JPH02168418A - In-plane magnetic recording media and magnetic storage devices - Google Patents
In-plane magnetic recording media and magnetic storage devicesInfo
- Publication number
- JPH02168418A JPH02168418A JP24913789A JP24913789A JPH02168418A JP H02168418 A JPH02168418 A JP H02168418A JP 24913789 A JP24913789 A JP 24913789A JP 24913789 A JP24913789 A JP 24913789A JP H02168418 A JPH02168418 A JP H02168418A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- film
- thin film
- recording medium
- plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 559
- 238000003860 storage Methods 0.000 title claims description 12
- 239000010408 film Substances 0.000 claims abstract description 223
- 239000010409 thin film Substances 0.000 claims abstract description 204
- 239000010410 layer Substances 0.000 claims abstract description 93
- 239000002131 composite material Substances 0.000 claims abstract description 80
- 230000005415 magnetization Effects 0.000 claims description 113
- 239000000758 substrate Substances 0.000 claims description 96
- 229910045601 alloy Inorganic materials 0.000 claims description 63
- 239000000956 alloy Substances 0.000 claims description 63
- 229910000684 Cobalt-chrome Inorganic materials 0.000 claims description 29
- 239000010952 cobalt-chrome Substances 0.000 claims description 29
- 229910052719 titanium Inorganic materials 0.000 claims description 15
- 239000011253 protective coating Substances 0.000 claims description 14
- 229910052804 chromium Inorganic materials 0.000 claims description 13
- 229910002441 CoNi Inorganic materials 0.000 claims description 11
- 230000007423 decrease Effects 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 11
- 229910052750 molybdenum Inorganic materials 0.000 claims description 11
- 229910052721 tungsten Inorganic materials 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 229910052741 iridium Inorganic materials 0.000 claims description 8
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- 229910052735 hafnium Inorganic materials 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 229910052763 palladium Inorganic materials 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- 229910052771 Terbium Inorganic materials 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 229910052779 Neodymium Inorganic materials 0.000 claims description 5
- 229910052772 Samarium Inorganic materials 0.000 claims description 5
- 229910002059 quaternary alloy Inorganic materials 0.000 claims description 5
- 229910052684 Cerium Inorganic materials 0.000 claims description 4
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 4
- 229910002058 ternary alloy Inorganic materials 0.000 claims description 4
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- -1 and G. d Inorganic materials 0.000 claims description 2
- 230000005294 ferromagnetic effect Effects 0.000 claims description 2
- 229910052777 Praseodymium Inorganic materials 0.000 claims 1
- 229910052727 yttrium Inorganic materials 0.000 claims 1
- 230000008878 coupling Effects 0.000 abstract description 2
- 238000010168 coupling process Methods 0.000 abstract description 2
- 238000005859 coupling reaction Methods 0.000 abstract description 2
- 239000011247 coating layer Substances 0.000 abstract 1
- 230000007797 corrosion Effects 0.000 description 49
- 238000005260 corrosion Methods 0.000 description 49
- 230000000694 effects Effects 0.000 description 37
- 230000000052 comparative effect Effects 0.000 description 19
- 239000002356 single layer Substances 0.000 description 18
- 229910001004 magnetic alloy Inorganic materials 0.000 description 16
- 238000000034 method Methods 0.000 description 12
- 230000035699 permeability Effects 0.000 description 12
- 239000000696 magnetic material Substances 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- 229910019222 CoCrPt Inorganic materials 0.000 description 9
- 230000002829 reductive effect Effects 0.000 description 9
- 239000013078 crystal Substances 0.000 description 8
- 230000004907 flux Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000001755 magnetron sputter deposition Methods 0.000 description 6
- 230000003993 interaction Effects 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 229910052703 rhodium Inorganic materials 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 230000005374 Kerr effect Effects 0.000 description 3
- 239000004721 Polyphenylene oxide Substances 0.000 description 3
- 229910001362 Ta alloys Inorganic materials 0.000 description 3
- 229910001069 Ti alloy Inorganic materials 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 3
- 230000005381 magnetic domain Effects 0.000 description 3
- 230000005389 magnetism Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910052762 osmium Inorganic materials 0.000 description 3
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 3
- 229920000570 polyether Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 239000005341 toughened glass Substances 0.000 description 3
- 230000005330 Barkhausen effect Effects 0.000 description 2
- 229910018979 CoPt Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 229910001172 neodymium magnet Inorganic materials 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- ITWBWJFEJCHKSN-UHFFFAOYSA-N 1,4,7-triazonane Chemical compound C1CNCCNCCN1 ITWBWJFEJCHKSN-UHFFFAOYSA-N 0.000 description 1
- 229910000967 As alloy Inorganic materials 0.000 description 1
- 229910020630 Co Ni Inorganic materials 0.000 description 1
- 229910002515 CoAl Inorganic materials 0.000 description 1
- 229910003321 CoFe Inorganic materials 0.000 description 1
- 229910018936 CoPd Inorganic materials 0.000 description 1
- 229910019001 CoSi Inorganic materials 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 229910002440 Co–Ni Inorganic materials 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910019819 Cr—Si Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910002545 FeCoNi Inorganic materials 0.000 description 1
- 229910004521 HfMo Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- 229910001257 Nb alloy Inorganic materials 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910003086 Ti–Pt Inorganic materials 0.000 description 1
- 229920001646 UPILEX Polymers 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Landscapes
- Magnetic Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、磁気ディスク装置、磁気テープ装置、磁気カ
ード装置などの磁気記憶装置における磁気記録媒体及び
これを用いた大容量磁気記憶装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic recording medium in a magnetic storage device such as a magnetic disk device, a magnetic tape device, or a magnetic card device, and a large-capacity magnetic storage device using the same.
磁気記憶装置の大容量化を図るためには、磁気記録媒体
の高記録密度化、高出力ノイズ比化が必要である。従来
これに対して、垂直磁化膜を用いた垂直磁気記録方式や
薄膜面内媒体を用いた面内磁気記録方式が検討されて来
た。以下、簡単にこれらの歴史的背景について説明する
。In order to increase the capacity of magnetic storage devices, it is necessary to increase the recording density and output noise ratio of magnetic recording media. Conventionally, in response to this, a perpendicular magnetic recording method using a perpendicularly magnetized film and a longitudinal magnetic recording method using a thin film longitudinal medium have been studied. The historical background of these issues will be briefly explained below.
垂直磁気記録媒体は、記録ビット間の反磁界が少ないた
め、原理的には高記録密度化に適しているが、出力が小
さいという欠点がある。この欠点をなくす為、従来、種
々の複合磁性膜が提案されてきた。生産性が高く、垂直
配向性の良好な垂直磁気記録媒体として、垂直磁気異方
性を有するCoCr膜の上に、さらに膜厚0.14〜0
.175μmのCo−0もしくはCo−Ni−0膜を垂
直配向せしめる複合垂直磁化膜が特開昭61−9821
号公報にて提案されている。さらに特開昭52−784
03号公報、特開昭54−5184号公報などに述べら
れているように、高記録密度における記録再生効率を高
め、高い再生出力を得るために、非磁性基板上に高透磁
率軟磁性膜を介して垂直磁化膜を設ける複合磁気記録媒
体等も提案されている。一般に媒体形成法としては、蒸
着法、スパッタ法、メツキ法、イオンビームスパッタ法
などがある。ただし、本方式では、磁気ヘッドが媒体面
から罷れで浮上すると、記録密度が従来の面内記録方式
に比べてかえって低下すると言われている。さらに、高
透磁率軟磁性層を下地層とすると、その上に設ける垂直
磁性膜の垂直配向性が劣化するという問題もあった。こ
の問題に対しては、Ni−Feなとの高透磁率軟磁性下
地層上に、この高透磁率軟磁性層と垂直磁化層との磁気
的相互作用を妨げ、垂直磁化層の配向性を高めるためT
iなどの非磁性層を介してC。Perpendicular magnetic recording media have a small demagnetizing field between recording bits, so they are suitable in principle for increasing recording density, but they have the drawback of low output. In order to eliminate this drawback, various composite magnetic films have been proposed. As a perpendicular magnetic recording medium with high productivity and good perpendicular alignment, on top of the CoCr film having perpendicular magnetic anisotropy, a film with a thickness of 0.14 to 0.
.. A composite perpendicularly magnetized film in which a 175 μm Co-0 or Co-Ni-0 film is vertically aligned is disclosed in Japanese Patent Application Laid-Open No. 61-9821.
It has been proposed in the Publication No. Furthermore, JP-A-52-784
As stated in Japanese Patent Application Laid-open No. 03 and Japanese Patent Application Laid-Open No. 54-5184, in order to improve the recording and reproduction efficiency at high recording density and obtain high reproduction output, a high permeability soft magnetic film is coated on a non-magnetic substrate. Composite magnetic recording media in which a perpendicularly magnetized film is provided through a perpendicular magnetization film have also been proposed. Generally, media forming methods include vapor deposition, sputtering, plating, and ion beam sputtering. However, in this method, it is said that if the magnetic head rises above the medium surface due to wrinkles, the recording density will be reduced compared to the conventional longitudinal recording method. Furthermore, when a high magnetic permeability soft magnetic layer is used as an underlayer, there is a problem in that the perpendicular orientation of a perpendicular magnetic film provided thereon is deteriorated. To solve this problem, we created a high-permeability soft magnetic underlayer made of Ni-Fe to prevent the magnetic interaction between the high-permeability soft magnetic layer and the perpendicular magnetic layer, and to improve the orientation of the perpendicular magnetic layer. T to enhance
C through a non-magnetic layer such as i.
−Orなどの垂直磁化膜を形成し、さらにその上にNi
−Feなどの高透磁率軟磁性層を設ける垂直磁気記録媒
体が特開昭61−131228号公報にて提案されてい
る。A perpendicular magnetization film such as -Or is formed, and then Ni
A perpendicular magnetic recording medium provided with a high magnetic permeability soft magnetic layer such as -Fe has been proposed in Japanese Patent Application Laid-Open No. 131228/1983.
また、特開昭61−222022などには、CoCrN
bもしくはCoCrTaから成る等方性低保磁力層の上
に、飽和磁化が大きく、垂直磁気異方性を有するCoC
r層を形成する垂直磁気記録媒体が提案されている。こ
れは、基板的にはCoCrNbもしくはCoCrTaが
、いわゆる高透磁率軟磁性M(裏打ちM)に相当する。In addition, CoCrN
CoC having large saturation magnetization and perpendicular magnetic anisotropy is placed on an isotropic low coercive force layer made of b or CoCrTa.
A perpendicular magnetic recording medium forming an r layer has been proposed. As for the substrate, CoCrNb or CoCrTa corresponds to the so-called high permeability soft magnetic M (backing M).
これらの従来の垂直磁化層と高透磁率軟磁性層とから成
る複合磁気記録媒体においては、軟磁性層は磁気ヘッド
の記録磁界を効率良く垂直磁化層に導くと共に、記録磁
化を安定化させるという補助機能を果しているにすぎな
い。すなわち、それぞれの磁性層は磁気的に全く独立に
機能している。In these conventional composite magnetic recording media consisting of a perpendicular magnetic layer and a high permeability soft magnetic layer, the soft magnetic layer efficiently guides the recording magnetic field of the magnetic head to the perpendicular magnetic layer and stabilizes the recorded magnetization. It merely serves an auxiliary function. That is, each magnetic layer functions completely independently magnetically.
