[go: up one dir, main page]

JPH02176411A - Surface-waviness checking apparatus and optical quantity correcting method thereof - Google Patents

Surface-waviness checking apparatus and optical quantity correcting method thereof

Info

Publication number
JPH02176411A
JPH02176411A JP33045588A JP33045588A JPH02176411A JP H02176411 A JPH02176411 A JP H02176411A JP 33045588 A JP33045588 A JP 33045588A JP 33045588 A JP33045588 A JP 33045588A JP H02176411 A JPH02176411 A JP H02176411A
Authority
JP
Japan
Prior art keywords
light
amount
received
reflectance
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33045588A
Other languages
Japanese (ja)
Inventor
Shinichi Wakana
伸一 若菜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP33045588A priority Critical patent/JPH02176411A/en
Publication of JPH02176411A publication Critical patent/JPH02176411A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To remove the effect of fluctuation in reflectivity and to make it possible to perform highly accurate checking by controlling the quantity of light emitted from a light-emission driving means through a feedback means from the quantity of received light from a received light detecting means. CONSTITUTION:A feedback means 16 is provided between a received light detecting means 13 and a light-emission driving means 12. A driving signal ID (quantity of emitted light) which is outputted from the light-emission driving means 12 is controlled a received light signal S11 (quantity of received light) which is outputted from the received light detecting means 13. Therefore, the fluctuation of reflectivity rho of the surface of a material to be measured 17 is automatically incorporated in the received light signal S11 which is proportional to the quantity of the received light. Thus, the driving current ID which is proportional to the quantity of the emitted laser light L11 can be controlled by the received light signal incorporating the reflectivity rho all the time. The effect of the reflectivity can be corrected automatically.

Description

【発明の詳細な説明】 〔概要〕 表面うねり検査装置、特に磁気ディスクや半導体ウェハ
等の被測定物に半導体レーザー光を照射して、その表面
うねり状態を計測する装置に関し、半導体レーザー投光
系の発光光量の制御について、被測定物の表面の反射率
の変動を無関係にすることなく、受光検出系の受光光量
の規格化処理を省き、かつ該反射率の変動の影響を取り
除き、高精度にその検査することを目的とし、発光手段
と、発光駆動手段と、受光検出手段と、制御手段とを具
備し、前記発光手段からのレーザー光を被測定物に出射
し、前記被測定物からの反射光を受光検出して、前記被
測定物の表面うねりを検査する表面うねり検査装置にお
いて、前記受光検出手段と発光駆動手段との間に帰還手
段を設け、前記受光検出手段から出力される受光光量に
基づいて、前記発光駆動手段から出力される発光光量を
制御することを含み構成し、 発光手段と、発光駆動手段との間に、出力制限手段が設
けられ、前記発光駆動手段から出力される発光光量が、
任意の設定値を越えると遮断され、かつ前記制御手段に
遮断情報を出力することを含み構成する。
[Detailed Description of the Invention] [Summary] The present invention relates to a surface waviness inspection device, particularly a device that measures the state of surface waviness by irradiating a semiconductor laser beam onto an object to be measured such as a magnetic disk or a semiconductor wafer. Regarding the control of the amount of emitted light, it is possible to achieve high accuracy by omitting the normalization process of the amount of light received by the light receiving detection system and removing the influence of changes in the reflectance, without making changes in the reflectance of the surface of the object to be measured irrelevant. The apparatus is equipped with a light emitting means, a light emission driving means, a light receiving detection means, and a control means, and the laser beam from the light emitting means is emitted to the object to be measured, and the laser beam is emitted from the object to be measured. In the surface waviness inspection device for inspecting the surface waviness of the object to be measured by receiving and detecting the reflected light of The structure includes controlling the amount of light emitted from the light emitting driving means based on the amount of received light, and an output limiting means is provided between the light emitting means and the light emitting driving means, and the output from the light emitting driving means is controlled. The amount of light emitted is
The configuration includes shutting off when an arbitrary set value is exceeded and outputting shut-off information to the control means.

〔産業上の利用分野〕[Industrial application field]

本発明は、表面うねり検査装置及びその光量補正方法に
関するものであり、更に詳しく言えば、磁気ディスクや
半導体ウェハ等の被測定物の表面うねり状態を計測する
装置及びその投受光系の光量を補正する方法に関するも
のである。
The present invention relates to a surface waviness inspection device and a method for correcting the amount of light therefor. More specifically, the present invention relates to a device for measuring the state of surface waviness of an object to be measured such as a magnetic disk or a semiconductor wafer, and a method for correcting the light amount of its light emitting/receiving system. It's about how to do it.

近年、レーザー光を被検査対象に照射し、非接触、非破
壊で、半導体ウェハ等の高精度研磨面の表面うねり形状
を計測する表面うねり検査装置が用いられている。この
とき、被検査対象の表面の反射率は、常に一定ではない
、この反射率の変動は、受光光量に含まれ、測定誤差を
誘起するものとなる。
BACKGROUND ART In recent years, surface waviness inspection devices have been used that non-contact and non-destructively measure the surface waviness shape of a high-precision polished surface of a semiconductor wafer or the like by irradiating a laser beam onto an object to be inspected. At this time, the reflectance of the surface of the object to be inspected is not always constant, and variations in this reflectance are included in the amount of received light and induce measurement errors.

従って、反射率のむらを起因とする受光光量のバラツキ
は、総受光光量により規格化したり、別の監視系を導入
して、表面反射率により規格化したりして、補正されて
いる。
Therefore, variations in the amount of received light due to unevenness in reflectance are corrected by normalizing by the total amount of received light, or by introducing another monitoring system and normalizing by surface reflectance.

しかし、別の監視系を導入することは、検査コストの上
昇を招き、また反射率が変動する毎に総受光光量を算出
して、受光光量を規格化することは検査処理に長い時間
を要し、これにより検査の高速化を図ることができない
という問題がある。
However, introducing a separate monitoring system will increase inspection costs, and calculating the total amount of light received every time the reflectance changes and standardizing the amount of light received will require a long time for the inspection process. However, this poses a problem in that it is not possible to speed up the inspection.

