JPH0217608A - Positive resistance temperature coefficient heating element - Google Patents
Positive resistance temperature coefficient heating elementInfo
- Publication number
- JPH0217608A JPH0217608A JP63168219A JP16821988A JPH0217608A JP H0217608 A JPH0217608 A JP H0217608A JP 63168219 A JP63168219 A JP 63168219A JP 16821988 A JP16821988 A JP 16821988A JP H0217608 A JPH0217608 A JP H0217608A
- Authority
- JP
- Japan
- Prior art keywords
- temperature coefficient
- positive resistance
- heating element
- resistance temperature
- dimensional stability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 title claims description 33
- 229920000642 polymer Polymers 0.000 claims description 24
- 239000003795 chemical substances by application Substances 0.000 claims description 19
- 239000000843 powder Substances 0.000 claims description 19
- 239000011231 conductive filler Substances 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 13
- 238000002156 mixing Methods 0.000 claims description 7
- 238000004132 cross linking Methods 0.000 claims description 6
- 238000000137 annealing Methods 0.000 claims description 4
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 claims 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims 1
- 229920006038 crystalline resin Polymers 0.000 claims 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 claims 1
- 239000000600 sorbitol Substances 0.000 claims 1
- 239000000126 substance Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000035882 stress Effects 0.000 description 5
- 230000020169 heat generation Effects 0.000 description 4
- 229920001903 high density polyethylene Polymers 0.000 description 4
- 239000004700 high-density polyethylene Substances 0.000 description 4
- 239000000470 constituent Substances 0.000 description 3
- 229920001684 low density polyethylene Polymers 0.000 description 3
- 239000004702 low-density polyethylene Substances 0.000 description 3
- -1 polyethylene, ethylene-vinyl acetate Polymers 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000006232 furnace black Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 150000001451 organic peroxides Chemical class 0.000 description 2
- 230000001603 reducing effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003484 crystal nucleating agent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229920001179 medium density polyethylene Polymers 0.000 description 1
- 239000004701 medium-density polyethylene Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000006234 thermal black Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/02—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
- H01C7/027—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Resistance Heating (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Thermistors And Varistors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、採暖器具および一般の加熱装置として有用な
正抵抗温度係数発熱体に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a positive resistance temperature coefficient heating element useful as a warming appliance and a general heating device.
従来の技術
従来の正の抵抗温度係数をもつ発熱体は、例えば特公昭
57−43995号公報や特公昭55−40161号公
報に示されているような構成であり一対の電極間の抵抗
体の正抵抗温度特性により適宜な温度に自己制御されて
いるものであった。2. Description of the Related Art A conventional heating element having a positive temperature coefficient of resistance has a structure as shown in, for example, Japanese Patent Publication No. 57-43995 and Japanese Patent Publication No. 55-40161. The temperature was self-controlled to an appropriate level due to positive resistance temperature characteristics.
しかし、特に大きな電力密度や高温度が要求される場合
においては、発熱体自体の温度分布を一様にするために
一対の電極間方向の温度分布を常に良好にすることが不
可欠であり、その解決策として特公昭82−5)515
号公報や第3図に示すように一対の電極間距離を互いに
接近させて構成する方法が講じられた。第3図において
、1゜2は互いに接近して設けられた一対の平行平板電
極であり、この間に結晶性重合体に導電性微粉末を混合
分散して形成した抵抗体3を配することにより高出力の
正抵抗温度係数発熱体を現出する可能性が見出された。However, especially when high power density or high temperature is required, it is essential to always maintain a good temperature distribution in the direction between the pair of electrodes in order to make the temperature distribution of the heating element itself uniform. As a solution, the Special Public Interest Publication (1982-5) 515
As shown in the above publication and FIG. 3, a method was adopted in which the distance between a pair of electrodes was made close to each other. In Fig. 3, 1°2 is a pair of parallel plate electrodes placed close to each other, and a resistor 3 formed by mixing and dispersing conductive fine powder in a crystalline polymer is placed between them. The possibility of developing a high-power positive resistance temperature coefficient heating element has been discovered.