このような構成の場合には、複合磁性薄膜を構成する磁
性膜は互いに弱い磁気的相互作用しかなく、面内の磁化
曲線は各層の面内磁化曲線のほぼ単純な重ね合わせにな
る。そのため磁化曲線には磁化ジャンプが認められ、い
わゆる蛇状となって、同一の面内保磁力で各層は磁化反
転しない。高記録密度化に対しては、磁化曲線は、複数
の保磁力を有する蛇形が好ましいとされている。In such a configuration, the magnetic films constituting the composite magnetic thin film have only weak magnetic interaction with each other, and the in-plane magnetization curve becomes a substantially simple superposition of the in-plane magnetization curves of each layer. Therefore, a magnetization jump is observed in the magnetization curve, which is a so-called serpentine shape, and the magnetization of each layer is not reversed with the same in-plane coercive force. For high recording density, it is said that a serpentine magnetization curve having a plurality of coercive forces is preferable.
ただし、いずれの方式の垂直磁気記録媒体においても、
記録再生効率を高めるためには、高透磁率下地層と磁気
的回路を構成する主磁極型の磁気ヘッドを用いる必要が
あり、特開昭60−261025号公報に述べられてい
る様に、記録方式からシステム全体まで変えないと実用
性能の向上は期待できないと考えられている。実際、本
構成の垂直磁気記録媒体を従来のリング型の磁気介ツド
で記録再生すると次に述べる問題があった。However, in any type of perpendicular magnetic recording medium,
In order to improve the recording and reproducing efficiency, it is necessary to use a main pole type magnetic head that forms a magnetic circuit with a high magnetic permeability underlayer. It is believed that improvements in practical performance cannot be expected unless changes are made from the method to the entire system. In fact, when a perpendicular magnetic recording medium of this configuration is recorded and reproduced using a conventional ring-type magnetic intermediary, the following problems occur.
すなわち、高透磁率下地層の上に垂直磁化層を設けた前
記複合垂直膜媒体は、従来の面内磁気記録用リング型磁
気ヘッド−で記録再生すると、ジャーナル オブ アプ
ライド フィジックス第57巻(1985年)第396
4〜第3966頁(J、 Appl、 Physics
、 57 (1985) p。That is, when the composite perpendicular film medium in which a perpendicular magnetization layer is provided on a high magnetic permeability underlayer is recorded and reproduced using a conventional ring-type magnetic head for in-plane magnetic recording, ) No. 396
Pages 4 to 3966 (J, Appl, Physics
, 57 (1985) p.
3964−p、3966)などに述べられているように
、主磁極型の垂直磁気記録用ヘッドで記録再生する場合
と異なり、非常に大きなスパイク状のバルクハウゼンノ
イズが高透磁率下地層から発生したり、スパイク状のバ
ルクハウゼンノイズを低減してもノイズの絶対値が大き
いという問題があった。垂直磁化層の上に高透磁率軟磁
性層を設けた特開昭60−261025号公報に記載の
垂直多層膜媒体の場合にも同様の問題があると考えられ
る。これは、基本的には高透磁率膜の保磁力が数Oe〜
20Oe程度以下と極めて小さいことなどのために、強
い記録磁界がCo−Cr垂直磁化層にまで達しにくく、
さらに以下の理由により出力波形が顕しく歪むためであ
る。すなわち、垂直磁化層と高透磁層との磁気的結合力
が弱く、外部磁界に対して個々の膜が別個に応答し、個
々に磁化反転し易いこと、及び、垂直磁化層の下に、さ
らに、垂直磁化層との間の磁気的相互作用が働くのを妨
げるために200人程鹿の非磁性中間層を介して高透磁
率層を設けており、このために各層は外部磁界に対して
それぞれ独立に磁化反転してしまうためである。主磁極
型の磁気ヘッドではこのような問題は無い。3964-p, 3966), unlike when recording and reproducing with a main pole type perpendicular magnetic recording head, very large spike-like Barkhausen noise is generated from the high magnetic permeability underlayer. However, even if spike-like Barkhausen noise is reduced, the absolute value of the noise remains large. A similar problem is thought to exist in the case of the perpendicular multilayer film medium described in Japanese Patent Application Laid-Open No. 60-261025, in which a high permeability soft magnetic layer is provided on the perpendicular magnetization layer. This basically means that the coercive force of the high magnetic permeability film is several Oe~
Because it is extremely small (about 20 Oe or less), it is difficult for strong recording magnetic fields to reach the Co-Cr perpendicular magnetization layer.
Furthermore, the output waveform is noticeably distorted due to the following reasons. That is, the magnetic coupling force between the perpendicular magnetization layer and the high magnetic permeability layer is weak, each film responds separately to an external magnetic field, and the magnetization is easily reversed individually. Furthermore, in order to prevent magnetic interaction with the perpendicular magnetization layer, a high magnetic permeability layer is provided through a non-magnetic intermediate layer of about 200 layers, and for this reason each layer is not susceptible to external magnetic fields. This is because the magnetization is reversed independently. A main pole type magnetic head does not have this problem.
以上説明したように、ヘッドが媒体に接触する状態で使
用すれば、垂直磁気記録方式は本質的に面内磁気記録方
式に比べて格段に優れた特性を有する。As explained above, when used with the head in contact with the medium, the perpendicular magnetic recording system essentially has much superior characteristics compared to the longitudinal magnetic recording system.
しかし、他方で、ヘッド浮上時や、システム全体の観点
から、従来のリング型磁気ヘッドを用いる面内磁気記録
方式を改良しようとする研究も最近特に見直されて来て
いる。面内磁気記録用薄膜媒体としては、耐食性が高く
、高飽和磁化、高保磁力の磁性薄膜材料の開発が必要で
あり、以下のような複合媒体が提案されるに至っている
。However, on the other hand, research aimed at improving the conventional longitudinal magnetic recording method using a ring-type magnetic head has recently been particularly reconsidered from the viewpoint of the flying head and the overall system. As a thin film medium for longitudinal magnetic recording, it is necessary to develop a magnetic thin film material with high corrosion resistance, high saturation magnetization, and high coercive force, and the following composite media have been proposed.
すなわち、垂直媒体と面内媒体とを複合するものとして
、特開昭60−261026号公報や特開昭60−26
1025号公報などに述べられているように、垂直方向
に磁化可能なCo−Crなどの層の上にCo−Niなど
の面内高保磁力磁性層やγ−Fe20.などの等方性高
保磁力磁性層を設けることで、従来型のリングヘッドを
用いて高記録密度での記録再生を行なう複合磁気記録媒
体及び磁気記録方式が提案されている。また、これ等と
同様の方式で、さらに別の構成の媒体として、特開昭6
1−34721号公報には、面内方向の保磁力が300
08以上の高保磁力Go−Pt面内薄膜磁性層の上に垂
直方向の保磁力が400Oe以上のCo −Cr垂直磁
化層を設けるという2層膜媒体も提案されている。That is, as a combination of vertical media and in-plane media,
As described in Japanese Patent No. 1025, etc., an in-plane high coercive force magnetic layer such as Co-Ni or a γ-Fe20. Composite magnetic recording media and magnetic recording systems have been proposed that perform recording and reproduction at high recording density using a conventional ring head by providing an isotropic high coercive force magnetic layer such as . In addition, in a similar manner to these, as a medium with a different configuration, JP-A-6
1-34721, the coercive force in the in-plane direction is 300
A two-layer film medium has also been proposed in which a Co--Cr perpendicular magnetization layer with a perpendicular coercive force of 400 Oe or more is provided on a Go--Pt in-plane thin film magnetic layer with a high coercive force of 400 Oe or more.
さらに、CoNi、CoPt等の面内磁気異方性を有す
るCo基磁性合金層の上にCoCr基合金層を設けた。Further, a CoCr-based alloy layer was provided on a Co-based magnetic alloy layer having in-plane magnetic anisotropy such as CoNi or CoPt.
高耐食性の面内複合磁気記録媒体が特開昭62−256
217にて提案されている。A highly corrosion-resistant longitudinal composite magnetic recording medium was developed in Japanese Patent Application Laid-Open No. 62-256.
It has been proposed in 217.
これは、CO基磁性合金より耐食性が高いCoCr基合
金で、Co基磁性合金層の表層部を一部、置き換えたも
のである。This is a CoCr-based alloy that has higher corrosion resistance than a CO-based magnetic alloy, and a part of the surface layer of the Co-based magnetic alloy layer is replaced.
以上説明した様に、従来の面内磁気記録再生方式で、更
に高S/N化、高密度化できる高信頼性磁気記録媒体が
強く求められていると言って良い。As explained above, it can be said that there is a strong demand for a highly reliable magnetic recording medium that can achieve higher S/N and higher density using the conventional longitudinal magnetic recording/reproducing method.
ところが、垂直磁化膜の上に面内高保磁力磁性層、もし
くは等方性高保磁力磁性層を設ける構成の前記従来型複
合媒体は、垂直磁化膜に比べて出力は高いが、7iE密
度での記録ができないという問題があった。これは、面
内磁化膜等に記録された情報を保持する機能を有する垂
直磁化膜への保持情報の記録が十分でないためである。However, the above-mentioned conventional composite media in which an in-plane high coercive force magnetic layer or an isotropic high coercive force magnetic layer is provided on a perpendicularly magnetized film has a higher output than a perpendicularly magnetized film, but cannot record at 7iE density. The problem was that it was not possible. This is because retained information is not sufficiently recorded in the perpendicularly magnetized film, which has the function of retaining information recorded in the in-plane magnetized film or the like.
すなわち、リング型ヘッドは本質的に垂直成分の記録磁
界強度が小さいので、垂直磁化には不向きの上に、垂直
磁化膜とヘッドとは面内磁化膜等を介して対向している
ので1両者間のスペースはより広がってしまい、さらに
記録し難くなってしまうためである。さらに本発明者ら
の検討によれば、記録磁化状態はこの場合特に不安定で
、再生出力も複雑で。In other words, since ring-type heads inherently have a small recording magnetic field strength in the perpendicular component, they are not suitable for perpendicular magnetization, and since the perpendicular magnetization film and the head face each other via an in-plane magnetization film, etc. This is because the space between them becomes wider, making it even more difficult to record. Furthermore, according to the studies of the present inventors, the recorded magnetization state is particularly unstable in this case, and the reproduced output is also complicated.
ピークシフト、位相シフト等をおこし易いという問題が
あり、実用上大きな課題が残されていることが明らかに
なった。It has become clear that there is a problem in that peak shift, phase shift, etc. are likely to occur, and that a major problem remains in practical use.
また、高保磁力面内薄膜磁性層の上に垂直磁化層を設け
る前記2層膜媒体においても同じ課題がある。Further, the same problem exists in the above two-layer film medium in which a perpendicular magnetization layer is provided on a high coercive force in-plane thin film magnetic layer.
また、Go−Ni、Go−Pt等のCo基合金薄膜の上
にCo −Cr基合金層を設ける。前記の面内複合媒体
においては、飽和磁化がCo基合金薄膜より小さいCo
−Cr基合金層を用いるので、耐食性の向上と引き換
えに再生出力は低下している。さらに本発明者らの検討
の結果、第2表に示すように、面内保磁力もまた低下し
ていることが見つかった。したがって、再生出力が予想
以上に低下し、高密度磁気記録用媒体としての使用には
問題があることが明らかになった。Further, a Co-Cr-based alloy layer is provided on a Co-based alloy thin film such as Go-Ni or Go-Pt. In the above-mentioned in-plane composite medium, the saturation magnetization of Co is smaller than that of the Co-based alloy thin film.