そこで、被測定対象の反射率の変動に拘らず、総受光光
量を常に一定となるように発光光量を制御する装置及び
光量補正方法の要求がある。
Therefore, there is a need for a device and a light amount correction method that control the amount of emitted light so that the total amount of received light is always constant regardless of changes in the reflectance of the object to be measured.

〔従来の技術〕[Conventional technology]

第6.7図は、従来例に係る説明図である。 FIG. 6.7 is an explanatory diagram of a conventional example.

第6図は、従来例の表面うねり検査装置に係る構成図で
ある。
FIG. 6 is a configuration diagram of a conventional surface waviness inspection device.

図において、1は半導体レーザー投光系、2は半導体レ
ーザー駆動電源、3は4分割検出器、4は電流電圧変換
回路、5は制御回路、Slは受光信号、S2は差分出力
、S3は受光光量和出力をそれぞれ示している。
In the figure, 1 is a semiconductor laser projection system, 2 is a semiconductor laser drive power supply, 3 is a 4-split detector, 4 is a current-voltage conversion circuit, 5 is a control circuit, Sl is a light reception signal, S2 is a differential output, and S3 is light reception Each shows the light quantity sum output.

表面うねり検査装置は、半導体ウェハ等の被測定物6に
レーザー光L1を照射し、その反射光L2を4分割光検
出器3、電流電圧変換回路4及び制御回路5により光電
変換処理し、被測定物6の表面うねり状態を検出結果デ
ータDOTとして出力するものである。
The surface waviness inspection device irradiates the object to be measured 6, such as a semiconductor wafer, with a laser beam L1, and photoelectrically converts the reflected light L2 by a 4-split photodetector 3, a current-voltage conversion circuit 4, and a control circuit 5. The state of surface waviness of the measurement object 6 is output as detection result data DOT.

第7図(a)、(b)は、従来例の光量補正方法に係る
説明図であり、同図(a)は、半導体レーザー投光系の
駆動制御に係る説明図を示してい同図(a)において、
半導体レーザー投光系lは同一パッケージ内に形成され
た発光素子1aと、受光素子1bと、基板1cから成る
。レーザー光Llの発光光量は、発光素子1aに流入す
る駆動電流IDの制御により一定に保たれている。この
制御は、受光素子lbから出力された受光素子出力電流
iPDを入力して、半導体レーザー駆動電源2が駆動電
流IDの出力制御することにより行われている。
FIGS. 7(a) and 7(b) are explanatory diagrams relating to a conventional light amount correction method, and FIG. 7(a) is an explanatory diagram relating to drive control of a semiconductor laser projection system. In a),
The semiconductor laser projection system 1 includes a light emitting element 1a, a light receiving element 1b, and a substrate 1c formed in the same package. The amount of light emitted by the laser beam Ll is kept constant by controlling the drive current ID flowing into the light emitting element 1a. This control is performed by inputting the light receiving element output current iPD output from the light receiving element lb and controlling the output of the driving current ID by the semiconductor laser driving power supply 2.

同図(b)は、4分割光検出器の受光領域の模式図であ
る。
FIG. 2B is a schematic diagram of a light receiving area of a four-part photodetector.

図において、A、B、C,Dは、各分割領域における受
光光量であり、4分割された受光領域で、反射光L2を
検出したものである0反射光L2の入射位置は、被測定
物7の表面の傾斜角ρの変動と共に変動する。また、反
射率ρの変動は、受光光量の変動となる。この時、反射
率ρの変動は、被測定物6の表面うねり形状を表す入射
光位置変移量とは異なる。従って、反射率ρの変動は、
披測定物7の表面うねり形状の真の測定に悪影響を与え
る。この反射率ρの変動による影響を取り除くため、次
の方法がなされている。
In the figure, A, B, C, and D are the amount of light received in each divided region, and the reflected light L2 is detected in the four divided light receiving regions.The incident position of the reflected light L2 is the 7 varies with variations in the inclination angle ρ of the surface. Further, a variation in the reflectance ρ results in a variation in the amount of received light. At this time, the variation in the reflectance ρ is different from the amount of change in the position of the incident light representing the surface waviness shape of the object 6 to be measured. Therefore, the variation in reflectance ρ is
This adversely affects the true measurement of the surface waviness shape of the object 7 to be measured. In order to eliminate the influence of this variation in reflectance ρ, the following method has been used.

第1の方法は、補正率xi、x2により反射率ρの変動
を含んだ差分受光光量を較正するものである。これは、
総光光光量X=A+B+C+Dを以って、差分受光光量
(A+B)−(C+D)又は(A+D)−(B+C)を
規格化するものである。ここで、総受光光量A十B+C
+Dは、被測定物6の表面の反射率ρが変動する毎に制
御n回路5により演算される。
The first method is to calibrate the differential amount of received light including the fluctuation of the reflectance ρ using correction factors xi and x2. this is,
The differential received light amount (A+B)-(C+D) or (A+D)-(B+C) is normalized using the total light amount X=A+B+C+D. Here, the total amount of received light A+B+C
+D is calculated by the control n circuit 5 every time the reflectance ρ of the surface of the object to be measured 6 changes.

また、第2の方法は、別の反射率測定用のセンサ系を導
入し、表面反射率を検出して、差分受光光量(A+B)
−(C+D)、(A+D)−(B+Hを規格化し、その
影響を取り除くものである。
In addition, the second method introduces another sensor system for measuring reflectance, detects the surface reflectance, and calculates the difference in the amount of received light (A+B).
-(C+D), (A+D)-(B+H are normalized and their influence is removed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで従来例によれば、半導体レーザー投光系1は、
半導体レーザー駆動電源2によりフィードバック制御さ
れ、レーザー光L1が一定に保たれている。また受光検
出系では、第7図(b)のような第1の方法や前述の第
2の方法により被測定物6の表面の反射率の変動の影響
を取り除いている。
By the way, according to the conventional example, the semiconductor laser projection system 1 is as follows.
Feedback control is performed by the semiconductor laser drive power supply 2, and the laser light L1 is kept constant. Furthermore, in the light receiving and detecting system, the influence of fluctuations in reflectance on the surface of the object to be measured 6 is removed by the first method as shown in FIG. 7(b) and the second method described above.

このため、次のような問題を生ずる。This causes the following problems.

