrier gas, and introducing the mixed gas to the plasma torch. CONSTITUTION:A flow rate control device 22 is controlled at an ON state and a flow rate control device 24 is controlled at an OFF state with a controller 26 during analysis. Therefore, the flow rate of Ar gas from an Ar gas supply source 21 is adequately adjusted with the device 22. The Ar gas is supplied into a inductively coupled plasma mass spectrometer 28 through a fluid mixer 25 and a specimen introducing device 27. When a specimen is tuned, both devices 22 and 24 are controlled at the ON state. Standard gas is supplied from a supplying source 23 together with the Ar as the carrier gas. The alignment of the axis of a plasma torch and the better tuning of an ion lens can be performed for a wider range of mass by the combination of the standard gas (single element gas or other gas).

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、高周波誘導結合プラズマ質量分析計に係わり
、特に、プラズマトーチと質量分析計検出部のノズルと
の軸合わせ方法を改善した高周波誘導結合プラズマ質量
分析計に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a high-frequency inductively coupled plasma mass spectrometer, and in particular, to a high-frequency inductively coupled plasma mass spectrometer that improves the alignment method between a plasma torch and a nozzle of a mass spectrometer detection section. Concerning coupled plasma mass spectrometry.

〈従来の技術〉 高周波誘導結合プラズマ質量分析計は、高周波誘導結合
プラズマを用いて試料を励起させ、生じたイオンをノズ
ルとスキマーからなるインターフェイスを介して質量分
析計に導いて電気的に検出し該イオン量を精密に測定す
ることにより、試料中の被測定元素を高精度に分析する
ように構成されている。第2図は、このような高周波誘
導結合プラズマ質量分析計の従来例構成説明図である。
<Prior art> A high-frequency inductively coupled plasma mass spectrometer uses high-frequency inductively coupled plasma to excite a sample, guide the generated ions to a mass spectrometer through an interface consisting of a nozzle and a skimmer, and electrically detect them. By precisely measuring the amount of ions, the element to be measured in the sample is analyzed with high precision. FIG. 2 is an explanatory diagram of the configuration of a conventional example of such a high frequency inductively coupled plasma mass spectrometer.

この図において、プラズマトーチ1の外室1bと最外室
ICにはガス調節器2を介してアルゴンガス供給源3か
らアルゴンガスが供給され、内室1aには試料槽4内の
試料にレーザ光源5からのレーザ光が照射されて気化し
た試料がアルゴンガスによって搬入されるようになって
いる1、tな、プラズマトーチ1に巻回された高周波誘
導コイル6には高周波電源10によって高周波電流が流
され、該コイル6の周囲に高周波磁界(図示せず)が形
成されている。一方、ノズル8とスキマー9に挟まれた
フォアチャンバー本#:11内は、真空ポンプ12によ
って例えばI T o r r 、に吸引されている。
In this figure, argon gas is supplied to the outer chamber 1b and the outermost chamber IC of the plasma torch 1 from an argon gas supply source 3 via a gas regulator 2, and to the inner chamber 1a, a laser beam is applied to the sample in the sample tank 4. A high-frequency induction coil 6 wound around a plasma torch 1 is supplied with a high-frequency current by a high-frequency power source 10, and a sample vaporized by irradiation with a laser beam from a light source 5 is carried in by argon gas. is applied, and a high frequency magnetic field (not shown) is formed around the coil 6. On the other hand, the inside of the forechamber book #: 11 sandwiched between the nozzle 8 and the skimmer 9 is suctioned by a vacuum pump 12 to, for example, IT or r.

更に、センターチャンバー13内にはイオンレンズ14
a、14bが設けられると共に、該センターチャンバー
13の内部は第1油拡散ポンプ15によって例えば1O
−4Torr、に吸引され、マスフィルタ(例えば四重
径マスフィルタ)16を収容しているリアチャンバー1
7内は第2油拡散ポンプ18によって例えば10−’T
orr、に吸引されている。
Furthermore, an ion lens 14 is provided in the center chamber 13.
a, 14b are provided, and the interior of the center chamber 13 is heated by a first oil diffusion pump 15 to, for example, 1O
-4 Torr, and a rear chamber 1 containing a mass filter (e.g. quadruple diameter mass filter) 16
7, for example, 10-'T by the second oil diffusion pump 18.
It is attracted to orr.