Since the -Cr-based alloy layer is used, the reproduction output is reduced in exchange for improved corrosion resistance. Further, as a result of studies conducted by the present inventors, as shown in Table 2, it was found that the in-plane coercive force also decreased. Therefore, the reproduction output decreased more than expected, and it became clear that there was a problem in using it as a high-density magnetic recording medium.
本発明の目的は、ピークシフト、面内保磁力の劣化、等
の前記の問題が無く、高密度での記録再生が安定して行
なえ、さらに耐食性等の信頼性が高く、S/Nも高い複
合磁性膜を有する面内磁気記録媒板及び磁気記憶装置を
再現性良く提供することにある。The purpose of the present invention is to avoid the above-mentioned problems such as peak shift and deterioration of in-plane coercive force, to stably perform high-density recording and reproduction, and to have high reliability such as corrosion resistance, and high S/N. An object of the present invention is to provide a longitudinal magnetic recording medium plate and a magnetic storage device having a composite magnetic film with good reproducibility.
上記本発明の目的は、非磁性基板上に直接もしくは非磁
性下地層を介して複合磁性膜を形成した面内磁気記録媒
体において、上記複合磁性膜を構成する全ての磁性膜は
磁気的に結合しており、上かつ該面内保磁力が上記複合
磁性膜を構成する磁性膜のうち最も情報記録側の磁性膜
を構成する面内磁気異方性磁性膜の面内保磁力より大き
い面内磁気記録媒板により達成できる。The object of the present invention is to provide a longitudinal magnetic recording medium in which a composite magnetic film is formed on a non-magnetic substrate directly or via a non-magnetic underlayer, in which all the magnetic films constituting the composite magnetic film are magnetically coupled. and the in-plane coercive force is larger than the in-plane coercive force of the in-plane magnetic anisotropic magnetic film that constitutes the magnetic film closest to information recording among the magnetic films that constitute the composite magnetic film. This can be achieved using a magnetic recording medium plate.
複合磁性膜の形成に際し、複合磁性膜を構成する全ての
磁性膜が磁気的に結合し、かつ唯1つの面内保磁力を有
するようになしたので、すべての磁性膜が同時に磁化反
転し1面内磁化曲線の形状は蛇形にはならず、ピークシ
フト等が生じない。When forming the composite magnetic film, all the magnetic films constituting the composite magnetic film were magnetically coupled and had a unique in-plane coercive force, so that the magnetization of all the magnetic films was simultaneously reversed. The shape of the in-plane magnetization curve is not serpentine, and no peak shift or the like occurs.
さらに、その面内保磁力を、最情報記録側磁性膜の面内
保磁力よりも大きくしたので、高い再生、出力が得られ
る。Furthermore, since the in-plane coercive force is made larger than the in-plane coercive force of the most information recording side magnetic film, high reproduction and output can be obtained.
本発明につき、以下にさらに詳細に説明する。The present invention will be explained in more detail below.
最も情報記録側の磁性膜をCo、Feから成る第1の群
は選ばれた少なくとも1つの元素と、N。The first group consisting of Co, Fe, and at least one selected element, the magnetic film closest to information recording side, and N.
T b * G d e M o + W * Y #
S m + N d + P r +Pm、Ce、D
y、La、Pt、I r、Ti。T b * G de Mo + W * Y #
S m + N d + P r +Pm, Ce, D
y, La, Pt, Ir, Ti.
Z r HHf * V + N b * T a +
Ru HOs HRh gPd、Al、Siとから成
る第2の群から選ばれた少なくとも1つの元素、もしく
はNiの少なくとも1種とを含む合金を主成分とする面
内磁気異方性薄膜であり、前記量も基板側の磁性薄膜は
、前記の最も情報記録側の磁性薄膜とは成分、もしくは
組成を異にし、さらに前記第1の群から選ばれた少なく
とも1つの元素と、Cu、Cr、Mo。Z r HHf * V + N b * T a +
Ru HOs HRh g An in-plane magnetic anisotropic thin film whose main component is an alloy containing at least one element selected from the second group consisting of Pd, Al, and Si, or at least one element of Ni, and The magnetic thin film on the substrate side has a different component or composition from the magnetic thin film on the information recording side, and further contains at least one element selected from the first group, Cu, Cr, and Mo.
W、Tb、Gd、Sm、Nd* Pry Pm、Cee
Dy、Pt、Irとから成る第3の群から選ばれる少な
くとも1つの元素、もしくはNiの少なくとも1種とを
主成分として含む合金とし、さらに複合磁性膜を構成す
るすべての磁性薄膜が互いに磁気的に結合しており、複
合磁性膜の面内外部磁界に対する磁化反転時の面内保磁
力が250Oe以上の1つの値を有するように構成する
ことで、高密度で高い出力ノイズが得られる高耐食性媒
体を再現性良く提供できる。W, Tb, Gd, Sm, Nd* Pry Pm, Cee
The alloy contains as a main component at least one element selected from the third group consisting of Dy, Pt, and Ir, or at least one element of Ni, and all the magnetic thin films constituting the composite magnetic film are magnetically magnetic with each other. By configuring the composite magnetic film so that the in-plane coercive force at the time of magnetization reversal in response to an in-plane external magnetic field has a value of 250 Oe or more, it has high corrosion resistance that provides high density and high output noise. Media can be provided with good reproducibility.
最基板側磁性膜の材料を上述のようにすることにより、
その上に形成する磁性膜の配向性、結晶性を高めぬこと
ができ、かつ、複合磁性膜の面内保磁力を安定に高い値
に制御する上で望ましい。By using the material of the magnetic film on the outermost substrate side as described above,
This is desirable because the orientation and crystallinity of the magnetic film formed thereon cannot be increased, and the in-plane coercive force of the composite magnetic film can be stably controlled to a high value.
これは、上記添加元素が粒界に偏析し易いためと考えら
れる。This is considered to be because the above-mentioned additive elements tend to segregate at grain boundaries.
前記第2の群の元素の総量を、前記第1の群の元素の総
量に対し0.1 a t%以上30a t%以下、より
望ましくは、0.5 a t%以上、20at%以下と
するか、Niを10a t%以上、60at%以下とす
ることで飽和磁化、保磁力、耐食性を高めることができ
る。最も情報記録側の磁性薄膜の飽和磁化を最も基板側
の磁性薄膜の飽和磁化よりも高くするか、最も基板側の
磁性薄膜の面内保磁力を複合磁性膜を構成する磁性薄膜
の中で最も高くすることが再生出力、耐食性の点で゛望
ましい。さらに両者の組み合わせが特に好ましい。複合
磁性膜を3種の磁性薄膜で構成すれば自由度が大きくな
るのでさらに好ましく、5種以上では成膜装置が複雑と
なり過ぎるのであまり好ましくない、また、この場合、
各層の飽和磁化の大きさを、情報記録側から順に小さく
することが再生出力の点で望ましい、さらにまた面内保
磁力は情報記録側から順に高くすることが望ましく、両
者の組み合わせが最も好ましい。The total amount of the elements in the second group is 0.1 at% or more and 30 at% or less, more preferably 0.5 at% or more and 20 at% or less, with respect to the total amount of the elements in the first group. Alternatively, saturation magnetization, coercive force, and corrosion resistance can be improved by setting Ni to 10 at% or more and 60 at% or less. Either make the saturation magnetization of the magnetic thin film closest to the information recording side higher than the saturation magnetization of the magnetic thin film closest to the substrate, or make the in-plane coercive force of the magnetic thin film closest to the substrate the highest among the magnetic thin films constituting the composite magnetic film. It is desirable to make it higher in terms of playback output and corrosion resistance. Further, a combination of the two is particularly preferred. It is more preferable that the composite magnetic film is composed of three types of magnetic thin films because it increases the degree of freedom, but five or more types is not so preferable because the film forming apparatus becomes too complicated, and in this case,
From the viewpoint of reproduction output, it is desirable that the saturation magnetization of each layer is made smaller in order from the information recording side.Furthermore, it is desirable that the in-plane coercive force be made higher in order from the information recording side, and a combination of the two is most preferable.
耐食性を考慮すれば中間層を最も高い飽和磁化としても
良い。ここで、最情報記録側の磁性薄膜の膜厚は、最基
板側の磁性薄膜の膜厚の2倍よりも厚くない方が、面内
保磁力の再現性、安定性、記録密度特性及び出力ノイズ
比の上で好ましい、また、前記最情報記録側磁性薄膜は
、単独では、半硬磁性であり、かつ該磁性薄膜に隣接す
る磁性薄膜は、単独では、垂直磁気異方性を有するか、
あるいは、面内磁気異方性を有し複合膜としての面内保
磁力が1000Oe以上より望ましくは150008以
上であることが高い記録密度を達成する上で特に好まし
い。ここで半硬磁性とは、一般に保磁力が50a以上2
00Oe以下の場合を指す。最情報記録側磁性薄膜の膜
厚としては0.005μm以上0.1μm以下であるこ
とが耐食性を高め、記録密度特性を高める上で望ましい
。Considering corrosion resistance, the intermediate layer may have the highest saturation magnetization. Here, the thickness of the magnetic thin film on the side where the most information is recorded should not be more than twice the thickness of the magnetic thin film on the side of the most substrate to improve the reproducibility of in-plane coercive force, stability, recording density characteristics, and output. Preferably in terms of noise ratio, the most information recording side magnetic thin film alone is semi-hard magnetic, and the magnetic thin film adjacent to the magnetic thin film alone has perpendicular magnetic anisotropy;
Alternatively, in order to achieve high recording density, it is particularly preferable that the composite film has in-plane magnetic anisotropy and has an in-plane coercive force of 1000 Oe or more, more preferably 150008 or more. Here, semi-hard magnetism generally has a coercive force of 50a or more.
This refers to the case of 00 Oe or less. The thickness of the magnetic thin film on the most information recording side is desirably 0.005 μm or more and 0.1 μm or less in order to improve corrosion resistance and improve recording density characteristics.
又、最情報記録側磁性薄膜に少なくともFe。Further, the magnetic thin film on the most information recording side contains at least Fe.
Biの一方を含有せしめることで、特にカー効果、ファ
ラデー効果等の光磁気効果が大きくなるので、ましい。It is preferable to include one of Bi, since the magneto-optical effects such as Kerr effect and Faraday effect become particularly strong.
最情報記録側磁性薄膜を前記材料のうち、Co N i
基3元、4元合金とし、最基板側磁性薄膜を前記材料の
うちCo Cr基もしくはCoSm基の3元、4元合金
とすれば、特に最情報記録側磁性薄膜の結晶配向性が高
く、高密度でのS/Nを高くできるので特に好ましい。Among the above materials, the magnetic thin film on the information recording side is made of CoNi
If the magnetic thin film on the most substrate side is made of a ternary or quaternary alloy based on Co Cr or CoSm, the crystal orientation of the magnetic thin film on the most information recording side will be particularly high; This is particularly preferable since the S/N can be increased at high density.
ここで、前記第3の群の元素の総量は、前記第1の群の
元素の総量に対しQ、5at%以上60at%以下、よ
り望ましくは、3at%以上55at%以下、さらに望
ましくは10at%以上50at%以下とすることが配
向性、磁気特性向上の点で好ましい。Niについては1
0at%以上60at%以下、より望ましくは、30a
t%以上50at%以下とすることが磁気特性の点で好
ましい。最基板側磁性薄膜にさらに、Ti、Zr、Hf
、Nb、Ta、Ru、Os。Here, the total amount of the elements in the third group is Q with respect to the total amount of the elements in the first group, 5 at% or more and 60 at% or less, more preferably 3 at% or more and 55 at% or less, and even more preferably 10 at%. The content is preferably 50 at % or less in terms of improving orientation and magnetic properties. 1 for Ni
0at% or more and 60at% or less, more preferably 30a
From the viewpoint of magnetic properties, it is preferable that the content be t% or more and 50 at% or less. Furthermore, Ti, Zr, and Hf are added to the magnetic thin film on the outermost substrate side.