発明が解決しようとする課題
しかしながら上記のような従来の正抵抗温度係数発熱体
は、高出力を現出するための構造としては非常に優れて
いたが、カーボンブラック等の比較的低抵抗の導電性微
粉末を混合分散することによって構成される正抵抗温度
係数抵抗体の耐電圧破壊特性や、非常に高抵抗が要求さ
れる体積固有抵抗値の領域等を考慮すると、解決しなけ
ればならない多くの課題を有していた。電極間隔が非常
に接近した正抵抗温度係数発熱体を構成するためには、
耐電圧破壊特性に優れた導電性微粉末を選定するだけで
なく、十分に大きい正の抵抗温度特性を得ることによっ
て、ピーク抵抗値を越えて暴走することのないように配
慮することが不可欠であった。また、体積固有抵抗値は
従来の10°〜102Ωamに対して、103〜105
Ωomの半導体領域が必要となり、導電性微粉末の組成
比を大幅に低減しなければならなくなった。その結果、
導電性微粉末同志の接触点の数は激減し、抵抗温度特性
は結晶性重合体の融点のみによって制御されるだけでな
く、より低温域の熱膨張、熱収縮等による各種構成材料
の熱応力によると想定される不安定な成分が飛躍的に増
大することにより、極めて不安定な特性になった。さら
に、経時変化において、結晶性重合体の結晶成長、発熱
体各部の熱応力、あるいは導電性微粉末の凝集等によっ
て、抵抗値や抵抗温度係数の大幅な変化が生じるように
なり、温度と電力の安定性に欠け、非常に短かい発熱寿
命であったり、異常加熱、発煙、発火等の危険性を有し
たりしており、実用上の許容範囲から大幅に外れるもの
であった。このように、導電性微粉末の組成比を調整す
るだけでは体積固有抵抗値103Ωam 以上の有用な
正抵抗温度係数発熱体を作り出すことができなかった。Problems to be Solved by the Invention However, although the conventional positive resistance temperature coefficient heating element described above had an excellent structure for producing high output, relatively low-resistance conductive materials such as carbon black Considering the withstand voltage breakdown characteristics of positive resistance temperature coefficient resistors constructed by mixing and dispersing fine powders, and the volume resistivity range where extremely high resistance is required, there are many problems that must be solved. had the following issues. In order to construct a positive resistance temperature coefficient heating element with very close electrode spacing,
It is essential not only to select conductive fine powder with excellent withstand voltage breakdown characteristics, but also to obtain sufficiently large positive resistance temperature characteristics to ensure that the resistance does not run out of control beyond the peak resistance value. there were. In addition, the volume resistivity value is 103 to 105 Ωam, compared to the conventional 10° to 102 Ωam.
A semiconductor region of Ωom was required, and the composition ratio of the conductive fine powder had to be significantly reduced. the result,
The number of contact points between conductive fine powders has been drastically reduced, and the resistance-temperature characteristics are not only controlled by the melting point of the crystalline polymer, but also by the thermal stress of various constituent materials due to thermal expansion, thermal contraction, etc. at lower temperatures. The unstable components assumed to have increased dramatically, resulting in extremely unstable characteristics. Furthermore, over time, significant changes in resistance value and temperature coefficient of resistance occur due to crystal growth of the crystalline polymer, thermal stress in various parts of the heating element, or aggregation of conductive fine powder. They lacked stability, had extremely short heat-generating lifetimes, and were at risk of abnormal heating, smoke, and ignition, and were far outside the acceptable range for practical use. As described above, it has not been possible to create a useful positive resistance temperature coefficient heating element having a volume resistivity of 103 Ωam or more simply by adjusting the composition ratio of the conductive fine powder.
本発明はかかる問題を解消し、実用に耐え得る優れた抵
抗安定性を実現できる正抵抗温度係数発熱体を提供する
ものである。The present invention solves this problem and provides a positive resistance temperature coefficient heating element that can realize excellent resistance stability that can withstand practical use.