■半導体レーザー投光系1は、発光光景について被測定
物7の反射率ρの変動に無関係に駆動電流IDを制御し
ている。
(2) The semiconductor laser projection system 1 controls the drive current ID regardless of the fluctuation of the reflectance ρ of the object to be measured 7 regarding the light emission scene.

■第1.の方法によれば、反射率ρが変動する毎に総受
光光量X−A+B十C+Dの加算処理等の演算処理を必
要とする。これにより全体的に検査処理の高速化を図る
ことができない。
■First. According to the method, calculation processing such as addition processing of the total amount of received light X-A+B+C+D is required every time the reflectance ρ changes. This makes it impossible to speed up the inspection process as a whole.

■第2の方法によれば、反射率測定用のセンサ系の導入
を必要とする。これにより検査コスト上昇を招く。
(2) According to the second method, it is necessary to introduce a sensor system for measuring reflectance. This causes an increase in inspection costs.

本発明は、係る従来例の問題点に鑑み創作されたもので
あり、半導体レーザー投光系の発光光量の制御について
、被測定物の表面の反射率の変動を無関係にすることな
く、受光検出系の受光光量の規格化処理を省き、かつ該
反射率の変動の影響を取り除き、高精度にその検査をす
ることを可能とする表面うねり検査装置及びその光量補
正方法の提供を目的とする。
The present invention was created in view of the problems of the conventional example, and it is possible to detect light reception without making the fluctuation of the reflectance of the surface of the object to be measured irrelevant for controlling the amount of light emitted by a semiconductor laser projection system. It is an object of the present invention to provide a surface waviness inspection device and a light amount correction method thereof, which can omit the standardization process of the amount of light received by the system, remove the influence of fluctuations in the reflectance, and perform inspection with high accuracy.

〔課題を解決するだめの手段] 第1. 2図は、本発明の表面うねり検査装置及びその
光量補正方法に係る原理図をそれぞれ示している。
[Means to solve the problem] 1. FIG. 2 each shows a principle diagram of the surface waviness inspection device and the light amount correction method of the present invention.

その装置は、発光手段11と、発光駆動手段12と、受
光検出手段13と、制御手段14とを具備し、前記発光
手段11からのレーザー光L11を被測定物17に出射
し、前記被測定物17からの反射光L22を受光検出し
て、前記被測定物17の表面うねりを検査する表面うね
り検査装置において、前記受光検出手段13と発光駆動
手段12との間に帰還手段16を設け、前記受光検出手
段13から出力される受光信号311(受光光量)に基
づいて、前記発光駆動手段12から出力される駆動信号
rD(発光光量)を制御することを特徴とし、 発光手段11と、発光駆動手段12との間に、出力制限
手段15が設けられ、前記発光駆動手段12から出力さ
れる駆動信号ID(発光光M)が、任意の設定値SRを
越えると遮断され、かつ前記制御手段14に遮断情報S
13を出力することを特徴とし、 その方法は、任意の反射率ρををする被測定物17にレ
ーザー光L11を照射し、前記被測定物17からの反射
光L21を受光検出し、前記受光検出された反射率ρの
影響を含む総光光光量を常に一定になるように、前記レ
ーザー光L11の発光光量を制御することを特徴とし、
上記目的を達成する。
The device includes a light emitting means 11, a light emission driving means 12, a light reception detecting means 13, and a control means 14, and emits a laser beam L11 from the light emitting means 11 to an object to be measured 17, and In the surface waviness inspection device for detecting the reflected light L22 from the object 17 to inspect the surface waviness of the object to be measured 17, a feedback means 16 is provided between the light reception detecting means 13 and the light emission driving means 12, The drive signal rD (light emission amount) output from the light emission driving means 12 is controlled based on the light reception signal 311 (light reception light amount) output from the light reception detection means 13, and the light emission means 11 and the light emission An output limiting means 15 is provided between the driving means 12 and is cut off when the driving signal ID (emitted light M) outputted from the light emitting driving means 12 exceeds an arbitrary set value SR. Blocking information S on 14
The method is to irradiate a laser beam L11 to a measured object 17 having an arbitrary reflectance ρ, receive and detect reflected light L21 from the measured object 17, and detect the reflected light L21 from the measured object 17. The light emission amount of the laser beam L11 is controlled so that the total light amount including the influence of the detected reflectance ρ is always constant,
Achieve the above objectives.

〔作用〕[Effect]

本発明の装置によれば、受光検出手段13がら出力され
る受光信号S11を帰還手段16により発光駆動子rL
12に帰還している。
According to the device of the present invention, the light reception signal S11 outputted from the light reception detection means 13 is transmitted to the light emission driver rL by the feedback means 16.
He returned to the 12th.

このため、被測定物の表面の反射率ρの変動は、受光光
量に比例する受光信号S11に自動的に含まれる。従っ
て、レーザー光L11の発光光量に比例する駆動電流I
Dについて、常に反射率ρを含んだ受光信号により制御
することが可能となる。
Therefore, fluctuations in the reflectance ρ of the surface of the object to be measured are automatically included in the light reception signal S11 that is proportional to the amount of light received. Therefore, the driving current I is proportional to the amount of light emitted by the laser beam L11.
D can always be controlled using a light reception signal that includes the reflectance ρ.

これにより、被測定対象の反射率の変動に拘らず、聴受
光光量を常に一定にすることが可能となる。
This makes it possible to always keep the amount of light heard and received constant regardless of changes in the reflectance of the object to be measured.

また、本発明の装置によれば、発光駆動手段12から出
力される駆動電流IDが、任意の設定値【Rを越えると
、出力制限手段15により遮断され、その遮断情報が制
御手段14に出力される。
Furthermore, according to the device of the present invention, when the drive current ID output from the light emitting drive means 12 exceeds an arbitrary set value [R, the output limiting means 15 cuts off the cutoff information, and the cutoff information is output to the control means 14. be done.

このため、被測定物の表面の反射率ρの変動が激しく、
投受光系の聴受光光景の制御口4!(aから大きく外れ
た場合、表面うねり状態の計測を中断し、その異常発生
を認知することが可能となる。
For this reason, the reflectance ρ of the surface of the object to be measured fluctuates sharply.
Control port 4 for the listening/receiving sight of the light emitting/receiving system! (If it deviates significantly from a, it is possible to interrupt the measurement of the surface waviness state and recognize the occurrence of the abnormality.