, Nb, Ta, Ru, Os.
Rh、Pd、Al、Siから成る第4の群の少なくとも
1種の元素をQ、lat%以上20at%以下、より望
ましくは3at%以上、15at%ことが耐食性、高保
磁力化の点で好ましい、複合磁性膜上にさらに膜厚10
nm以上40nm以下の非磁性保護被覆層を設けること
で耐摺動信頼性が向上するので好ましい。該非磁性保護
被覆層はWC,WN、C等で形成することが特に望まし
く、この上にさらに有機系潤滑層をlnm以上、15n
m以下設けても良い、また、複合磁性膜と前記非磁性保
護被覆層との間に非磁性中間層としてTi、Zr、Hf
、Nb、Taを主成分とする合金やNi基合金を5nm
以上15nm以下設けると耐食性の点で特に好ましい。At least one element of the fourth group consisting of Rh, Pd, Al, and Si is Q, preferably from lat% to 20at%, more preferably from 3at% to 15at%, from the viewpoint of corrosion resistance and high coercive force. An additional film thickness of 10 mm is added on the composite magnetic film.
It is preferable to provide a non-magnetic protective coating layer with a thickness of nm or more and 40 nm or less because the sliding reliability is improved. It is particularly desirable that the non-magnetic protective coating layer be formed of WC, WN, C, etc., and an organic lubricating layer with a thickness of 1 nm or more, 15 nm or more, is further applied thereon.
Ti, Zr, Hf may be provided as a non-magnetic intermediate layer between the composite magnetic film and the non-magnetic protective coating layer.
, Nb, Ta alloys or Ni-based alloys with a thickness of 5 nm
A thickness of 15 nm or less is particularly preferable from the viewpoint of corrosion resistance.
前記非磁性下地層として、Cr、Mo、Wもしくは、T
i−Cr、Cr−3i、Cr−Mo等のこれらを主たる
成分とする非磁性材料を用いれば最基板側磁性薄膜の面
内結晶配向性、面内保磁力が向上するので好ましく、T
i、C,GeもしくはTi−Cr、Ti−Nb、Ti−
Ta、Ti−Pt等のこれらを主たる成分とする材料を
用いれば最基板側磁性薄膜の垂直結晶配向性が向上し、
最終的には複合面内媒体としての媒体ノイズが低減する
ので好ましい。上記複合面内磁気記録媒体を、磁気コア
の少なくとも一部を強磁性金属薄膜で形成したリング型
磁気ヘッドで記録再生すれば特に高い密度での記録再生
ができるので好ましい。The non-magnetic underlayer may be Cr, Mo, W or T.
It is preferable to use a non-magnetic material such as i-Cr, Cr-3i, Cr-Mo, etc. whose main components are these, since this improves the in-plane crystal orientation and in-plane coercive force of the magnetic thin film on the outermost substrate side.
i, C, Ge or Ti-Cr, Ti-Nb, Ti-
By using materials containing Ta, Ti-Pt, etc. as their main components, the vertical crystal orientation of the magnetic thin film on the outermost substrate side can be improved.
This is preferable because it ultimately reduces the medium noise as a composite in-plane medium. It is preferable to perform recording and reproduction on the composite longitudinal magnetic recording medium using a ring-shaped magnetic head in which at least a portion of the magnetic core is formed of a ferromagnetic metal thin film, since recording and reproduction can be performed at a particularly high density.
本発明は以下の作用による。まず、単層磁性薄膜を用い
た場合の耐食性、磁気特性、記録再生特性について説明
する。The present invention is based on the following effects. First, the corrosion resistance, magnetic properties, and recording and reproducing properties when using a single-layer magnetic thin film will be explained.
塗布媒体に比べて金属系薄膜媒体は高密度でも高い再生
出力が期待できるが、金属であるために耐食性に劣ると
いう問題がある。そこで、スパッタリング法で、投入電
力密度4W/a#、Arガス圧10 m Torr、基
板温度100℃でガラス基板上に膜厚300nmのCr
を介してCoや。Compared to coated media, metallic thin film media can be expected to provide higher reproduction output even at higher densities, but because they are metal, they have a problem of inferior corrosion resistance. Therefore, using a sputtering method, a 300 nm thick Cr film was deposited on a glass substrate at an input power density of 4 W/a#, an Ar gas pressure of 10 m Torr, and a substrate temperature of 100°C.
Co and through.
Coo、、F ell、3に、Sc、Y、La、Ce、
Pr。Coo,,Fell,3,Sc,Y,La,Ce,
Pr.
Nd、Pm、Sm、Eu、Gd、Tb、Dy。Nd, Pm, Sm, Eu, Gd, Tb, Dy.
Ho、Er、Tm、Yb、Lu、Ti、Zr。Ho, Er, Tm, Yb, Lu, Ti, Zr.
Hf、V、Nb、Ta、Cr、Mo、W、Mn。Hf, V, Nb, Ta, Cr, Mo, W, Mn.
Ru、Os、Rh、Ir、Ni、Pd、Pt。Ru, Os, Rh, Ir, Ni, Pd, Pt.
C,、u、Ag、Au、Alt、Si、Sn、O,Nを
1種ないし3種を0.05,0.1,0.5,1゜10
.20.!50,60,70at%添加した磁性合金薄
膜を70nm形成し、最後に膜厚40nmのCを形成し
てその耐食性について評価した。C,, u, Ag, Au, Alt, Si, Sn, O, N, 0.05, 0.1, 0.5, 1°10
.. 20. ! Magnetic alloy thin films doped with 50, 60, and 70 at% were formed to a thickness of 70 nm, and finally a C film was formed to a thickness of 40 nm, and its corrosion resistance was evaluated.
ここで金属系薄膜媒体の腐食のうち、孔食はデータの消
失に直接つながるので、−様腐食に比べてより重要であ
ると考えられる。そこで、孔食を引き起こす腐食加速試
験として、O,OO1moQ%のNaNO3* 0.0
01moU%のNa、Sn4及び1moff%のNaC
Qを含む塩水噴霧試駆により、これら磁性薄膜の耐孔食
性を評価した。Among the corrosions of metal-based thin film media, pitting corrosion directly leads to data loss, and is therefore considered to be more important than --like corrosion. Therefore, as a corrosion acceleration test that causes pitting corrosion, O,OO1moQ% NaNO3*0.0
01 moU% Na, Sn4 and 1 moff% NaC
The pitting corrosion resistance of these magnetic thin films was evaluated by a salt spray trial run containing Q.
その結果、GoやFeにN、Tb、Mo、W。As a result, N, Tb, Mo, and W were added to Go and Fe.
G d ) Y g S rn g N d @ P
r g P m g Ce * D y eLa、Pt
、I r、Ti、Zr、Hf、V、Nb。G d ) Y g S rn g N d @ P
r g P m g Ce * D y eLa, Pt
, Ir, Ti, Zr, Hf, V, Nb.
Ta、Ru、Os、Rh、Pd、Al、Siから成る第
2の群の元素を少なくとも1s添加することで著しく磁
性合金の耐食性を向上できることが明らかになった。こ
れはこれらの添加元素が金属磁性薄膜の表面に緻密な不
働態被覆を形成したり、効果が複合化している場合もあ
る。これ等の添加量としては、COとFeとの総量に対
して0.1at%以上であれば耐食性向上の効果は認め
られたが、0.5at%以上とすることがより望ましい
、ただし添加量を30at%よりも多くすると、飽和磁
化の劣化が著しいのであまり好ましくは無い。したがっ
て前記添加量としては30a t%以下、より望ましく
は、20at%以下とすることが好ましい。It has been revealed that the corrosion resistance of the magnetic alloy can be significantly improved by adding at least 1 s of elements of the second group consisting of Ta, Ru, Os, Rh, Pd, Al, and Si. This is because these additive elements form a dense passive coating on the surface of the metal magnetic thin film, or their effects may be compounded. Regarding the amount of these additions, an effect of improving corrosion resistance was recognized if the amount was 0.1 at% or more based on the total amount of CO and Fe, but it is more desirable to add 0.5 at% or more, but the amount added If it is more than 30 at %, saturation magnetization deteriorates significantly, so it is not very preferable. Therefore, the amount added is preferably 30 at% or less, more preferably 20 at% or less.
一般に飽和磁化が高い方が潜在的には磁性材料として優
れている。そこで飽和磁化を同じにして種々の磁性合金
の耐食性を評価すると、Niは高耐食性である上に磁性
も有するので添加元素として特に好ましい。すなわち、
Niを添加するとNi自身が高耐食性金属であるため、
前記組成の磁性合金にさらにNiを添加することで、飽
和磁化の低化を抑えつつ耐食性をさらに向上できるので
特に好ましいことになる。すなわち、Niを10at%
以上添加すると、第4図にいくつかの例として形成した
CoCrもしくはCoCrTaのようなCoCr基合金
に比べて2倍以上優れた耐食性を示すことが明らかにな
った。ただし、Niを60at%よりも多く添加すると
保磁力が低下するので好ましくない。Generally, materials with higher saturation magnetization are potentially better as magnetic materials. Therefore, when evaluating the corrosion resistance of various magnetic alloys with the same saturation magnetization, Ni is particularly preferable as an additive element because it has high corrosion resistance and also has magnetism. That is,
When Ni is added, since Ni itself is a highly corrosion resistant metal,
By further adding Ni to the magnetic alloy having the above composition, corrosion resistance can be further improved while suppressing a decrease in saturation magnetization, which is particularly preferable. That is, Ni is 10at%
It has been found that when added above, corrosion resistance is more than twice as good as that of CoCr-based alloys such as CoCr or CoCrTa, which are formed as some examples in FIG. However, if more than 60 at % of Ni is added, the coercive force decreases, which is not preferable.
そこで次に、これ等の磁性薄膜を単独で用いた磁気記録
媒体の磁気特性、記録再生特性について耐食性の劣る材
料も含めて一般的に評価した。Next, we generally evaluated the magnetic properties and recording/reproducing properties of magnetic recording media using these magnetic thin films alone, including materials with poor corrosion resistance.
すなわち、直径130m5φの、ガラスディスク基板も
しくはN1−PメツキAQ合金ディスク上に、膜厚42
0nmのCrを介して膜厚60nmのCoNi合金、C
oCr合金、CoTi合金、Co P を合金、CoS
m合金、CoFe合金。That is, a film with a thickness of 42 mm is placed on a glass disk substrate or N1-P plating AQ alloy disk with a diameter of 130 m5φ.
CoNi alloy with a film thickness of 60 nm, C through 0 nm of Cr
oCr alloy, CoTi alloy, CoP alloy, CoS
m alloy, CoFe alloy.