この状態で上記高周波磁界の近傍でアルゴンガス中に電
子かイオンが植え付けられると、該高周波磁界の作用に
よって瞬時に高周波誘導プラズマ7が生ずる。該プラズ
マ7内のイオンは、ノズル8及びスキマー9を経由して
のちイオンレンズ14a、14b (若しくはダブレッ
ト四重径レンズ)の間を通って収束され、その後、マス
フィルタ16を通り二次電子増倍管19に導かれて検出
され、該検出信号が信号処理部20に送出されて演算・
処理されることによって前記試料中の被測定元素分析値
が求められるようになっている。
When electrons or ions are implanted in the argon gas in the vicinity of the high frequency magnetic field in this state, high frequency induced plasma 7 is instantaneously generated by the action of the high frequency magnetic field. The ions in the plasma 7 pass through a nozzle 8 and a skimmer 9, are focused between ion lenses 14a and 14b (or a doublet quadruple diameter lens), and then pass through a mass filter 16 to increase secondary electrons. The detection signal is sent to the signal processing unit 20 for calculation and processing.
By processing, the analysis value of the element to be measured in the sample can be obtained.

ところで、試料溶液をネプライザで霧化してプラズマト
ーチに導入する方法では、含有成分濃度が既知の標準試
料溶液を連続的に導入し被測定成分の信号強度が最大と
なるようにプラズマトーチのX軸およびY軸をずらせば
済むようになっていた。
By the way, in the method of atomizing the sample solution with a nebulizer and introducing it into the plasma torch, a standard sample solution with a known component concentration is continuously introduced, and the X-axis of the plasma torch is adjusted so that the signal intensity of the component to be measured is maximized. All you had to do was shift the y-axis and the y-axis.

一方、レーザーを試料に照射し該試料を加熱して気化さ
せるレーザアブレーション法や試料セル内に設けられて
いるタングステンなどに通電して試料を気化させるET
V(Electro  ’rhermal  Vapa
rization)法などにおいては、試料を連続的に
導入できない分析方法の場合、溶液法でトーチの軸合わ
せを行った後、トーチ位置を動かさないようにしてネプ
ライザ・スプレーチャンバーを取り去り、試料チューブ
をプラズマトーチに接続するようになっており、プラズ
マトーチの軸が多少ずれてしまうようになっていた。ま
た、高周波誘導結合プラズマを見ながら軸を大まかに合
わせるしかなく、A>’2 、C。
On the other hand, there is a laser ablation method in which a sample is irradiated with a laser to heat and vaporize the sample, and an ET method in which the sample is vaporized by passing electricity through tungsten or the like installed in a sample cell.
V (Electro 'rhermal Vapa
For analysis methods that do not allow continuous introduction of the sample, such as the solution method, after aligning the torch axis with the solution method, remove the nebulizer spray chamber without moving the torch position, and insert the sample tube into the plasma. It was designed to be connected to the torch, which caused the axis of the plasma torch to shift slightly. Also, the only way is to roughly align the axis while watching the high-frequency inductively coupled plasma, and A>'2,C.

Nなどバックグランド信号を利用した軸合わせでは、検
出された信号が最大となる高周波誘導結合プラズマの中
心に軸を合わせられないという欠点があった。また、信
号が短時間しか得られないなめ、イオンレンズ系のチュ
ーニングはバックグランドの信号A)’ ・A)” 、
Aro” 、O” 、N”などを利用するしかなく、目
的とする元素に最適な調整はできなかった。
Axis alignment using a background signal such as N has the drawback that the axis cannot be aligned to the center of the high frequency inductively coupled plasma where the detected signal is maximum. In addition, since the signal can only be obtained for a short time, the tuning of the ion lens system uses the background signal A)'・A)",
There was no choice but to use Aro'', O'', N'', etc., and it was not possible to make the optimum adjustment for the target element.

〈発明が解決しようとする問題点〉 本発明は、かかる従来例の問題に鑑みてなされものであ
り、その課題は、レーザ・アブレーションやETV法に
おけるプラズマトーチの軸合わせやイオンレンズ系のチ
ューニングを容易かつ確実に行なうことができるような
高周波誘導結合プラズマ質量分析計を提供することにあ
る。
<Problems to be Solved by the Invention> The present invention has been made in view of the problems of the prior art. The object of the present invention is to provide a high frequency inductively coupled plasma mass spectrometer that can be easily and reliably used.