このとき、出力制限手段15によって、発光手段11に
過大な電流が印加されることを防止でき、発光手段11
を保護することが可能となる。
At this time, the output limiting means 15 can prevent excessive current from being applied to the light emitting means 11.
It becomes possible to protect the

さらに、本発明の方法によれば、反射率ρの影響を含む
聴受光光量を常に一定になるようにレーザー光L11の
発光光量を制御している。
Further, according to the method of the present invention, the amount of light emitted by the laser beam L11 is controlled so that the amount of light that is heard and received, including the influence of the reflectance ρ, is always constant.

このため、従来のように被測定物の反射率の変動を起因
とする受光光量のバラツキを、総受光光11X−A+B
+C+Dや別のセンサ系を導入して表面反射率により規
格化する処理が不要となる。
For this reason, the total received light 11X-A+B
There is no need to introduce +C+D or another sensor system and normalize it by surface reflectance.

従って、規格化に係る加算処理時間及び割り頁処理時間
について、検査処理時間の短縮を図ることが可能となる
Therefore, it is possible to reduce the inspection processing time with respect to the addition processing time and page division processing time related to standardization.

これにより、制御回路14の負担が軽減され、全体とし
て、表面うねり検査処理の高速化をすることが可能とな
る。
This reduces the burden on the control circuit 14 and makes it possible to speed up the surface waviness inspection process as a whole.

〔実施例〕〔Example〕

次に図を参照しながら本発明の実施例について説明をす
る。
Next, embodiments of the present invention will be described with reference to the drawings.

第3〜5図は、本発明の実施例に係る表面うねり検査装
置及びその光量補正方法を説明する図であり、第3図は
、本発明の実施例の表面検査装置の構成図を示している
3 to 5 are diagrams for explaining a surface waviness inspection device and its light amount correction method according to an embodiment of the present invention, and FIG. 3 shows a configuration diagram of the surface inspection device according to an embodiment of the present invention. There is.

図において、21は発光手段11の一実施例となる半導
体レーザー投光系であり、半導体ウェハ27等の被測定
物にレーザー光L21を照射するものである。22は、
発光駆動手段12の一実施例となる半導体レーザー駆動
電源であり、半導体レーザー投光系21に駆動電源ID
を供給するものである。
In the figure, numeral 21 is a semiconductor laser projection system which is an embodiment of the light emitting means 11, and is used to irradiate an object to be measured such as a semiconductor wafer 27 with laser light L21. 22 is
This is a semiconductor laser driving power source which is an example of the light emitting driving means 12, and a driving power source ID is provided to the semiconductor laser projection system 21.
It is intended to supply

23aは、4分割光検出回路、23bは電流/電圧変換
回路であり、受光検出手段13の一実施例である。4分
割光検出回路23aは、半導体ウェハ27等からの反射
光L22を受光検出するものである。電流電圧変換回路
23bは4分割光検出回路23aに取り込んだ受光光量
を光電変換し、さらに光起電流を電圧に変換して、受光
信号S11や受光検出信号312を出力するものである
。受光信号S11は、4分割光検出回路23aに取り込
んだ聴受光光量を電流/電圧変換した信号である。また
、受光検出信号S12は4分割光検出回路23の縦、横
方向の2つの差分出力(■A+VB)−(VC+VD)
 と、(VA+VD)−(VB士VC)から成る。
23a is a four-division light detection circuit, and 23b is a current/voltage conversion circuit, which is an embodiment of the light reception detection means 13. The four-division light detection circuit 23a receives and detects reflected light L22 from the semiconductor wafer 27 and the like. The current-voltage conversion circuit 23b photoelectrically converts the amount of light received by the four-division photodetection circuit 23a, further converts the photovoltaic current into voltage, and outputs the light reception signal S11 and the light reception detection signal 312. The light reception signal S11 is a signal obtained by converting the amount of light received and heard into the four-division light detection circuit 23a into a current/voltage. In addition, the light reception detection signal S12 is the vertical and horizontal difference output of the 4-division light detection circuit 23 (■A+VB) - (VC+VD)
and (VA+VD)-(VB-VC).

コノ差分出力(vA+VB)−(VC+VD)と(VA
+VD)−(VB+VC) とは、反射光L22の位置
変位量に比例する量である。
Kono differential output (vA+VB) - (VC+VD) and (VA
+VD)-(VB+VC) is an amount proportional to the amount of positional displacement of the reflected light L22.

24は制御手段14の一実施例となるCPU (中央演
算処理装置)であり、予め反射光L22の位置データか
ら角度データ等の表面うねり形状を認知する変換テーブ
ルを保持している。
A CPU (Central Processing Unit) 24 is an embodiment of the control means 14, and holds in advance a conversion table for recognizing the surface waviness shape such as angle data from the position data of the reflected light L22.

CPU24は、受光検出信号S12や異常検出信号S1
3を入力して、変換テーブルに保持する角度データ等に
基づいて、半導体ウニ八27の表面うねり状態を検出結
果データDO’Tにして出力するものである。
The CPU 24 receives the light reception detection signal S12 and the abnormality detection signal S1.
3 is input, and the surface waviness state of the semiconductor sea urchin 27 is output as detection result data DO'T based on the angle data held in the conversion table.

25は、出力制限手段15の一実施例となる電流リミッ
タ回路であり、第4図(a)にその構成図を示している
。これは、ある設定値IRを越えた駆動電流IDを、自
動遮断する機能を有している。また、電流リミッタ回路
25は駆動電流!Dを遮断したとき、その情報を異常検
出信号S13にして、CPU24に通知する機能を有し
ているなお、設定値!Rは、CPU24の設定信号S1
4により決定される。
Reference numeral 25 denotes a current limiter circuit which is an embodiment of the output limiting means 15, and a configuration diagram thereof is shown in FIG. 4(a). This has a function of automatically cutting off the drive current ID that exceeds a certain set value IR. In addition, the current limiter circuit 25 has a drive current! When D is shut off, the information is converted into an abnormality detection signal S13 and has a function of notifying the CPU 24. R is the setting signal S1 of the CPU 24
4.