CoPr合金、CoNi Zr合金: CoNiTi合
金、CoNiPt合金、CoNiCr合金、CoCrP
t合金、CoCrTa合金、Co N i Z r C
r合金、CoNlHfAQ合金などの前記磁性薄膜及び
、膜厚40nmのC保護暎が形成して単層磁性薄膜から
成る磁気ディスクとした。ここで各媒体の面内保磁力は
300Oe以上3000Oe未満で、いずれも面内磁気
異方性を示した。ギャップ長0.6μmでギャップ部に
FeAjlSi合金を用いその他はM n −Z nフ
ェライトであるメタルインギャップ型のリングヘッドを
用い相対速度20 m / s、浮上量hg=0.2μ
m、0.15μmでその記録再生特性を評価した結果、
第10図に示すように1kPCI(flux chan
ge per 1nch)の低周波記録時での再生出力
は保磁力には顕著には依存せず、磁性薄膜の飽和磁化に
比例して大きくなり、しかも再生出力の大きさはヘッド
と媒体との距離が狭い程太き、くなることが分かった。CoPr alloy, CoNi Zr alloy: CoNiTi alloy, CoNiPt alloy, CoNiCr alloy, CoCrP
t alloy, CoCrTa alloy, CoN i Z r C
The magnetic thin film of R alloy, CoNlHfAQ alloy, etc., and a C protective film having a film thickness of 40 nm were formed to obtain a magnetic disk consisting of a single-layer magnetic thin film. Here, the in-plane coercive force of each medium was 300 Oe or more and less than 3000 Oe, and all exhibited in-plane magnetic anisotropy. Using a metal-in-gap type ring head with a gap length of 0.6 μm and a FeAjlSi alloy in the gap part and Mn-Zn ferrite in the rest, the relative speed was 20 m/s, and the flying height hg = 0.2 μm.
As a result of evaluating the recording and reproducing characteristics at m, 0.15 μm,
As shown in Figure 10, 1kPCI (flux chan
The playback output during low-frequency recording (ge per 1nch) does not significantly depend on the coercive force, but increases in proportion to the saturation magnetization of the magnetic thin film, and the magnitude of the playback output varies depending on the distance between the head and the medium. It was found that the narrower the line, the thicker it becomes.
これから、低周波すなわち低記録密度での記録再生時の
再生出力を高めるためには、al性薄膜の飽和磁化を高
めれば良いことになる。ところが、飽和磁化を高めると
高密度記録時には磁性薄膜内の反磁界が強くなる為、第
11図に浮上量0.2μmの場合を示すように、飽和磁
化が大きくなる程、1kPCI程度の低密度での再生出
力の半分の出力となる記録密度(出力半減記録密度D5
.)は飽和磁化の増大と共に減少してしまい、40kP
CI程度の高い記録密度での再生出力は著しく低下して
しまうという問題があることが分った。From now on, in order to increase the reproduction output during recording and reproduction at low frequencies, that is, at low recording density, it is sufficient to increase the saturation magnetization of the Al thin film. However, as the saturation magnetization increases, the demagnetizing field within the magnetic thin film becomes stronger during high-density recording, so as shown in Figure 11 for the case of a flying height of 0.2 μm, the higher the saturation magnetization, the lower the density of about 1 kPCI. Recording density that is half of the playback output (output half-reduction recording density D5
.. ) decreases with increasing saturation magnetization, and becomes 40kP.
It has been found that there is a problem in that the reproduction output at a recording density as high as CI is significantly reduced.
このように磁性薄膜の飽和磁化は、出力と記録密度につ
いて逆の作用をするため、例え前記の高耐食性磁性合金
を用いたとしても、単層では高密度で高い再生出力を同
時に達成することは極めて困難であることが確認された
。In this way, the saturation magnetization of a magnetic thin film has opposite effects on output and recording density, so even if the above-mentioned highly corrosion-resistant magnetic alloy is used, it is impossible to simultaneously achieve high density and high reproduction output with a single layer. It was confirmed that this was extremely difficult.
そこで単層膜の研究で得られた前記知見を基に磁性薄膜
を複合することで高保磁力し、さらに高密度で高いS/
Nが得られる構成について鋭意検討することにした。一
般に腐食は情報記録側から進行するので、最も情報記録
側の磁性薄膜を高耐食性で面内磁気異方性を有する磁性
材料に限定し、その下側に、種々の組成から成る前記一
般の磁性薄膜を設けた複合磁気記録媒体の記録再生特性
について鋭意検討した。ここで非磁性下地膜としてはC
rやT io、、N bll、、合金を用い、最基板側
磁性薄膜として面内、垂直異方性を有する場合について
検討することにした。まず、最も基板側に、飽和磁化が
より小さいか、面内保磁力がより大きな合金磁性薄膜を
設け、次いでこれと磁気的相互作用し、かつ該磁性薄膜
の表面が酸化、窒化等の変化をしてしまわないように、
真空の質、磁気特性、膜厚等を制御して、該磁性薄膜上
に該磁性薄膜より飽和磁束密度が高いか、面内保磁力が
小さい別の合金磁性薄膜を設けた。それぞれの磁性薄膜
が磁気的に相互作用し、さらに基板側磁性薄膜が面内異
方性を有する場合には、磁化反転する面内保持力はいず
れの場合も1つであり、また基板側磁性薄膜が垂直異方
性を有する場合には、情報記録側の磁性薄膜の保磁力が
4Oe以上20008以下で半硬磁性であれば、複合磁
性膜が外部磁界に対して磁化反転する面内保持力は1つ
しかなく、シかもその値を半硬磁性膜の保磁力の値より
も高く出来た。Therefore, based on the above knowledge obtained from research on single-layer films, we can achieve high coercive force by combining magnetic thin films, and also achieve higher density and higher S/
We decided to seriously consider a configuration that would allow us to obtain N. Generally, corrosion progresses from the information recording side, so the magnetic thin film closest to the information recording side is limited to a magnetic material with high corrosion resistance and in-plane magnetic anisotropy, and below that, the above-mentioned general magnetic thin film made of various compositions is used. We have intensively investigated the recording and reproducing characteristics of composite magnetic recording media provided with thin films. Here, as the non-magnetic underlayer, C
We decided to study the case of using alloys such as r, Tio, N bll, and having in-plane and perpendicular anisotropy as the magnetic thin film on the outermost substrate side. First, an alloy magnetic thin film with smaller saturation magnetization or larger in-plane coercive force is provided closest to the substrate, and then magnetically interacts with this, and the surface of the magnetic thin film undergoes changes such as oxidation and nitridation. To prevent this from happening,
By controlling the vacuum quality, magnetic properties, film thickness, etc., another alloy magnetic thin film having a higher saturation magnetic flux density or a lower in-plane coercive force than the magnetic thin film was provided on the magnetic thin film. When the respective magnetic thin films interact magnetically and the substrate-side magnetic thin film has in-plane anisotropy, there is only one in-plane coercive force for magnetization reversal in each case, and the substrate-side magnetic thin film has in-plane anisotropy. When the thin film has perpendicular anisotropy, if the magnetic thin film on the information recording side has a coercive force of 4 Oe or more and 20008 or less and is semi-hard magnetic, the composite magnetic film has an in-plane coercive force that causes magnetization reversal in response to an external magnetic field. There is only one, and we were able to make its value higher than the coercive force of the semi-hard magnetic film.
以下さらに詳細に、本発明の作用について、いくつかの
例を掲げて説明する。The effects of the present invention will be explained in more detail below using several examples.
まず、第1表にこれ等のうちで典型的な複合磁ここで各
磁性層の膜厚はそれぞれ25nmである。First, Table 1 shows typical composite magnets, in which the thickness of each magnetic layer is 25 nm.
第
表
次に第1表の例について詳細に説明する。ガラス基板に
まずCoN1Ptfiを設け、この上にCoCr層を設
けた比較例2の複合媒体については比較例3のCoNi
Pt単層媒体の保磁力1050Oeに比べ保磁力は76
0Oeと低いことがわかる。これは、CoCrは比較例
4に示したように本来面内保磁力が低いという性質があ
り、ここで、CoNiPtのようなCo基合金薄膜の上
にCo Cr層を設けると、Co基合金薄膜の持つ本来
の高い保磁力(表12表3に示す)を低減してしまうた
めであると考えられる。Table Next, the example in Table 1 will be explained in detail. For the composite media of Comparative Example 2, in which CoN1Ptfi was first provided on a glass substrate and a CoCr layer was provided thereon, CoNi of Comparative Example 3 was used.
The coercive force is 76 Oe compared to the coercive force of 1050 Oe for Pt single layer media.
It can be seen that it is as low as 0 Oe. This is because CoCr inherently has a low in-plane coercive force as shown in Comparative Example 4, and if a CoCr layer is provided on a Co-based alloy thin film such as CoNiPt, the Co-based alloy thin film It is thought that this is because the originally high coercive force (shown in Table 12 and Table 3) of the material is reduced.
これに対し、基板上にまずCoCr層を設け、この上に
CoNiPt層を設けた本発明1の複合媒体の保磁力は
驚いたことに1100Oeと、比較例3のCo N i
P を単肩膜媒体の保磁力よりも高いことが明らかに
なった。この原因の詳細については、未だ完全に解明さ
れていないが、xg解析などの結果から判断して次のよ
うに考えられる。On the other hand, the coercive force of the composite medium of the present invention 1, in which a CoCr layer was first provided on the substrate and a CoNiPt layer was provided thereon, was surprisingly 1100 Oe, which was higher than that of the CoNiPt layer of Comparative Example 3.
It was revealed that P was higher than the coercive force of the single-shoulder membrane medium. The details of this cause have not yet been completely elucidated, but judging from the results of xg analysis and the like, it is thought to be as follows.
すなわち、上記衣1の試料番号1−4の媒体について、
X線を用いて磁性膜の納品配向性を調べたところ、第5
図に示すように比較例4のCo Cr単層膜は2θで約
44.6°に強い回折線ピークを示し、C軸が垂直配向
し易い。これはCoに添加したCrは結晶粒界に偏析し
易いため、Goの結晶粒がC軸配向し易くなるためであ
る。本効果はCr添加量が0.1at%以上であれば認
められたが、30a t%以上添加すると、飽和磁化が
第6図に示す様に、比較例3のCoNiPt単層膜は約
43.2”にCoCrで認められた回折線強度の1/1
0以下の強度の弱い回折線を示すだけで、僅かにC軸が
面内配向し易いことが明らかになった。これに対し、第
7図に示すように、比較例2のCo Cr / Co
N i P を複合膜では2θで43.2”と44.6
’に比較例3と同程度の非常に弱い回折線ピークしか認
められないのに対し、本発明1のCoNiPt/CoC
r (/基板)複合膜では、第8図に示すように、43
.2”と44.6°に比較例2に比べて10倍以上の非
常に強い回折線が認められることが明らかになった。That is, regarding the medium of sample number 1-4 of the above clothing 1,
When the orientation of the magnetic film was examined using X-rays, the fifth
As shown in the figure, the Co Cr single layer film of Comparative Example 4 shows a strong diffraction line peak at about 44.6° at 2θ, and the C axis is likely to be vertically aligned. This is because Cr added to Co tends to segregate at grain boundaries, making it easier for Go crystal grains to be C-axis oriented. This effect was observed when the amount of Cr added was 0.1 at% or more, but when 30 at% or more was added, the CoNiPt single layer film of Comparative Example 3 had a saturation magnetization of about 43.0%, as shown in FIG. 1/1 of the diffraction line intensity observed in CoCr at 2”
It has become clear that the C-axis is slightly likely to be oriented in-plane only by showing a weak diffraction line with an intensity of 0 or less. On the other hand, as shown in FIG. 7, the CoCr/Co of Comparative Example 2
N i P is 43.2” and 44.6 in 2θ for the composite membrane.
'Only a very weak diffraction line peak comparable to that of Comparative Example 3 is observed, whereas CoNiPt/CoC of Invention 1
r (/substrate) In the composite film, as shown in Figure 8, 43
.. It became clear that extremely strong diffraction lines at 2" and 44.6 degrees, which were 10 times or more stronger than those in Comparative Example 2, were observed.