課題を解決するための手段
上記課題を解決するために、本発明の正抵抗温度係数発
熱体は、結晶性重合体中に導電性微粉末を混合分散して
なる導電性組成物を架橋し細分化してなる導電性フィラ
ーと、寸法安定性付与剤を結晶性重合体に混合分散して
形成した薄厚状の正抵抗温度係数抵抗体と、その厚さ方
向に電圧を印加すべく設けられた一対の電極体とを備え
たものである。Means for Solving the Problems In order to solve the above problems, the positive resistance temperature coefficient heating element of the present invention is obtained by crosslinking and finely dividing a conductive composition formed by mixing and dispersing conductive fine powder in a crystalline polymer. A thin positive resistance temperature coefficient resistor is formed by mixing and dispersing a conductive filler formed by a crystalline polymer and a dimensional stability imparting agent into a crystalline polymer, and a pair of resistors are provided to apply a voltage in the direction of the thickness of the resistor. It is equipped with an electrode body.
作 用 この技術的手段による作用は次のようになる。For production The effect of this technical means is as follows.
すなわち、正抵抗温度係数抵抗体の材料構成を結晶性重
合体中に導電性微粉末を高比率で分散される部分と殆ど
分散されていない部分とに分離して、両者を海鳥状に配
してなる構成にするものであり、結晶性重合体中に導電
性微粉末を混合分散してなる導電性組成物を架橋し細分
化してなる導電性フィラーは、前者の部分であり、体積
固有抵抗が10°Ωam レベルであってよく、極め
て安定しており、また電子線もしくは有機過酸化物によ
って架橋されているために、導電性微粉末は導電性フィ
ラー中で確実に固定されて、経時的にも安定した抵抗特
性を示すことが可能となる。しかし、特に後者の部分の
結晶性重合体における加工、熱、結晶成長等に対する応
力緩和によって経時的に導電性フィラーが安定な位置に
極めて微小な変位を繰返すことによりアニール時の導電
性フィラーの凝集構造が緩和される等の変化が生じ、導
電経路が減少することになり高抵抗化していくが、結晶
性重合体中に混合分散されている寸法安定性付与剤がこ
の変化を緩和するため極めて安定した抵抗安定性を保持
できるようになる。こうして、11030a以上に及ぶ
高抵抗の抵抗体の優れた安定性を図ることができ、高出
力の正抵抗温度係数発熱体が実現できるようになる。In other words, the material composition of the positive resistance temperature coefficient resistor is divided into a part in which conductive fine powder is dispersed in a high proportion in a crystalline polymer and a part in which it is hardly dispersed, and both parts are arranged in a seabird shape. The conductive filler, which is made by crosslinking and subdividing a conductive composition made by mixing and dispersing conductive fine powder in a crystalline polymer, is the former part, and has a volume resistivity. The conductive fine powder can be at the 10°Ωam level and is extremely stable, and because it is cross-linked by electron beams or organic peroxides, the conductive fine powder is reliably fixed in the conductive filler and remains stable over time. It is also possible to exhibit stable resistance characteristics. However, especially in the latter part, stress relaxation due to processing, heat, crystal growth, etc. in the crystalline polymer causes the conductive filler to repeatedly move extremely minutely to a stable position over time, resulting in agglomeration of the conductive filler during annealing. Changes such as relaxation of the structure occur, reducing conductive paths and increasing resistance, but the dimensional stability imparting agent mixed and dispersed in the crystalline polymer alleviates this change, making it extremely It becomes possible to maintain stable resistance stability. In this way, it is possible to achieve excellent stability of a resistor having a high resistance of 11030a or more, and to realize a high output positive resistance temperature coefficient heating element.