異常検出信号S13は、半導体ウェハ27等の表面が塵
の付着等を示す異常事態発生の通知信号である。これは
、半導体ウェハ等の表面の塵の付着や傷等により、反射
率が著しく低下し、これに見合う半導体レーザー投光系
の発生光量を増加すべく、駆動電流TDが設定値!Rを
越え、発生したものである。
The abnormality detection signal S13 is a notification signal of the occurrence of an abnormal situation indicating adhesion of dust or the like on the surface of the semiconductor wafer 27 or the like. This is because the reflectance is significantly reduced due to dust adhesion or scratches on the surface of semiconductor wafers, etc., and in order to increase the amount of light generated by the semiconductor laser projection system to compensate for this, the drive current TD is set to a value! This occurred after exceeding R.

26は、帰還手段16の一実施例となる利得制御回路で
あり、受光信号S11が希望する制御値にない場合、そ
れを調整するものである。なおSwlは、選択スイッチ
であり、利得制御回路26を省略するものである。これ
は、受光信号311が希望する制御値を満足するとき、
b点を選択して利得制御回路26をパスするものである
A gain control circuit 26 is an embodiment of the feedback means 16, and is used to adjust the received light signal S11 when it is not at a desired control value. Note that Swl is a selection switch, and the gain control circuit 26 is omitted. This means that when the light reception signal 311 satisfies the desired control value,
Point b is selected and the gain control circuit 26 is passed.

これ等により、本発明の実施例に係る表面うねり検査装
置を構成する。
These constitute a surface waviness inspection device according to an embodiment of the present invention.

第4図(a)、  (b)は、本発明の実施例の表面う
ねり装置に係る説明図であり、同図(a)は電流リミッ
タ回路の構成図である。
FIGS. 4(a) and 4(b) are explanatory diagrams of a surface waviness device according to an embodiment of the present invention, and FIG. 4(a) is a configuration diagram of a current limiter circuit.

同図(a)において、電流リミッタ回路25はオペアン
プ51、コンパレータ52、抵抗器R。
In the same figure (a), the current limiter circuit 25 includes an operational amplifier 51, a comparator 52, and a resistor R.

リレースイッチSW2等から成る。It consists of relay switch SW2 etc.

半導体レーザー駆動電流22より出力された駆動電流r
Dは、ある設定値rR以上になると、リレースイッチS
W2が動作し、半導体レーザー投光系21への流入が遮
断される。設定値IRは、半導体レーザー投光系21の
発光素子の破壊等を見込んで決定される。
The drive current r output from the semiconductor laser drive current 22
When D exceeds a certain set value rR, relay switch S is activated.
W2 operates, and the inflow to the semiconductor laser projection system 21 is blocked. The set value IR is determined in anticipation of damage to the light emitting element of the semiconductor laser projection system 21, etc.

同図(b)は、反射率ρをパラメータとして舵受光光量
と駆動電流との関係を示す図である。
FIG. 5B is a diagram showing the relationship between the amount of light received by the rudder and the drive current using the reflectance ρ as a parameter.

図において、縦軸は駆動電流IDであり、横軸は舵受光
光量Xを示している。■D□8は半導体レーザー投光系
21へ流入できる最大駆動電流を示している。AXは、
電流リミッタ回路の動作範囲であり、ID、□を越える
駆動電流TDを遮断する範囲である。
In the figure, the vertical axis represents the drive current ID, and the horizontal axis represents the amount of light received by the rudder X. ■D□8 indicates the maximum drive current that can flow into the semiconductor laser projection system 21. AX is
This is the operating range of the current limiter circuit, and is the range in which drive current TD exceeding ID and □ is cut off.

BXは、制御目標値であり、舵受光光量Xに任意に設定
したものである。ρ1.ρ2.ρ3は反射率であり、ρ
3〉ρ2〉ρlなる関係を有している。これは、半導体
ウェハ27等の表面の反射率ρの変動を表している。ま
た、総受光光1xに反映した、反射率ρの変動は、駆動
電流IDを変化させることにより、制御目標値Bを常に
一定に保つように制御nされる。また、反射率ρの変動
は、半導体ウェハ27表面の傷や塵等によって、レーザ
ー光L21が散乱されて生じるものと考えられている。
BX is a control target value, which is arbitrarily set to the amount of light received by the rudder X. ρ1. ρ2. ρ3 is the reflectance, ρ
The relationship is 3>ρ2>ρl. This represents a variation in the reflectance ρ of the surface of the semiconductor wafer 27 or the like. Further, the variation in the reflectance ρ reflected in the total received light 1x is controlled by changing the drive current ID so as to keep the control target value B constant. Further, it is thought that the variation in the reflectance ρ is caused by the laser beam L21 being scattered by scratches, dust, etc. on the surface of the semiconductor wafer 27.

このときは、著しく受光光量が低下をする。At this time, the amount of received light decreases significantly.

このようにして、電流/電圧変換回路23bから出力さ
れる受光信号S11を利得制御回路26等により半導体
レーザー駆動電[22に帰還している。
In this way, the light reception signal S11 outputted from the current/voltage conversion circuit 23b is fed back to the semiconductor laser drive voltage [22] by the gain control circuit 26 and the like.

このため、半導体ウェハ27の表面の反射率ρの変動は
、受光光量に比例する受光信号311に自動的に含まれ
る。従って、レーザー光L11の発光光量に比例する駆
動電流IDについて、常に反射率ρを含んだ受光信号S
11により制御することが可能となる。
Therefore, fluctuations in the reflectance ρ of the surface of the semiconductor wafer 27 are automatically included in the light reception signal 311 which is proportional to the amount of light received. Therefore, for the drive current ID which is proportional to the amount of light emitted by the laser beam L11, the light reception signal S always includes the reflectance ρ.
11.

これにより、半導体ウェハ27等の反射率ρの変動に拘
らず、総受光光1xを常に一定にすることが可能となる
This makes it possible to always keep the total received light 1x constant regardless of variations in the reflectance ρ of the semiconductor wafer 27 and the like.