ここで特に、CoNiPtのC軸の面内配向を示す43
.2’の回折線強度は、CoCrのC軸の垂直配向を示
す44.6°の回折線強度よりも2倍程度強く、CoN
iPt膜は面内媒体として極めて良好な結晶配向をして
いることが明らかになった。これは、前記の垂直配向性
の高いCoCr膜の上にはCo N i P を膜がエ
ピタキシャル的にくは述べなかったが、Co N i
P を膜を基板上に形成し、その上にさらにCoCr以
外の、Co N i基合金、Co S m基合金等薄膜
を設けると、これ等は比較的良好な面内結晶配向を示す
ことが見い出された。このことから、CoNi基合金膜
等の上にCoCr基合金薄膜を設けると。In particular, 43 indicates the in-plane orientation of the C-axis of CoNiPt.
.. The intensity of the diffraction line at 2′ is about twice as strong as the intensity of the diffraction line at 44.6°, which indicates the vertical orientation of the C axis of CoCr, and
It has become clear that the iPt film has extremely good crystal orientation as an in-plane medium. This is because the CoNiP film is epitaxially formed on top of the CoCr film with high vertical orientation, although it is not mentioned that the CoNiP film is epitaxial.
When a P film is formed on a substrate and a thin film other than CoCr such as a CoN i-based alloy or a CoS m-based alloy is provided on top of the film, these can exhibit relatively good in-plane crystal orientation. Found out. From this, if a CoCr-based alloy thin film is provided on a CoNi-based alloy film or the like.
CoCr中のCrが前述のように偏析し易いためCoC
rは良好な配向をせず、CoCr/CoNi基合金/基
板複合媒体の磁気特性が悪くなっていると考えられる。Since Cr in CoCr is easy to segregate as mentioned above, CoC
It is considered that r is not well oriented and the magnetic properties of the CoCr/CoNi-based alloy/substrate composite medium are deteriorated.
いずれにせよ、一般にC軸は結晶磁気異方性軸であり、
C軸の面内配向成分が高い程面内保磁力が高く、面内媒
体としての特性が良好なことを示している。このため実
際第9図に、表1の試料番号1〜4の各媒体の記録再生
特性を、ギャップ長が0.4μmの薄膜磁気ヘッドを用
いて評価した結果を示す様に、いずれの媒体磁束量BS
−tIlagを有する媒体に対しても、本発明の媒体は
極めて媒体ノイズが小さく比較例の媒体に比べて2倍以
上高い出力ノイズ比(S/N)を示すの媒体においては
、情報記録側、基板側の磁性薄膜の結晶配向性が高いた
め、保磁力が高いだけでなく媒体ノイズが小さく、しか
も出力ノイズ比も高いことが明らかになった。In any case, the C axis is generally the magnetocrystalline anisotropy axis,
The higher the in-plane orientation component of the C-axis, the higher the in-plane coercive force, indicating that the properties as an in-plane medium are better. For this reason, in fact, as shown in Figure 9, the results of evaluating the recording and reproducing characteristics of each medium of sample numbers 1 to 4 in Table 1 using a thin film magnetic head with a gap length of 0.4 μm, the magnetic flux of any medium Quantity BS
-tIlag, the medium of the present invention has extremely small medium noise and exhibits an output noise ratio (S/N) that is more than twice as high as that of the comparative example medium. It has been revealed that because the magnetic thin film on the substrate side has a high crystal orientation, it not only has a high coercive force, but also has low media noise and a high output noise ratio.
以上の効果は、基板側の磁性薄膜を、Co。The above effects can be obtained by using Co as the magnetic thin film on the substrate side.
Feから成る第1の群から選ばれた少なくとも1つの元
素と、Cu、Cr、Mo、W、Tb、Gd。At least one element selected from the first group consisting of Fe, Cu, Cr, Mo, W, Tb, and Gd.
Sm、Nd、Pr、Pm、Ce、Dy、Pt。Sm, Nd, Pr, Pm, Ce, Dy, Pt.
Irとから成る第3の群から選ばれた少なくとも1つの
元素、もしくはNiの少なくとも1種とを含む磁性合金
を主たる成分とする磁性材料で形成しても認められた。It was observed even when the magnetic material was made of a magnetic material whose main component was a magnetic alloy containing at least one element selected from the third group consisting of Ir and at least one element of Ni.
第3の群の元素を含む場合には、第1の群の元素の総量
に対する組成を0.1at%とすれば前記のように効果
が認められた。When the elements of the third group were included, the effect as described above was observed when the composition was set to 0.1 at% with respect to the total amount of the elements of the first group.
これは、これらの群の元素が粒界に偏析し易く、配向性
がより高くなるためである。30a t%以上添加する
と飽和磁化が低下し、好ましくはない。This is because the elements of these groups tend to segregate at grain boundaries, resulting in higher orientation. Adding more than 30 at % is not preferable because the saturation magnetization decreases.
また、Niを含む場合には、第1の群の元素の総量に対
する組成は、保磁力を高めるという磁気時下とすること
が望ましい、いずれの場合も、第1の群の元素の総量に
対してさらに、Ti、Zr。In addition, when Ni is included, it is desirable that the composition with respect to the total amount of elements in the first group be set under magnetic conditions to increase coercive force.In either case, with respect to the total amount of elements in the first group Furthermore, Ti, Zr.
Hf、Nb、Ta、Ru、Os、Rh、Pd。Hf, Nb, Ta, Ru, Os, Rh, Pd.
Al、Siを0.1 a t%以上添加すると耐食性が
向上するので好ましい、20at%よりも多く添加する
と磁気特性が低下するので好ましくない。It is preferable to add Al or Si in an amount of 0.1 at % or more because it improves corrosion resistance, but it is not preferable to add more than 20 at % because the magnetic properties deteriorate.
また、CoMoZr、CoNi Zrの上記合金は一般
に非晶質化し易いが、非晶質化すると結晶配向性に関す
る上記効果が無くなり、また、保磁力も数+Oe以下に
低下してしまうので好ましくなく、優位的に結晶質とす
ることが望ましい。ここで情報記録側の磁性薄膜の高配
向化、媒体側の磁性薄膜をCoCr基、もしくはCoS
m基の上記元素を少なくとも含む3元、4元合金で形成
し、前記情報記録側磁性薄膜を前記CoNi基の3元、
4元合金を主成分とする合金で形成した場合に最も顕著
であるので、この組み合わせが記録再生特性的には特に
好ましい、さらに内磁性薄膜の間に。In addition, although the above-mentioned alloys of CoMoZr and CoNiZr generally tend to become amorphous, when they become amorphous, the above-mentioned effect on crystal orientation disappears, and the coercive force also decreases to below a few + Oe, which is not preferable. It is desirable that the material be crystalline. Here, the magnetic thin film on the information recording side is highly oriented, and the magnetic thin film on the medium side is made of CoCr-based or CoS
The information recording side magnetic thin film is formed of a ternary or quaternary alloy containing at least m groups of the above elements, and the information recording side magnetic thin film is made of the CoNi-based ternary,
This is most noticeable when the alloy is formed with a quaternary alloy as the main component, so this combination is particularly preferable in terms of recording and reproducing characteristics, and further between the internal magnetic thin films.
さらに別のCo基、Fe基、Ni基磁性合金薄膜を1層
ないし2層以上設けても同様の効果が得られるので、3
層以上の層構成としても良い。The same effect can be obtained by providing one or more layers of another Co-based, Fe-based, or Ni-based magnetic alloy thin film.
It is also possible to have a structure of more than one layer.
次に、情報記録側の磁性薄膜を高飽和磁化した場合の効
果について説明する。第10図のスペーシング依存性か
ら理解できるように、一般に各複合膜の平均的な飽和磁
化の値を有する単層膜に比へ、情報記録再生側磁性薄膜
の飽和磁化量を大きくした方がスペーシングの小さい位
置での磁化量が大きく再生ヘッドに流入する磁束量が大
きくなり、相対的に大きな再生出力が得られることにな
る。したがって、2層、3層以上の複合膜の場合には最
上層の情報記録側の磁性薄膜の飽和磁化を最も大きくす
ることが特に好ましいことになる。Next, the effect when the magnetic thin film on the information recording side is highly saturated magnetized will be explained. As can be understood from the spacing dependence in Figure 10, it is generally better to increase the saturation magnetization of the magnetic thin film on the information recording/reproducing side compared to a single layer film having an average saturation magnetization value of each composite film. The amount of magnetization at a position with small spacing is large, and the amount of magnetic flux flowing into the reproducing head is large, so that a relatively large reproducing output can be obtained. Therefore, in the case of a composite film having two or more layers, it is particularly preferable to maximize the saturation magnetization of the magnetic thin film on the information recording side of the uppermost layer.
しかし前述のように、耐食性の観点では最上層を高耐食
性磁性層で構成することが最も好ましい。However, as mentioned above, from the viewpoint of corrosion resistance, it is most preferable that the uppermost layer is composed of a highly corrosion-resistant magnetic layer.
一方、一般に添加元素量を多くして高耐食化する程飽和
磁化は減少するので、耐食性を最重視する場合には、必
ずしも最上層の飽和磁化量を大とする必要はない。ただ
し、この場合には、磁性膜を3層以上の構成とし、中間
磁性薄膜を高飽和磁化に耐食性、再生出力を高めること
ができるので、最も好ましいことになる。On the other hand, in general, the higher the corrosion resistance is achieved by increasing the amount of added elements, the lower the saturation magnetization is, so when corrosion resistance is of utmost importance, it is not necessarily necessary to increase the saturation magnetization amount of the top layer. However, in this case, it is most preferable to configure the magnetic film to have three or more layers, since this allows the intermediate magnetic thin film to have high saturation magnetization, improve corrosion resistance, and improve reproduction output.
記録密度に関しては、本発明の複合磁気記録媒体の保磁
力は単層膜媒体の保磁力に比べて高いので、磁化遷移領
域の幅は狭くなり、記録密度を単層媒体に比べて高くで
きる。さらに高密度記録時のビット境界における反磁界
の値は、実質的に飽和磁化の小さな薄膜での値となるた
め、記録密度をさらに高められる。これは、2種以上の
材料で構成される磁性薄膜において、磁気記録時にビッ
ト間に形成される鋸歯状磁区同志が互いに強く相互作用
し合うため、磁区構造、磁区長も同じになろうとし、高
飽和磁化膜単独の場合には広い磁化遷移領域幅が、飽和
磁化がより小さい膜が単独で存在する場合に見られるよ
うな、より狭い磁化遷移領域幅とほぼ同じになるように
小さくなるためであると考えられる0本効果は高飽和磁
化層が薄い程磁壁エネルギーの点でより望ましい。記録
磁界の急峻さの点においても、再生出力に対する寄方が
ヘッド磁界分布がより急峻なため、磁化遷移領域の幅も
相対的に狭くなるのでより好ましい。Regarding recording density, since the coercive force of the composite magnetic recording medium of the present invention is higher than that of a single layer medium, the width of the magnetization transition region is narrower, and the recording density can be higher than that of a single layer medium. Furthermore, since the value of the demagnetizing field at the bit boundary during high-density recording is substantially the same as that of a thin film with small saturation magnetization, the recording density can be further increased. This is because in a magnetic thin film composed of two or more types of materials, the sawtooth-like magnetic domains formed between bits during magnetic recording interact strongly with each other, so that the magnetic domain structure and magnetic domain length tend to be the same. The width of the wide magnetization transition region in the case of a film with high saturation magnetization alone becomes smaller to be almost the same as the width of the narrower magnetization transition region observed in the case of a film with lower saturation magnetization alone. The thinner the highly saturated magnetization layer is, the more desirable the zero-line effect is, in terms of domain wall energy. In terms of the steepness of the recording magnetic field, it is also preferable because the head magnetic field distribution is steeper in relation to the reproduction output, and the width of the magnetization transition region is also relatively narrower.