実施例
以下、本発明の一実施例を添付図面に基づいて説明する
。本実施例の正抵抗温度係数発熱体は、例えば、第1図
に示すように、厚さ0.5rnmの正抵抗温度係数抵抗
体4の上下面に電極5,6が接着され、さらに両者の上
に外装材7.8が外装されている。正抵抗温度係数抵抗
体4は以下のように形成されている。すなわち導電性微
粉末として、サーマルブランクとファーネスブラックと
を1:1に均一に分散した微粉末をつくり、この微粉末
55 w t%と低密度ポリエチレン45 w t%ト
ヲ混練しつつ、有機過酸化物であるジクミールパーオキ
サイドを低密度ポリエチレンに対して3wt%添加し、
熱処理を施すことによって架橋反応を完了させた後に、
冷凍粉砕によって平均粒径70μmの粉砕物、すなわち
導電性フィラーを得た。EXAMPLE Hereinafter, an example of the present invention will be described based on the accompanying drawings. In the positive resistance temperature coefficient heating element of this embodiment, for example, as shown in FIG. A sheathing material 7.8 is sheathed on top. The positive resistance temperature coefficient resistor 4 is formed as follows. That is, as a conductive fine powder, a thermal blank and a furnace black are uniformly dispersed in a ratio of 1:1 to make a fine powder, and while 55 wt% of this fine powder and 45 wt% of low density polyethylene are kneaded, organic peroxide is mixed. 3 wt% of dicumyl peroxide is added to low density polyethylene,
After completing the crosslinking reaction by applying heat treatment,
A pulverized product having an average particle size of 70 μm, that is, a conductive filler, was obtained by freeze pulverization.
次に、この導電性フィラーと寸法安定性付与剤とをカー
ボンブラック組成比が全量の29 w t%になるよう
に、高密度ポリエチレン(有機酸変性仕様)中に均一分
散されるように混練し、正抵抗温度係数抵抗体4を得た
。さらに、この抵抗体4を前記のように発熱体に加工の
後、アニールして所定の抵抗特性を得た。なお、この本
発明の有効性を調べるために、寸法安定性付与剤に関し
ては、以下の表に示した6種類の組成を上記のように加
工しサンプルを得た。Next, the conductive filler and the dimensional stability imparting agent were kneaded so as to be uniformly dispersed in high-density polyethylene (organic acid modified specification) so that the carbon black composition ratio was 29 wt% of the total amount. , a positive resistance temperature coefficient resistor 4 was obtained. Furthermore, this resistor 4 was processed into a heating element as described above, and then annealed to obtain predetermined resistance characteristics. In order to examine the effectiveness of the present invention, samples of the dimensional stability imparting agent were obtained by processing six types of compositions shown in the table below as described above.
(以下余白)
ここで、添加竜は該高密度ポリエチレンに対する比率(
ph「)であり、寸法安定性とは結晶性重合体における
加工、熱、結晶成長等う応力による熱変形率を抑制する
効果を示すものであり、ここでは、抵抗体単体をアニー
ル温度まで加熱することにより生する熱変形率が上記1
lJll16の無添加のサンプルより低減された率で示
した。(Left below) Here, the ratio of the additive to the high-density polyethylene (
ph"), and dimensional stability refers to the effect of suppressing the rate of thermal deformation caused by stress such as processing, heat, and crystal growth in crystalline polymers. The thermal deformation rate produced by
It was shown that the rate was reduced compared to the sample without addition of lJll16.