く課題を解決するための手段〉 本発明は、プラズマトーチで生じる高周波誘導結合プラ
ズマを用いて試料を励起し生じたイオンを真空中に導入
しイオン光学系およびマスフィルタを通して質量分析計
検出器に導いて検出することにより試料中の被測定元素
を分析する分析計において、アルゴンガス供給源と、標
準カス供給源と、アルゴンガス用の流量制御装置と、標
準ガス用の流量制御装置と、流体混合器と、前記流量制
御装置をコントロールするコントローラと、試料導入部
とを設け、キャリアガス中に標準ガスを一定量混合して
前記プラズマ1−−チに導くことにより前記課題を解決
したものである。
Means for Solving the Problems> The present invention uses high-frequency inductively coupled plasma generated by a plasma torch to excite a sample, introduces the generated ions into a vacuum, and passes them through an ion optical system and a mass filter to a mass spectrometer detector. In an analyzer that analyzes elements to be measured in a sample by guiding and detecting them, an argon gas supply source, a standard gas supply source, a flow rate controller for argon gas, a flow rate controller for standard gas, and a fluid The above problem is solved by providing a mixer, a controller for controlling the flow rate control device, and a sample introducing section, and mixing a certain amount of standard gas into the carrier gas and guiding it to the plasma 1--1. be.

〈実施例〉 以下、本発明について区を用いて詳細に説明する。第1
図は本発明実施例の要部構成説明図であり、図中、21
はアルゴンガス供給源、22は例えばマスフローコント
ローラでなるアルゴンガス用の流量制御装置、23は標
準ガス供給源、24は標準ガス用の流量制御装置、25
は接続口25a〜25cを有する流体混合器、26は流
量制御装置22.24をコントロールするコントローラ
、27はレーザ・アブリレーションの試料セルやETV
の気化部でなる試料導入部、28は高周波誘導結合プラ
ズマ質量分析計である。尚、高周波誘導結合プラズマ質
量分析計全体の構成や動作は第2図を用いて詳述した前
記従来例の場合と同一であるため、ここでの重複説明は
省略する。
<Example> Hereinafter, the present invention will be explained in detail using sections. 1st
The figure is an explanatory diagram of the main part configuration of the embodiment of the present invention, and in the figure, 21
is an argon gas supply source, 22 is a flow rate control device for argon gas, such as a mass flow controller, 23 is a standard gas supply source, 24 is a flow rate control device for standard gas, 25
is a fluid mixer having connection ports 25a to 25c, 26 is a controller that controls the flow rate controllers 22 and 24, and 27 is a sample cell or ETV for laser ablation.
28 is a high frequency inductively coupled plasma mass spectrometer. The overall configuration and operation of the high-frequency inductively coupled plasma mass spectrometer are the same as those of the conventional example described in detail with reference to FIG. 2, and therefore redundant explanation will be omitted here.