以上の効果は、磁性膜の組成、成分が異なり、飽和磁化
の異なる3層以上の磁性合金層から構成される場合にも
認められた。The above effects were also observed when the magnetic film was composed of three or more magnetic alloy layers with different compositions and components and different saturation magnetizations.
以上のように、前記高耐食性磁性材料から成り、飽和磁
化の最も高い合金磁性薄膜を最も情報記録ヘッド側に設
け、磁性膜を複合化することで、複合膜として平均化し
た飽和磁化を有する単層膜に比べて高い再生出力、高い
記録密度特性を有するようにできる。As described above, by providing an alloy magnetic thin film made of the highly corrosion-resistant magnetic material and having the highest saturation magnetization closest to the information recording head side, and forming a composite magnetic film, a single film having an averaged saturation magnetization as a composite film is formed. It can have higher reproduction output and higher recording density characteristics than a layered film.
次に前記最も基板側の磁性薄膜の磁性材料のより好まし
い磁気特性についてさらに詳細に述べる。Next, more preferable magnetic properties of the magnetic material of the magnetic thin film closest to the substrate will be described in more detail.
まず面内磁気異方性を有する場合について説明する。N
iPをメツキした直径89aaφのA2合金基板上に、
Arガス圧15mTorr、投入電力密度I W/aJ
、基板温度100℃としてDCマグネトロンスパッタリ
ング法により、非磁性下地層として膜厚500nmのC
r膜、膜厚0,10゜20.25,27.5.30,3
5,45,55゜60nmのCo、、、、Cr、、、、
P t、、、、磁性薄膜、膜厚60,50,40,35
,32.5,30゜25.15t 5.Onmの
Co、、、、Ni、、3.Zr、。。、磁性薄膜、非磁
性中間層として膜厚5nmのZ r、、、、Hf、、I
l、及び非磁・性保護被覆層として膜厚2nmのWN膜
を形成して磁気ディスクとし、基板側磁性薄膜
CoCrPtの膜厚磁気特性と複合薄膜媒体の磁気特性
、記録再生特性との関係について評価した。First, a case with in-plane magnetic anisotropy will be explained. N
On an A2 alloy substrate with a diameter of 89aaφ plated with iP,
Ar gas pressure 15 mTorr, input power density I W/aJ
, C was deposited as a nonmagnetic underlayer with a thickness of 500 nm by DC magnetron sputtering at a substrate temperature of 100°C.
r film, film thickness 0.10°20.25,27.5.30,3
5,45,55゜60nm Co,...,Cr...
P t, ..., magnetic thin film, film thickness 60, 50, 40, 35
, 32.5, 30°25.15t 5. Onm Co, , Ni, 3. Zr. . , magnetic thin film, 5 nm thick Zr, , Hf, , I as a non-magnetic intermediate layer
1, and a WN film with a thickness of 2 nm as a non-magnetic protective coating layer to form a magnetic disk, and the relationship between the thickness magnetic properties of the magnetic thin film CoCrPt on the substrate side and the magnetic properties and recording/reproducing properties of the composite thin film medium. evaluated.
ここで、CoCrPt、CoNiZr膜膜の飽和磁化M
sはそれぞれ79Oemu/cc (4πMs=9.9
kG)、73Oemu/cc (4sMs=9.2kG
)であった、またC o Cr P t 。Here, the saturation magnetization M of CoCrPt and CoNiZr films is
s is 79 Oemu/cc (4πMs=9.9
kG), 73Oemu/cc (4sMs=9.2kG
), and C o Cr P t .
CoNi Zrとも面内磁気異方性を示し、第12図に
示すように、CoCrPtを単独で形成した場合には、
上記いずれの膜厚の範囲においてもCo N i Z
r膜を単独で形成した場合に比べて面内保磁力は大きか
った。また、CoN1ZrPIAを単独で形成した場合
に比べて、Co Cr P を膜を力は高かった。記録
再生特性は、ギャップ部にCoO,、、Nboi4Z
r++、o*磁性薄膜を形成シタ、メタルインギャップ
(MIG)型の磁気ヘッド(ギャップ長0.4μm)で
、相対速度12 m / s浮上量を0.2μmとして
評価した。第13図に複合媒体及び比較例としてCoC
rPt単層媒体の保磁力、及び媒体S/Nを示す。Co
NiZr単層膜やCoCrPt単層膜の保磁力はその膜
厚依存性が大きいのに対し、複合膜の保磁力は膜厚依存
性が小さく、膜厚変動に対して再現性良く安定して高い
保磁力が得られることが分かる。CoNiZr also exhibits in-plane magnetic anisotropy, and as shown in Figure 12, when CoCrPt is formed alone,
In any of the above film thickness ranges, CoN i Z
The in-plane coercive force was larger than when the r film was formed alone. Furthermore, the strength of the CoCr P film was higher than that when CoN1ZrPIA was formed alone. The recording/reproducing characteristics are CoO,..., Nboi4Z in the gap part.
r++, o* magnetic thin film was formed and evaluated using a metal-in-gap (MIG) type magnetic head (gap length 0.4 μm) at a relative speed of 12 m/s and a flying height of 0.2 μm. Figure 13 shows a composite medium and CoC as a comparative example.
The coercive force of the rPt single layer medium and the medium S/N are shown. Co
The coercive force of NiZr single-layer films and CoCrPt single-layer films has a strong dependence on film thickness, whereas the coercive force of composite films has a small dependence on film thickness, and is stable and high with good reproducibility against film thickness variations. It can be seen that a coercive force can be obtained.
以上のように、CoNiZr膜をCoCr膜を介して複
合化することで保磁力及びS/Nを改善できるが、特に
情報記録側のCoNiZr磁性薄膜の膜厚が、基板側の
CoCrPt磁性薄膜の膜厚の2倍よりも厚くな(40
nm未満
(CoCrPt膜厚が20nm以上)であれば保磁力は
1000Oe以上で、S/Nも5以上の高S/N媒体が
得られることが分かる。ここで基板膜CoNiZrより
も厚い場合には保磁力は高く、しかも膜厚依存性が小さ
いので特に望ましい。さらに保磁力が1500Oe以上
であれば出力半減記録密度D1も高く、相対的に高い媒
体S/Nも得られるのでさらに望ましい。As described above, coercive force and S/N can be improved by combining a CoNiZr film with a CoCr film, but in particular, the thickness of the CoNiZr magnetic thin film on the information recording side is greater than that of the CoCrPt magnetic thin film on the substrate side. thicker than twice the thickness (40
It can be seen that if the thickness is less than nm (CoCrPt film thickness is 20 nm or more), a high S/N medium with a coercive force of 1000 Oe or more and an S/N of 5 or more can be obtained. Here, it is particularly desirable if the thickness is thicker than the substrate film CoNiZr because the coercive force is high and the dependence on film thickness is small. Furthermore, if the coercive force is 1500 Oe or more, the output half-reduced recording density D1 will be high, and a relatively high medium S/N will be obtained, which is even more desirable.
また、いずれの複合磁性膜においても、オーバライド特
性は32dB以上と高く、保磁力、ヘッドディスクスペ
ーシングの大きさから予想されるよりもはるかに良好で
あった。これに対し、60nmと同じ膜厚のCoCrP
t単M股媒体のオーバライド特性は26dBで、複合膜
媒体に比べて著しく悪かった。このように、保磁力が1
000〜1500Oe程度以上と高いにもかかわらず、
本発明より成る複合薄膜媒体において、良好なオーバラ
イド特性が得られる詳細な機構については未だ充分に解
明されてはいないが、情報記録ヘッド側では記録磁界が
強いので情報記報側で保磁力が高い方がオーバライド的
に好ましいという塗布媒体における従来の常識とは異な
り、以下の理由によるのでないかど考てえられる。すな
わち、本構成の複合磁性膜の保磁力は、第12図、第1
3図から明らかなように情報記録側、基板側の磁性薄膜
の保磁力の、各膜厚を加重した、およそ、中間的な値と
なっているので、−船釣には複合磁性膜の保磁力を高・
ぬるには、少なくとも一方の磁性薄膜の保磁力を高め、
その膜厚を厚くすれば良い。Furthermore, in all composite magnetic films, the override characteristics were as high as 32 dB or more, which was much better than expected based on the coercive force and head-disk spacing. On the other hand, CoCrP with the same film thickness as 60 nm
The override characteristic of the t-single M media was 26 dB, which was significantly worse than the composite film media. In this way, the coercive force is 1
Although it is high at around 000 to 1500 Oe or more,
The detailed mechanism by which good override characteristics are obtained in the composite thin film medium of the present invention has not yet been fully elucidated, but since the recording magnetic field is strong on the information recording head side, the coercive force is high on the information recording side. This is different from the conventional common sense regarding coating media that the above is preferable as an override, and this is considered to be due to the following reasons. That is, the coercive force of the composite magnetic film of this configuration is as shown in FIG.
As is clear from Figure 3, the coercive force of the magnetic thin film on the information recording side and the substrate side is approximately an intermediate value, weighting the respective film thicknesses. High magnetic force
To make it wet, increase the coercive force of at least one magnetic thin film,
It is sufficient if the film thickness is increased.
(ここでは簡単のため、第2表に示すような基板側磁性
層を設けることになる特性向上効果については無視した
。)本発明の複合磁性膜においては、このようにして複
合磁性膜の保磁力を高めると共に各構成磁性薄膜を磁気
的に結合せしめ、同時に磁化反転するようにしているの
で、仮に一方の磁性薄膜だけを磁化反転できれば、他の
磁性薄膜も。(Here, for the sake of simplicity, we have ignored the property improvement effect of providing the substrate-side magnetic layer as shown in Table 2.) In the composite magnetic film of the present invention, the composite magnetic film is maintained in this way. In addition to increasing the magnetic force, each component magnetic thin film is magnetically coupled and the magnetization is reversed at the same time, so if the magnetization of only one magnetic thin film can be reversed, then the other magnetic thin films can also be reversed.
例え印加磁界の媒体内平均値が複合媒体の保磁力以下で
あっても、全体として磁化反転し得ることになると考え
られる。磁気特性評価用の通常の磁界印加手法では、一
方の薄膜のみを優先的に磁化反転せしめることは困難で
ある。しかし、ヘッド記録磁界においては、その強度は
ヘッド表面から離れるに従がい、指数関数的に減少する
。しだがって、情報記録側の磁性薄膜位置における記録
磁界は、基板側の磁性薄膜の位置における記録磁界に比
べて極めて強く、情報記録側の磁性薄膜の保磁力が複合
膜の保磁力に比べて小さい場合には。Even if the average value of the applied magnetic field within the medium is less than the coercive force of the composite medium, it is thought that the magnetization can be reversed as a whole. With the usual magnetic field application method for evaluating magnetic properties, it is difficult to preferentially reverse the magnetization of only one thin film. However, the strength of the head recording magnetic field decreases exponentially as it moves away from the head surface. Therefore, the recording magnetic field at the position of the magnetic thin film on the information recording side is extremely strong compared to the recording magnetic field at the position of the magnetic thin film on the substrate side, and the coercive force of the magnetic thin film on the information recording side is compared to the coercive force of the composite film. If it's small.