実際に、11k11〜6のサンプルの通電試験による比
較実験を行なった。通電モードについては、熱サイクル
による加速評価にするために10分毎の断続通電による
評価とした。その結果を第2図に示している。第2図か
ら明らかなように、断続通電サイクルの最大温度は寸法
安定性効果の高いサンプルはど通電寿命は長く、最も寸
法安定性効果の高い磁4サンプルでは、7000h現在
においても初期の温度を保持しており、非常に安定した
発熱特性となっており、また抵抗温度特性も非常に安定
していることがわかった。一方、N16の無添加のサン
プルでは、2000hより温度が下がりはじめ、300
0h後にはほとんで発熱しなくなるほど高抵抗となり、
極めて短寿命であることがわかった。この他のサンプル
では、通電寿命で6000〜70001tで若干温度低
下現象が現出し始めており、10000hレベルの断続
通電寿命であると推定できる。実際使用されるモードに
より寿命は異なるものの、寸法安定性効果の高い付与剤
を添加すれば添加するほど通電寿命も長く、安定した発
熱特性を経時的に維持できるという優れた性能を寄与す
るものである。結晶性重合体における加工、熱、結晶成
長等の応力による熱変形率を抑制する組成、ここでは、
抵抗体単体をアニール温度まで加熱することにより生す
る熱変形率が、無添加組成より、好ましくは、10%以
上低減される組成であれば、長期にわたる抵抗安定性が
図れるだけでなく、各種用途における実用期間や構成材
料の耐熱特性等に適合した発熱寿命になるように、寸法
安定性付与剤を適宜添加することができるため、ライフ
エンド時も含めた安全性を確立していくこともできると
いう優れた効果を有するものである。In fact, a comparison experiment was conducted by conducting an energization test on samples of 11k11-6. Regarding the energization mode, the evaluation was conducted by intermittent energization every 10 minutes in order to perform an accelerated evaluation using a thermal cycle. The results are shown in Figure 2. As is clear from Figure 2, the maximum temperature during intermittent energization cycles is higher in samples with higher dimensional stability effects.The energization life is longer, and the magnetic 4 sample with the highest dimensional stability effects maintains the initial temperature even after 7000 hours. It was found that the heat generation characteristics were very stable, and the resistance temperature characteristics were also very stable. On the other hand, in the sample without the addition of N16, the temperature started to decrease after 2000 hours, and at 300 hours
After 0 hours, the resistance becomes so high that it almost no longer generates heat.
It turned out that it had an extremely short lifespan. In other samples, a slight temperature drop phenomenon began to appear between 6,000 and 70,001 t of energization life, and it can be estimated that the intermittent energization life was on the order of 10,000 h. Although the lifespan differs depending on the mode in which it is actually used, the more dimensional stability imparting agent is added, the longer the energized lifespan will be, contributing to the excellent performance of maintaining stable heat generation characteristics over time. be. A composition that suppresses thermal deformation rate due to stress such as processing, heat, and crystal growth in a crystalline polymer.
A composition in which the thermal deformation rate produced by heating a single resistor to the annealing temperature is preferably 10% or more lower than that of a composition without additives will not only ensure long-term resistance stability but also be suitable for various applications. Dimensional stability imparting agents can be added as appropriate to ensure a heat-generating life that is compatible with the practical period of use and the heat resistance properties of the constituent materials, etc., making it possible to establish safety even at the end of the product's life. This has excellent effects.
これは以下のメカニズムによると考えられる。This is thought to be due to the following mechanism.
すなわち、結晶性重合体における加工、熱、結晶成長等
に対する応力緩和によって経時的に導電性フィラーが安
定な位置に極めて微小な変位を繰返すことによりアニー
ル時の導電性フィラーの凝集構造が緩和される等の変化
が生じ、導電経路が減少することになり高抵抗化してい
くが、結晶性重合体中に混合分散されている寸法安定性
付与剤がこの変化を緩和するため極めて安定した抵抗安
定性を保持できるようになる。こうして、103Ωam
以上に及ぶ高抵抗の抵抗体の優れた安定性を図ることが
でき、高出力の正抵抗温度係数発熱体が実現できるよう
になる。In other words, the agglomerated structure of the conductive filler during annealing is relaxed by repeating extremely small displacements of the conductive filler to a stable position over time due to stress relaxation due to processing, heat, crystal growth, etc. in the crystalline polymer. As a result, the conductive path decreases and the resistance increases, but the dimensional stability imparting agent mixed and dispersed in the crystalline polymer alleviates this change, resulting in extremely stable resistance stability. will be able to hold. In this way, 103Ωam
The excellent stability of the high-resistance resistor described above can be achieved, and a high-output positive resistance temperature coefficient heating element can be realized.
寸法安定性付与剤としては、ここに記したものに限られ
るわけではなく、寸法安定剤であればどのようなもので
あってもよく、熱変形率が、無添加組成より、好ましく
は、10%以上低減させられるものであればよく、結晶
核剤としての効果も有するものも少なく、また還元作用
を有し、材料を安定化させる効果も有するものもある。The dimensional stability imparting agent is not limited to those described here, but any dimensional stabilizer may be used, and the thermal deformation rate is preferably 10% compared to the additive-free composition. % or more, and there are few that also have an effect as a crystal nucleating agent, and some that have a reducing action and also have the effect of stabilizing the material.