また、本発明の実施例によれば、半導体レーザー駆動電
源22から出力される駆動型?A I Dが任意の設定
値IRを越えると、電流リミック回路25により遮断さ
れ、その異常検出信号S L、 3がCPU24に出力
される。
Further, according to the embodiment of the present invention, the driving type ? When AID exceeds an arbitrary set value IR, it is cut off by the current limit circuit 25, and the abnormality detection signal S L, 3 is output to the CPU 24.

このため、半導体ウェハ27等の表面の反射率ρの変動
が激しく、4分割光検出器23aや電流/電圧変換回路
23bの総受光光〒Xの制御目標値から大きく外れた場
合、即刻、表面うねり状態の計測を中断し、その異常発
生を認知することが可能となる。
Therefore, if the reflectance ρ of the surface of the semiconductor wafer 27 etc. fluctuates drastically and the total received light of the 4-split photodetector 23a or the current/voltage conversion circuit 23b greatly deviates from the control target value, the surface It becomes possible to interrupt the measurement of the undulation state and recognize the occurrence of an abnormality.

第5図は、本発明の実施例の光量補正方法に係るフロー
チャートである。
FIG. 5 is a flowchart relating to a light amount correction method according to an embodiment of the present invention.

図において、まずステップP1で任意の反射率ρを有す
る半導体ウェハ27にレーザー光L21を照射する。次
に、ステップP2で半導体ウェハ27からの反射光L2
2を受光検出する。このとき、半導体ウェハ27の表面
の反射率ρの変動の影響は、総受光光1xに含まれる。
In the figure, first, in step P1, a semiconductor wafer 27 having an arbitrary reflectance ρ is irradiated with a laser beam L21. Next, in step P2, the reflected light L2 from the semiconductor wafer 27
2 is detected by light reception. At this time, the influence of the variation in the reflectance ρ of the surface of the semiconductor wafer 27 is included in the total received light 1x.

次いで、ステップP3で聴受光光量の大小判断をする。Next, in step P3, it is determined whether the amount of light to be heard or received is large or small.

この判断は、CPU24を介して実施しても良く、半導
体ウェハ27等の表面の反射率とほぼ一定しているとき
は、測定者が行っても良い。
This judgment may be made via the CPU 24, or may be made by the measurer if the reflectance is approximately constant with the reflectance of the surface of the semiconductor wafer 27 or the like.

このとき、受光信号S11が帰還量として十分満足して
いる場合(YES)には、ステップP5に移行する。帰
還量として満足されない場合(No)には、ステップP
4に移行する。
At this time, if the received light signal S11 satisfies the amount of feedback (YES), the process moves to step P5. If the feedback amount is not satisfied (No), step P
Move to 4.

ステップP4では、利得の調整をする。利得の調整は、
CPU24を介して実施しても良く、測定者が行っても
良い、このとき、受光信号S11が、例えば振幅が小さ
い場合には、その増幅を行う、また、受光信号S11が
大きい場合には、その利得を小さくする。
In step P4, gain is adjusted. The gain adjustment is
This may be carried out via the CPU 24 or may be carried out by the measuring person. At this time, if the received light signal S11 has a small amplitude, for example, it is amplified, and if the received light signal S11 is large, it is amplified. Reduce that gain.

次に、ステップP5で受光した総受光光!lXを受光信
号311にして、半導体レーザー駆動電源22に帰還す
る。
Next, the total received light received in step P5! The signal 1X is converted into a light reception signal 311 and fed back to the semiconductor laser drive power source 22.

さらに、ステップP6でレーザー光L21の発光光量を
制御して、制御目標値B=総受光光量Xとする。
Further, in step P6, the amount of light emitted by the laser beam L21 is controlled to make the control target value B=the total amount of received light X.

次いで、ステップP7で駆動電流IDの大小判断をする
。この判断は電流リミッタ回路25のコンパレータ52
が実施する。このとき、駆動電流【Dが設定値IRを越
えた場合(YES)には、ステップP8に移行する。
Next, in step P7, the magnitude of the drive current ID is determined. This judgment is made by the comparator 52 of the current limiter circuit 25.
will be carried out. At this time, if the drive current [D exceeds the set value IR (YES), the process moves to step P8.

ステップP8では、駆動電流IDを遮断する。In step P8, the drive current ID is cut off.

その後、ステップP9でCPU24に異常事態の発生を
通知する。その通知終了後、ステップPI2に移行する
Thereafter, in step P9, the CPU 24 is notified of the occurrence of an abnormal situation. After the notification ends, the process moves to step PI2.

また、ステップP7の判断で駆動電流IDを遮断しない
場合(NO)には、ステップPIOに移行する。
If the drive current ID is not cut off in step P7 (NO), the process moves to step PIO.

ステップPIO以降は、従来例と同様に、受光検出信号
312をCPU24に出力し、ステップpHで受光検出
信号S12と、CPU24の保持するデータとを比較し
、半導体ウェハ27の表面うねりの検査をする。
After step PIO, similarly to the conventional example, the light reception detection signal 312 is output to the CPU 24, and the light reception detection signal S12 is compared with the data held by the CPU 24 at step pH to inspect the surface waviness of the semiconductor wafer 27. .

その後ステップP12で検査の全部終了、否を判断する
。終了しない場合(No)には、ステップP1に再度戻
って、ステップP1〜P7.PiO〜P12又はステッ
プPL−P9.P12の処理内容を繰り返す、全部終了
の場合(YES)には、表面うねり検査処理を終了する
Thereafter, in step P12, it is determined whether or not all inspections have been completed. If it does not end (No), return to step P1 again and perform steps P1 to P7. PiO-P12 or step PL-P9. The process contents of P12 are repeated, and if all are completed (YES), the surface waviness inspection process is ended.

このようにして、反射率ρの影響を含む聴受光光量を常
に一定になるようにレーザー光L11の発光光量を制御
している。
In this way, the amount of light emitted by the laser beam L11 is controlled so that the amount of light that is heard and received, including the influence of the reflectance ρ, is always constant.

このため、従来のように半導体ウェハ27の反射率pの
変動を起因とする受光光量のバラツキを、総受光光1i
X−A+B+C+Dや、別のセンサ系を導入して表面反
射率により規格化する処理が不要となる。従って、規格
化に係る加算処理時間及び割り算処理時間について短縮
を図ることが可能となる。
For this reason, unlike the conventional method, variations in the amount of received light due to fluctuations in the reflectance p of the semiconductor wafer 27 can be reduced by the total received light 1i.
X-A+B+C+D and the process of introducing another sensor system and standardizing it by surface reflectance become unnecessary. Therefore, it is possible to reduce the addition processing time and division processing time related to standardization.