第1図のような要部構成からなる本発明の実施例におい
て、分析時にはキャリアガスとしてアルゴンガスだけが
供給される。即ち、流量制御装置2224がコントロー
ラ26で制御され、流量制御部!22がONで流量制御
装置24がOFFにされる。このなめ、アルゴンガス供
給源21からのアルゴンガスが、流量制御装置22でV
、 7F11/min、の流量に調整されて流体混合器
25に供給され、その後、試料導入装置27を通って高
周波誘導結合プラズマ質量分析計28に供給される。一
方、試料のチューニング時には、キャリアガスとしてア
ルゴンガスと標準ガスの混合ガスが供給される。即ち、
流量制御装置22.24がコントローラ26で制御され
双方ともにONにされる。このため、アルゴンガス供給
源21からのアルゴンガスが、流量制御装置22でVI
7Wi’/min、の流量に調整されて流体混合器25
に供給されると共に、標準ガス供給源23がらの標準ガ
スが流量制御装置24でV2 ml/mi n、の流量
に調整されて流体混合器25に供給され混合されて流1
V7Fjl/min、となり(即ち、v1+V2=V)
 、その後、試料導入装置27を通って高周波誘導結合
プラズマ質量分析計28に供給される。この状態で、標
準ガスとして単元素ガス<Xe、にγなど)やその池の
ガス(必要な質量の元素を含む化合物のガスもしくは0
H31など)を供給する。その結果、例えばCH3Iを
用いた場合、129amu、131amuに安定する信
号を観察しながら、プラズマトーチの軸合わせやイオン
レンズのチューニングを行なえばよい、また、I重ガス
をいくつか組合わせて同時らしくは切換えて導入するこ
とで広い質量範囲に亘ってより良いチューニングが可能
となる。
In the embodiment of the present invention having the essential configuration as shown in FIG. 1, only argon gas is supplied as a carrier gas during analysis. That is, the flow rate control device 2224 is controlled by the controller 26, and the flow rate control unit! 22 is turned on, the flow rate control device 24 is turned off. At this point, the argon gas from the argon gas supply source 21 is
, 7F11/min, and is supplied to the fluid mixer 25, and then passed through the sample introduction device 27 and supplied to the high frequency inductively coupled plasma mass spectrometer 28. On the other hand, during sample tuning, a mixed gas of argon gas and standard gas is supplied as a carrier gas. That is,
Flow control devices 22 and 24 are controlled by controller 26 and both are turned on. Therefore, the argon gas from the argon gas supply source 21 is
The fluid mixer 25 is adjusted to a flow rate of 7Wi'/min.
At the same time, the standard gas from the standard gas supply source 23 is adjusted to a flow rate of V2 ml/min by the flow rate controller 24, and is supplied to the fluid mixer 25 and mixed to form the stream 1.
V7Fjl/min (i.e. v1+V2=V)
, and then supplied to a high frequency inductively coupled plasma mass spectrometer 28 through a sample introduction device 27. In this state, the standard gas can be a single element gas (such as a single element gas <
H31 etc.). As a result, for example, when using CH3I, all you have to do is align the plasma torch and tune the ion lens while observing the signals that stabilize at 129 amu and 131 amu.Also, you can combine several I heavy gases to make them appear at the same time. By switching and introducing , better tuning becomes possible over a wide mass range.

〈発明の効果〉 以上詳しく説明したような本発明によれば、レーザアブ
レーションやBTVのような測定のように過渡的な信号
しか得られない分析方法においても、トーチの組合わせ
を容易かつ確実に行なえるという利点がある。また、チ
ューニングが希望する質量数で行なえるなめ、その質量
に対する最適のチューニングが可能となる。
<Effects of the Invention> According to the present invention as described in detail above, torch combinations can be easily and reliably performed even in analysis methods that can only obtain transient signals, such as laser ablation and BTV measurements. The advantage is that it can be done. Furthermore, since tuning can be performed at a desired mass number, optimal tuning for that mass is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の要部構成説明図、第2図は高周
波誘導結合プラズマ質量分析計の全体的な構成説明図で
ある。 1・・・・・・プラズマトーチ、2・・・・・・流量制
御部、3・・・・・・アルゴンガス供給源、4・・・・
・・試料槽、5・・・・・・レーザー光源、6・・・・
・・高周波誘導コイル、7・・・・・・高周波誘導結合
プラズマ、8・・・・・・ノズル、9・・・・・・スキ
マー 11・・・・・・フォアチャンバ13・・・・・
・センターチャンバー 16・・・・・・マスフィルタ、17・・・・・・リア
チャンバー20・・・・・・信号処理部、
FIG. 1 is an explanatory diagram of the main part configuration of an embodiment of the present invention, and FIG. 2 is an explanatory diagram of the overall configuration of a high frequency inductively coupled plasma mass spectrometer. 1... Plasma torch, 2... Flow rate control unit, 3... Argon gas supply source, 4...
...Sample tank, 5...Laser light source, 6...
...High frequency induction coil, 7...High frequency inductively coupled plasma, 8...Nozzle, 9...Skimmer 11...Fore chamber 13...
・Center chamber 16... Mass filter, 17... Rear chamber 20... Signal processing section,

Claims (1)