また、導電性フィラー中に寸法安定性付与剤を添加する
と、導電性フィラー中の結晶性重合体の熱変形も緩和さ
れるために、さらに優れた抵抗安定性を保持できるよう
になる。また、結晶性重合体との相溶性を持たすことに
より抵抗体中の空隙を完全になくすことができ、マイク
ロクラック等の危険性を防止することもできる。また、
寸法安定性付与剤を外装材料に添加しておき、これに当
接する抵抗体に作用させるようにしてもよい。さらには
、有機酸変性の官能基を有する結晶性重合体を用いるこ
とにより導電性フィラ〒の架橋度をあげることもでき、
さらに安定化させることも可能である。Further, when a dimensional stability imparting agent is added to the conductive filler, thermal deformation of the crystalline polymer in the conductive filler is also alleviated, so that even more excellent resistance stability can be maintained. Furthermore, by having compatibility with the crystalline polymer, voids in the resistor can be completely eliminated, and risks such as microcracks can be prevented. Also,
A dimensional stability imparting agent may be added to the exterior material and applied to the resistor that comes into contact with the dimensional stability imparting agent. Furthermore, the degree of crosslinking of the conductive filler can be increased by using a crystalline polymer having an organic acid-modified functional group.
Further stabilization is also possible.
なお、導電性フィラーを構成する材料としては、低密度
ポリエチレンとサーマルブラックとファーネスブラック
との組合せに限定されるものではなく、中密度ポリエチ
レン、高密度ポリエチレン、リニアポリエチレン、エチ
レン酢酸ビニル共重合体、エチレンアクリル酸共重合体
、アイオノマ、ポリプロピレン、ポリアミド、ポリ弗化
ビニリデン、ポリエステルさらにはアクリル酸やマレイ
ン酸等の有機酸変性ポリエチレン等の結晶性重合体とチ
ャンネルブラ・・ツク、アセチレンブラック等のカーボ
ンブラックの中で顕著な正抵抗温度特性を示す導電材料
との組合せを用いても、同等の効果を奏するものである
。The material constituting the conductive filler is not limited to the combination of low-density polyethylene, thermal black, and furnace black, but also includes medium-density polyethylene, high-density polyethylene, linear polyethylene, ethylene-vinyl acetate copolymer, Crystalline polymers such as ethylene acrylic acid copolymer, ionomer, polypropylene, polyamide, polyvinylidene fluoride, polyester, and polyethylene modified with organic acids such as acrylic acid and maleic acid, and carbon such as channel black, acetylene black, etc. Even if black is used in combination with a conductive material that exhibits remarkable positive resistance temperature characteristics, the same effect can be achieved.
同様に、導電性フィラーと混練してなる結晶性重合体も
高密度ポリエチレンに限られるものではなく、導電性フ
ィラー中の結晶性重合体と同一であってもよい。Similarly, the crystalline polymer kneaded with the conductive filler is not limited to high-density polyethylene, and may be the same as the crystalline polymer in the conductive filler.