これにより、CPU24の負担が軽減され、全体として
、表面うねり検査処理の高速化をすることが可能となる
This reduces the burden on the CPU 24 and makes it possible to speed up the surface waviness inspection process as a whole.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、被測定物の表面の
反射率の変動の影響については、聴受光光量を一定に制
御することによって自動補正することができる。
As described above, according to the present invention, the influence of fluctuations in reflectance on the surface of the object to be measured can be automatically corrected by controlling the amount of light received and heard to be constant.

このため、自動補正された投受光系において精度良い表
面うねり状態の検査処理を行うことが可能となる。
Therefore, it is possible to perform surface waviness inspection processing with high precision in the automatically corrected light emitting/receiving system.

また、従来のような受光光量の規格化処理が必要となる
。このため、検査処理時間の短縮を図ることができる。
Further, it is necessary to standardize the amount of received light as in the conventional method. Therefore, the inspection processing time can be shortened.

これにより、表面うねり検査装置の処理効率の向上を図
ることが可能となる。
This makes it possible to improve the processing efficiency of the surface waviness inspection device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の表面うねり検査装置に係る原理図、 第2図は、本発明の表面うねり検査装置の光量補正方法
に係る原理図、 第3図は、本発明の実施例の表面うねり検査装置の構成
図、 第4図(a)、(b)は、本発明の実施例の表面うねり
検査装置に係る説明図、 第5図は、本発明の実施例の光量補正方法に係るフロー
チャート、 第6図は、従来例の表面うねり検査装置に係る構成図、 第1u (a)、  (b)は、従来例の光景補正方法
に係る説明図である。 (符号の説明) 1.11.21.・・・発光手段 (半導体レーザー投光系)、 2.12.22・・・発光駆動手段 (半導体レーザー駆動電源)、 13・・・受光検出手段、 5.14.24・・・制御手段 (CPU又は制御回路)、 15.25・・・出力制御手段 (電流リミッタ回路)、 16.26・・・帰還手段(利得制御回路)、6.17
.27・・・被測定物(半導体ウェハ等)、3.23a
・・・4分割光検出器、 4.23b・・・電流/1it圧変換回路、51・・・
オペアンプ、 52・・・コンパレータ、 1a・・・発光素子、 lb・・・受光素子、 lc・・・基板、 Ll、L11、L21・・・レーザー光、L2.L12
.L22・・・反射光、 ρ、ρ1.ρ2.ρ3・・・反射率、 IR・・・設定値、 !D・・・駆動型fi(発光光量)、 31、S11・・・受光信号(受光光量)、S2.S1
2・・・受光検出信号(差分出力)、S3・・・受光光
量和出力、 S13・・・遮断情報(異常検出信号)、314・・・
設定信号、 DOT・・・検出結果データ、 SWI、SW2・・・スイッチ又はリレースイ・ンチ、
R・・・抵抗器、 iPD、IF・・・帰還電流(受光素子出力電流)、A
、B、C,D・・・受光光量、 xi、x2・・・補正率、 AX・・・電流リミッタ回路の動作範囲、BX・・・制
御目標値、 X・・・総受光光量。
FIG. 1 is a principle diagram of the surface waviness inspection device of the present invention, FIG. 2 is a principle diagram of the light intensity correction method of the surface waviness inspection device of the present invention, and FIG. 3 is a surface diagram of an embodiment of the present invention. 4(a) and 4(b) are explanatory diagrams of a surface waviness inspection device according to an embodiment of the present invention; FIG. 5 is a diagram of a light amount correction method according to an embodiment of the present invention. Flowchart, FIG. 6 is a block diagram of a conventional surface waviness inspection device, and 1u (a) and (b) are explanatory diagrams of a conventional sight correction method. (Explanation of symbols) 1.11.21. ... Light emitting means (semiconductor laser projection system), 2.12.22 ... Light emission driving means (semiconductor laser driving power supply), 13 ... Light reception detection means, 5.14.24 ... Control means ( CPU or control circuit), 15.25... Output control means (current limiter circuit), 16.26... Feedback means (gain control circuit), 6.17
.. 27...Object to be measured (semiconductor wafer, etc.), 3.23a
...4-split photodetector, 4.23b...Current/1it pressure conversion circuit, 51...
Operational amplifier, 52... Comparator, 1a... Light emitting element, lb... Light receiving element, lc... Substrate, Ll, L11, L21... Laser light, L2. L12
.. L22...Reflected light, ρ, ρ1. ρ2. ρ3...Reflectance, IR...Set value, ! D... Drive type fi (light emission amount), 31, S11... Light reception signal (light reception amount), S2. S1
2... Light reception detection signal (difference output), S3... Light reception light amount sum output, S13... Shutdown information (abnormality detection signal), 314...
Setting signal, DOT...detection result data, SWI, SW2...switch or relay switch,
R...Resistor, iPD, IF...Feedback current (light receiving element output current), A
, B, C, D... amount of received light, xi, x2... correction factor, AX... operating range of the current limiter circuit, BX... control target value, X... total amount of received light.