【特許請求の範囲】[Claims] プラズマトーチで生じる高周波誘導結合プラズマを用い
て試料を励起し生じたイオンを真空中に導入しイオン光
学系およびマスフィルタを通して質量分析計検出器に導
いて検出することにより試料中の被測定元素を分析する
分析計において、アルゴンガス供給源と、標準ガス供給
源と、アルゴンガス用の流量制御装置と、標準ガス用の
流量制御装置と、流体混合器と、前記流量制御装置をコ
ントロールするコントローラと、試料導入部とを具備し
、キャリアガス中に標準ガスを一定量混合して前記プラ
ズマトーチに導くことを特徴とする高周波誘導結合プラ
ズマ質量分析計。
The sample is excited using high-frequency inductively coupled plasma generated by a plasma torch, and the generated ions are introduced into a vacuum and guided to a mass spectrometer detector through an ion optical system and a mass filter for detection, thereby detecting the element to be measured in the sample. An analyzer for analysis includes an argon gas supply source, a standard gas supply source, a flow rate control device for argon gas, a flow rate control device for standard gas, a fluid mixer, and a controller that controls the flow rate control device. A high frequency inductively coupled plasma mass spectrometer, comprising: a sample introduction section, and a carrier gas mixed with a certain amount of a standard gas and introduced into the plasma torch.
JP63330419A 1988-12-27 1988-12-27 Inductively coupled plasma mass spectrometer Pending JPH02176458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63330419A JPH02176458A (en) 1988-12-27 1988-12-27 Inductively coupled plasma mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63330419A JPH02176458A (en) 1988-12-27 1988-12-27 Inductively coupled plasma mass spectrometer

Publications (1)

Publication Number Publication Date
JPH02176458A true JPH02176458A (en) 1990-07-09

Family

ID=18232394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63330419A Pending JPH02176458A (en) 1988-12-27 1988-12-27 Inductively coupled plasma mass spectrometer

Country Status (1)

Country Link
JP (1) JPH02176458A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086124A (en) * 2004-09-13 2006-03-30 Agilent Technol Inc Sampling device equipped with a plurality of inlets for ion sources of mass spectrometer
CN104849118A (en) * 2015-05-26 2015-08-19 中国农业科学院农业质量标准与检测技术研究所 Inductively coupled plasma mass spectrometer coupling interface device and analysis method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326571A (en) * 1986-07-18 1988-02-04 Shimadzu Corp Analyzing instrument directly coupled to ultracritical fluid chromatograph and mass spectrometer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326571A (en) * 1986-07-18 1988-02-04 Shimadzu Corp Analyzing instrument directly coupled to ultracritical fluid chromatograph and mass spectrometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086124A (en) * 2004-09-13 2006-03-30 Agilent Technol Inc Sampling device equipped with a plurality of inlets for ion sources of mass spectrometer
CN104849118A (en) * 2015-05-26 2015-08-19 中国农业科学院农业质量标准与检测技术研究所 Inductively coupled plasma mass spectrometer coupling interface device and analysis method

Similar Documents

Publication Publication Date Title
JP2543761B2 (en) Inductively coupled plasma mass spectrometer
CN206237661U (en) Hybrid generator, the system including it, mass spectrograph and chemical reactor
JP2922647B2 (en) Interference reduction in plasma source mass spectrometers
CA2608528C (en) Boost devices and methods of using them
JPH02176458A (en) Inductively coupled plasma mass spectrometer
JP2000164169A (en) Mass spectrometer
JPH09127060A (en) Method and apparatus for mass spectrometry of solutions
JP2789641B2 (en) High frequency inductively coupled plasma mass spectrometer
JP2836190B2 (en) High frequency inductively coupled plasma analyzer
JP4585069B2 (en) Inductively coupled plasma mass spectrometry apparatus and method
JP2005251546A (en) ICP-MS plasma interface for high melting point matrix samples
JPH02227653A (en) Inductively coupled plasma mass spectrometer
JP3038839B2 (en) High frequency inductively coupled plasma mass spectrometer
JPH02216047A (en) High frequency induction coupling plasma mass spectrograph
JP6959261B2 (en) Oscillator generator and how to use it
US20240074024A1 (en) Steered inductively coupled plasma
JP2956139B2 (en) Quadrupole mass filter
JPH04104449A (en) High-frequency induction plasma mass spectrograph
JPH03114130A (en) High frequency inductively coupled plasma mass spectrometer
JP3154831B2 (en) Inductively coupled plasma mass spectrometer
JPH07282771A (en) Plasma igniting method for high frequency induction coupling plasma analyzer
JPH0465059A (en) High frequency induction coupling plasma mass spectrograph
JPH0638371Y2 (en) Sample introduction device
JP2926949B2 (en) High frequency inductively coupled plasma mass spectrometer
JP3123654B2 (en) High frequency inductively coupled plasma mass spectrometer