発明の効果
以上に述べてきたように、高出力・高温度の正抵抗温度
係数発熱体を実現する場合等に、半導体領域周辺の体積
固有抵抗値を有する抵抗体が必要となるが、単に、導電
性微粉末の組成比を調整しただけでは導電性微粉末同志
の接触点の数は激減するために、抵抗温度特性は結晶性
重合体の融点のみによって制御されるだけでなく、より
低温域の熱膨張、熱収縮等による各種構成材料の熱応力
によると想定される不安定な成分が飛躍的に増大するこ
とになり、極めて不安定な特性になり、非常に短かい発
熱寿命であったり、異常過熱、発煙、発火等の危険性を
有したりしていたが、本発明の正抵抗温度係数発熱体は
、こうした問題点を解決するものである。すなわち、架
橋により導電性微粉末を導電性フィラー中に固定し、ま
た、結晶性重合体における加工、熱、結晶成長等に対す
る応力緩和による高抵抗化現象を寸法安定性付与剤によ
り抑制することにより、長期にわたる優れた抵抗安定性
を実現し、高出力で安全で長寿命の正抵抗温度係数発熱
体を供するものである。さらには、寸法安定性付与剤の
効果をこの温順や添加量により調整することにより、各
種用途や周辺材料に適合した発熱寿命に設定できるため
、ライフエンド時に至るまでの安全性を高めることも可
能となる。Effects of the Invention As described above, in order to realize a high-output, high-temperature positive resistance temperature coefficient heating element, a resistor having a volume resistivity around the semiconductor region is required. If only the composition ratio of the conductive fine powder is adjusted, the number of contact points between the conductive fine powders will be drastically reduced. Therefore, the resistance temperature characteristics are not only controlled by the melting point of the crystalline polymer, but also in the lower temperature range. The unstable components assumed to be due to the thermal stress of various constituent materials due to thermal expansion, thermal contraction, etc. will increase dramatically, resulting in extremely unstable characteristics and a very short heat generation life However, the positive resistance temperature coefficient heating element of the present invention solves these problems. That is, by fixing the conductive fine powder in the conductive filler by crosslinking, and by suppressing the phenomenon of high resistance due to stress relaxation in crystalline polymers due to processing, heat, crystal growth, etc., by using a dimensional stability imparting agent. This provides a high-output, safe, and long-life positive resistance temperature coefficient heating element that achieves excellent long-term resistance stability. Furthermore, by adjusting the effect of the dimensional stability imparting agent through the temperature order and amount added, it is possible to set a heat generation life that is suitable for various uses and surrounding materials, thereby increasing safety up to the end of its life. becomes.
第1図は本発明の一実施例の正抵抗温度係数発熱体の斜
視図、第2図は同発熱体の表面温度の経時的変化を示す
特性図、第3図は従来の正抵抗温度係数発熱体の斜視図
である。
4・・・・・・正抵抗温度係数抵抗体、5.6・・・・
・・電極、正呑彷X撹係佐基抗体
通電N Fl+’3 (X 700041)7.8・・
・・・・外装材。Fig. 1 is a perspective view of a positive resistance temperature coefficient heating element according to an embodiment of the present invention, Fig. 2 is a characteristic diagram showing changes in the surface temperature of the heating element over time, and Fig. 3 is a conventional positive resistance temperature coefficient heating element. FIG. 3 is a perspective view of a heating element. 4...Positive resistance temperature coefficient resistor, 5.6...
・・Electrode, Seinon Aki
...Exterior material.
Claims (6)
る導電性組成物を架橋し細分化してなる粒子状導電性組
成物(以下、導電性フィラーと称す)と、寸法安定性付
与剤を結晶性重合体に混合分散して形成した薄厚状の正
抵抗温度係数抵抗体と、その厚さ方向に電圧を印加すべ
く設けられた一対の電極体とを備えた正抵抗温度係数発
熱体。(1) A particulate conductive composition (hereinafter referred to as a conductive filler) obtained by crosslinking and subdividing a conductive composition obtained by mixing and dispersing conductive fine powder in a crystalline polymer, and its dimensional stability. A positive resistance temperature coefficient comprising a thin positive resistance temperature coefficient resistor formed by mixing and dispersing an imparting agent into a crystalline polymer, and a pair of electrode bodies provided to apply a voltage in the thickness direction of the positive resistance temperature coefficient resistor. heating element.
ニール温度に加熱することにより生する熱変形率を10
%以上低減させる材料で構成される請求項1記載の正抵
抗温度係数発熱体。(2) The dimensional stability imparting agent reduces the thermal deformation rate by 10 when a single resistor is heated to the annealing temperature of the heating element.
The positive resistance temperature coefficient heating element according to claim 1, which is made of a material that reduces the temperature coefficient of positive resistance by at least %.
デハイドを結合させてなる材料より構成される請求項1
または請求項2記載の正抵抗温度係数発熱体。(3) Claim 1, wherein the dimensional stability imparting agent is composed of a material made by bonding benzaldehyde to sorbitol.