Claims (1)

【特許請求の範囲】 (1)発光手段(11)と、発光駆動手段(12)と、
受光検出手段(13)と、制御手段(14)とを具備し
、前記発光手段(11)からのレーザー光(L11)を
被測定物(17)に出射し、前記被測定物(17)から
の反射光(L22)を受光検出して、前記被測定物(1
7)の表面うねりを検査する表面うねり検査装置におい
て、 前記受光検出手段(13)と発光駆動手段 (12)との間に帰還手段(16)を設け、前記受光検
出手段(13)から出力される受光光量に基づいて、前
記発光駆動手段(12)から出力される発光光量を制御
することを特徴とする表面うねり検査装置。 (2)請求項1記載の発光手段(11)と、発光駆動手
段(12)との間に、出力制限手段(15)が設けられ
、前記発光駆動手段(12)から出力される発光光量が
、任意の設定値(IR)を越えると遮断され、かつ前記
制御手段(14)に遮断情報(S13)を出力すること
を特徴とする表面うねり検査装置。 (3)任意の反射率(ρ)を有する被測定物(17)に
レーザー光(L11)を照射し、前記被測定物(17)
からの反射光(L21)を受光検出し、前記受光検出さ
れた反射率(ρ)の影響を含む総受光光量を常に一定に
なるように、前記レーザー光(L11)の発光光量を制
御することを特徴とする表面うねり検査装置の光量補正
方法。
[Claims] (1) A light emitting means (11), a light emitting driving means (12),
It includes a light reception detection means (13) and a control means (14), and emits the laser beam (L11) from the light emitting means (11) to the object to be measured (17), and emits the laser beam (L11) from the object to be measured (17). The reflected light (L22) of the object to be measured (1) is received and detected.
7) In the surface waviness inspection device for inspecting surface waviness, a feedback means (16) is provided between the light reception detection means (13) and the light emission driving means (12), and the feedback means (16) is provided between the light reception detection means (13) and the light emission driving means (12). A surface waviness inspection apparatus characterized in that the amount of light emitted from the light emission driving means (12) is controlled based on the amount of light received by the light emitting device. (2) Output limiting means (15) is provided between the light emitting means (11) according to claim 1 and the light emitting driving means (12), and the amount of light emitted from the light emitting driving means (12) is controlled. A surface waviness inspection device characterized in that it is shut off when an arbitrary set value (IR) is exceeded, and outputs shutoff information (S13) to the control means (14). (3) Irradiate a laser beam (L11) to an object to be measured (17) having an arbitrary reflectance (ρ), and
receiving and detecting the reflected light (L21) from the laser beam, and controlling the amount of emitted light of the laser beam (L11) so that the total amount of received light including the influence of the detected reflectance (ρ) is always constant. A light amount correction method for a surface waviness inspection device characterized by:
JP33045588A 1988-12-27 1988-12-27 Surface-waviness checking apparatus and optical quantity correcting method thereof Pending JPH02176411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33045588A JPH02176411A (en) 1988-12-27 1988-12-27 Surface-waviness checking apparatus and optical quantity correcting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33045588A JPH02176411A (en) 1988-12-27 1988-12-27 Surface-waviness checking apparatus and optical quantity correcting method thereof

Publications (1)

Publication Number Publication Date
JPH02176411A true JPH02176411A (en) 1990-07-09

Family

ID=18232809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33045588A Pending JPH02176411A (en) 1988-12-27 1988-12-27 Surface-waviness checking apparatus and optical quantity correcting method thereof

Country Status (1)

Country Link
JP (1) JPH02176411A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138040A (en) * 1992-10-26 1994-05-20 Ishikawajima Harima Heavy Ind Co Ltd Illumination controller of light source in inspection device
KR100597624B1 (en) * 2004-04-22 2006-07-06 부산대학교 산학협력단 Laser light control method for surface roughness measurement through feedback of reflected light image information and laser light control device for surface roughness measurement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100188A (en) * 1985-10-25 1987-05-09 Hitachi Ltd Power amplifier for motor drive
JPS6350710A (en) * 1986-08-21 1988-03-03 Koputeitsuku:Kk Light measuring apparatus
JPS63243710A (en) * 1987-03-31 1988-10-11 Mitsubishi Electric Corp Measuring apparatus for distance
JPS6355103B2 (en) * 1980-03-03 1988-11-01 Oki Electric Ind Co Ltd
JPS63286715A (en) * 1987-05-20 1988-11-24 Yasunaga:Kk Automatic output control device for optical sensors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355103B2 (en) * 1980-03-03 1988-11-01 Oki Electric Ind Co Ltd
JPS62100188A (en) * 1985-10-25 1987-05-09 Hitachi Ltd Power amplifier for motor drive
JPS6350710A (en) * 1986-08-21 1988-03-03 Koputeitsuku:Kk Light measuring apparatus
JPS63243710A (en) * 1987-03-31 1988-10-11 Mitsubishi Electric Corp Measuring apparatus for distance
JPS63286715A (en) * 1987-05-20 1988-11-24 Yasunaga:Kk Automatic output control device for optical sensors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138040A (en) * 1992-10-26 1994-05-20 Ishikawajima Harima Heavy Ind Co Ltd Illumination controller of light source in inspection device
KR100597624B1 (en) * 2004-04-22 2006-07-06 부산대학교 산학협력단 Laser light control method for surface roughness measurement through feedback of reflected light image information and laser light control device for surface roughness measurement

Similar Documents

Publication Publication Date Title
US6697206B2 (en) Tape edge monitoring
EP0047250B1 (en) Dimension measuring apparatus
EP0200918B1 (en) Surface inspection method and apparatus therefor
TWI644749B (en) Laser processing apparatus and laser processing method
US5717198A (en) Pellicle reflectivity monitoring system having means for compensating for portions of light reflected by the pellicle
US9718146B2 (en) System and method for calibrating laser processing machines
JP3036081B2 (en) Electron beam drawing apparatus and method, and sample surface height measuring apparatus thereof
JPH02176411A (en) Surface-waviness checking apparatus and optical quantity correcting method thereof
US7742160B2 (en) Determining angle of incidence with respect to workpiece
JP2651815B2 (en) Foreign matter inspection device
US6348943B1 (en) Digital non-contact blade position detection apparatus
CN114252446B (en) Detection device and detection method
JPH0511257B2 (en)
CN101320218B (en) Three scanning type silicon slice focusing and leveling measurement apparatus, system and method
JPS61223604A (en) Gap measuring instrument
JPH0280942A (en) Surface inspection apparatus
US4884888A (en) Method and device for contactless optical measurement of distance changes
JPH1058173A (en) Laser beam machine
WO2011008181A2 (en) A distance measuring laser sensor with digital based feedback capability
JP2697297B2 (en) Jitter measurement device for laser beam scanner motor
JPS623609A (en) Range finder
JP2005055233A (en) Measuring instrument of particle size distribution
KR100380133B1 (en) Error compensation method according to the reflected light intensity of the measured object in the optical sensor
JPH01169386A (en) Distance measuring apparatus
JPS62243337A (en) Contaminant detector for semiconductor substrate