Or the positive resistance temperature coefficient heating element according to claim 2.
する請求項1〜請求項3のいずれかに記載の正抵抗温度
係数発熱体。(4) The positive resistance temperature coefficient heating element according to any one of claims 1 to 3, wherein the dimensional stability imparting agent has compatibility with the crystalline resin.
正抵抗温度係数発熱体。(5) The positive resistance temperature coefficient heating element according to claim 1 or claim 2, wherein the dimensional stability imparting agent has a structure represented by at least ▲a mathematical formula, a chemical formula, a table, etc.▼.
接してなる外装材料に含まれてなる請求項1〜請求項5
のいずれかに記載の正抵抗温度係数発熱体。(6) Claims 1 to 5, wherein the dimensional stability imparting agent is contained in the exterior material that is in contact with the positive resistance temperature coefficient resistor.
The positive resistance temperature coefficient heating element according to any one of the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63168219A JPH0217608A (en) | 1988-07-06 | 1988-07-06 | Positive resistance temperature coefficient heating element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63168219A JPH0217608A (en) | 1988-07-06 | 1988-07-06 | Positive resistance temperature coefficient heating element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0217608A true JPH0217608A (en) | 1990-01-22 |
Family
ID=15863996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63168219A Pending JPH0217608A (en) | 1988-07-06 | 1988-07-06 | Positive resistance temperature coefficient heating element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0217608A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5799719A (en) * | 1980-12-12 | 1982-06-21 | Matsushita Electric Ind Co Ltd | Macromolecular electric element |
JPS63146402A (en) * | 1986-12-10 | 1988-06-18 | 松下電器産業株式会社 | Positive resistance-temperature coefficient resistor |
-
1988
- 1988-07-06 JP JP63168219A patent/JPH0217608A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5799719A (en) * | 1980-12-12 | 1982-06-21 | Matsushita Electric Ind Co Ltd | Macromolecular electric element |
JPS63146402A (en) * | 1986-12-10 | 1988-06-18 | 松下電器産業株式会社 | Positive resistance-temperature coefficient resistor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2810740B2 (en) | PTC composition by grafting method | |
JPH0777161B2 (en) | PTC composition, method for producing the same and PTC element | |
JPH0342681B2 (en) | ||
JP3506628B2 (en) | Manufacturing method of organic positive temperature coefficient thermistor | |
GB1597007A (en) | Conductive polymer compositions and devices | |
JP3914899B2 (en) | PTC thermistor body, PTC thermistor, method for manufacturing PTC thermistor body, and method for manufacturing PTC thermistor | |
JPH0217608A (en) | Positive resistance temperature coefficient heating element | |
JPH0217609A (en) | Positive resistance temperature coefficient heating element | |
JPH0218902A (en) | Positive resistance temperature coefficient igniter | |
JP2688061B2 (en) | Positive resistance temperature coefficient heating element | |
JP2730062B2 (en) | Positive resistance temperature coefficient heating element | |
JPS63146402A (en) | Positive resistance-temperature coefficient resistor | |
JPH0215602A (en) | Positive resistance temperature coefficient heating element | |
JPS59122524A (en) | Composition having positive temperature characteristics of resistance | |
JP2586486B2 (en) | Positive resistance temperature coefficient heating element | |
JP2638862B2 (en) | Positive low temperature coefficient heating element | |
JP2734253B2 (en) | Positive resistance temperature coefficient heating element | |
JPS59226493A (en) | Self-temperature control heater | |
GB2033707A (en) | Conductive polymer compositions of an electrical device | |
JPH02234380A (en) | Positive-resistance temperature coefficient heating body | |
JP2936788B2 (en) | Method for manufacturing resistor having positive temperature coefficient of resistance and heating element using the resistor | |
JP2988011B2 (en) | Positive resistance temperature coefficient heating element and method of manufacturing the same | |
JPH03269982A (en) | Positive resistance temperature coefficient heating body | |
JPS63307685A (en) | Positive-resistance temperature coefficient heating element | |
JPH05343164A (en) | Positive resistance temperature coefficient heating element and manufacturing method thereof |