実効的に小さな起磁力で情報記録側の磁性薄膜及びこれ
と磁気的に強く結合している基板側の磁性薄膜を磁化反
転せしめ、情報を記録できることになる。情報記録側の
磁性薄膜の飽和磁化が高いと、反磁界の影響が強くなる
ので1本効果はより顕著となる。以上のように磁気的に
強く結合している複合磁性膜においては、基板側に、単
独で成膜した場合の保磁力が高い磁性膜を設けた方が高
いオーバライド特性が得られることになると考えられる
。3層以上の多層構造としても同様である。Information can be recorded by effectively reversing the magnetization of the magnetic thin film on the information recording side and the magnetic thin film on the substrate side that is strongly magnetically coupled with the magnetic thin film using a small effective magnetomotive force. When the saturation magnetization of the magnetic thin film on the information recording side is high, the influence of the demagnetizing field becomes stronger, so the single-line effect becomes more pronounced. In a composite magnetic film that is strongly magnetically coupled as described above, it is thought that better override characteristics can be obtained by providing a magnetic film with a high coercive force when deposited alone on the substrate side. It will be done. The same applies to a multilayer structure of three or more layers.
非磁性下地層については、Crを用いた場合について述
べたが、 Cr −T i 、 Cr −S iなどの
Cr基合金、Mo、WやMo基合金、W基合金などの体
心立方構造を有する金属合金であれば基板側磁性薄膜の
配向性が高まり、高い保磁力が得られるのでCrと同様
に用いることができる。該下地層の膜厚は10nm以上
であれば高保磁力化の効果が認められるが、500nm
よりも厚くしても効果は変わらず、コスト的には劣るの
で500nm以下が望ましい。Regarding the non-magnetic underlayer, we have described the case where Cr is used, but Cr-based alloys such as Cr-Ti and Cr-Si, body-centered cubic structures such as Mo, W, Mo-based alloys, and W-based alloys can also be used. A metal alloy containing Cr can improve the orientation of the substrate-side magnetic thin film and provide a high coercive force, so it can be used in the same way as Cr. If the thickness of the underlayer is 10 nm or more, the effect of increasing coercive force is recognized, but if the thickness of the underlayer is 10 nm or more,
Even if the thickness is made thicker than 500 nm or less, the effect remains the same and the cost is lower, so the thickness is preferably 500 nm or less.
これらの磁性薄膜媒体を、0.lppmのSO2ガスを
含み、60℃、80%RHの高温高温中に120時間放
置し、ミッシングエラーの増加数を評価することでその
耐食性を評価した。その結果、CoCrPt単層膜はい
ずれもエラーの増加数が面当り100ケ以上発生するの
に対し、情報記録側に5nm以上のCoNiZr磁性薄
膜を設けた場合はエラーの発生が5ケ以下しか認められ
ず、15nm以上設けた場合にはエラーの発生は全く認
められず極めて良好な耐食性を示した。情報記録側のC
oNiZr磁性薄膜の膜厚をさらに1100nよりも大
きくすると保磁力や出力半減記録密度D5゜が低下して
しまうので好ましくなく、1100n以下とすることが
望ましい。These magnetic thin film media were coated at a temperature of 0. The corrosion resistance was evaluated by evaluating the increase in the number of missing errors after being left in a high temperature environment of 60° C. and 80% RH for 120 hours, containing 1 ppm of SO2 gas. As a result, while the CoCrPt single-layer film increases the number of errors by more than 100 per surface, when a CoNiZr magnetic thin film with a thickness of 5 nm or more is provided on the information recording side, only 5 or fewer errors occur. When the thickness was 15 nm or more, no errors were observed and extremely good corrosion resistance was exhibited. Information recording side C
If the thickness of the oNiZr magnetic thin film is made even larger than 1100 nm, the coercive force and output half-reduced recording density D5° will decrease, which is undesirable, and it is desirable to set the thickness to 1100 nm or less.
ここで複合磁性膜と非磁性保護被覆層との間に非磁性中
間層としてTi、Zr、Hf、Ta。Here, Ti, Zr, Hf, and Ta are used as a nonmagnetic intermediate layer between the composite magnetic film and the nonmagnetic protective coating layer.
Nb、から成る群の少なくとも1種、もしくはこれ等の
元素にPt、Pd、Rh、I r、Ru及びOs等の白
金属の元素を0.01 a t%以上、1at%以下添
加した合金、もしくはNiに27〜34wt%のCu、
2−32wt%のMo、13−25wt%のCr等を添
加したNi基合金からなり、膜厚が5nm以上の薄膜を
設けると磁性膜の耐食性を約2倍向上できるので好まし
い。逆に膜厚を15nmよりも大きくすると記録再生特
性の点で不利であるので、15nm以下、より望ましく
は10nm以下とすることが好ましい。Nb, or an alloy in which platinum metal elements such as Pt, Pd, Rh, Ir, Ru, and Os are added to at least one of these elements at 0.01 at % or more and 1 at % or less; Or 27 to 34 wt% Cu to Ni,
It is preferable to provide a thin film made of a Ni-based alloy to which 2-32 wt% Mo, 13-25 wt% Cr, etc. are added, and have a thickness of 5 nm or more, since the corrosion resistance of the magnetic film can be improved approximately twice. On the other hand, if the film thickness is larger than 15 nm, it is disadvantageous in terms of recording and reproducing characteristics, so it is preferable to set the film thickness to 15 nm or less, more preferably 10 nm or less.
非磁性保護被覆層については、C,i−C。C, i-C for non-magnetic protective coating layer.
W′C,WNなどの高硬度非磁性材料を用いることが耐
摺動強度の点で望ましく、高い耐摺動性を安定して得る
にはその膜厚を10nm以上とすることが好ましい。膜
厚を40nmよりも大きくすると記録再生特性の点で望
ましくなく、40nm以下、より望ましくは30nm以
下とすることが好ましい。この上にさらに吸珊性のパー
フルオロア耐摺動性が向上するのでさらに好ましい。It is desirable to use a high hardness non-magnetic material such as W'C or WN from the viewpoint of sliding strength, and in order to stably obtain high sliding resistance, it is preferable that the film thickness is 10 nm or more. A film thickness greater than 40 nm is undesirable in terms of recording and reproducing characteristics, and is preferably 40 nm or less, more preferably 30 nm or less. In addition to this, the perfluorinated coral-absorbing property improves sliding resistance, which is even more preferable.
以上、基板側の磁性材料が面内磁気異方性を有する場合
について説明した。次に垂直磁気異方性を有する場合に
ついて説明する。直径130mmφRFマグネトロンス
パッタ法で、膜厚500nmのT io、sT ao、
Zから成る非磁性下地層、膜厚300nmで垂直磁気異
方性を有する基板側磁性薄膜Coo、、oCr0.95
m、、。1、さらに連続して、単独では保磁力が30O
eである非晶質半硬磁性体co。、。Wo、。、Zr、
、□、から成る情報記録側の磁性薄膜を形成し、最後に
膜厚10nmのZrから成る非磁性中間層及び膜厚25
nmのWNから成る非磁性保護被覆層を形成して磁気デ
ィスクとした。以上のように垂直磁化層の上に半硬磁性
薄膜を連続して形成すると両者は磁気的に結合するよう
になり、しかも特開昭61−222022号公報に述べ
られているのとは異なり、面内・垂直磁界のいずれに対
しても第14図に示すように350Oe程度と高い単一
の保磁力で磁化反転するようになる。ここで情報記録側
の磁性薄膜は単独では半硬磁性で、その面内保磁力は第
3表の場合に示すように単独では垂直磁気異方性を有す
る基板側の磁性薄膜の面内保磁力に比べて小さいため、
複合膜としては略等方的な性質を有する。本媒体に前記
MIG型のリングヘッドで記録再生すると、前述と同様
の機構で、優れたオーバライド特性が得られる。さらに
、本発明の複合媒体は、該機構の詳細は明細ではないが
、上部の半硬磁性薄膜との相互作用のために、基板側の
垂直磁気異方性薄膜が実質的に面内媒体として機能して
おり、この特性は本質的に垂直磁化膜に近い。そのため
記録磁化モードは完全な面内というよりもむしろ等方的
、もしくは垂直的成分が多く、保磁力が低い割には高密
度での記録再生が可能となる。The case where the magnetic material on the substrate side has in-plane magnetic anisotropy has been described above. Next, the case of having perpendicular magnetic anisotropy will be explained. T io, sT ao, with a film thickness of 500 nm using RF magnetron sputtering with a diameter of 130 mm.
Non-magnetic underlayer consisting of Z, substrate side magnetic thin film Coo, 300 nm thick and having perpendicular magnetic anisotropy, oCr0.95
m... 1.Continuously, the coercive force alone is 30O
e, an amorphous semi-hard magnetic material co. ,. Wo,. ,Zr,
, □, and finally a non-magnetic intermediate layer made of Zr with a film thickness of 10 nm and a film thickness of 25 nm.
A magnetic disk was prepared by forming a nonmagnetic protective coating layer made of WN with a thickness of 10 nm. As described above, when a semi-hard magnetic thin film is continuously formed on the perpendicular magnetization layer, the two become magnetically coupled, and unlike what is stated in Japanese Patent Application Laid-Open No. 61-222022, As shown in FIG. 14, magnetization is reversed with a single coercive force as high as about 350 Oe for both in-plane and perpendicular magnetic fields. Here, the magnetic thin film on the information recording side is semi-hard magnetic when it is alone, and its in-plane coercive force is the in-plane coercive force of the magnetic thin film on the substrate side that has perpendicular magnetic anisotropy as shown in Table 3. Because it is small compared to
As a composite membrane, it has approximately isotropic properties. When recording and reproducing data on this medium using the MIG type ring head, excellent override characteristics can be obtained using the same mechanism as described above. Further, in the composite medium of the present invention, although the details of the mechanism are not detailed, due to the interaction with the upper semi-hard magnetic thin film, the perpendicular magnetic anisotropic thin film on the substrate side substantially functions as an in-plane medium. This property is essentially close to that of a perpendicularly magnetized film. Therefore, the recording magnetization mode has many isotropic or perpendicular components rather than completely in-plane, and high-density recording and reproduction is possible despite the low coercive force.
なお上記例においては、Ti−Ta合金を非磁性下地層
として用いたが、TiもしくはTiにNb、Cr、Pt
族元素等を添加したTi基合金、もしくはC,Geなど
を用いても基板側磁性薄膜の垂直配向性を高める上で同
様の効果が認められる。該非磁性下地層の膜厚としては
10nm以上であれば上記効果が認められるが、500
nmよりも大きくしてもより一層の効果の向上は期待さ
れず、逆゛にコストの点で問題となるので500nm以
下とすることが好ましい。これら磁気記録媒体から情報
を読み出す際に少なくとも金属磁性薄膜を磁路の一部に
用いたリング型磁気ヘッドを用いても良いし、カー効果
、ファラデー効果等の磁気光効果を用いても良い。この
時、第1の磁性薄膜に少なくともBi、もしくはFeの
いずれか1方を含有せしめることで前記磁気光効果を特
に高めることができるのでより望ましい。In the above example, a Ti-Ta alloy was used as the non-magnetic underlayer, but Ti or Ti with Nb, Cr, Pt
A similar effect in improving the vertical alignment of the magnetic thin film on the substrate side can also be observed by using a Ti-based alloy to which a group element or the like is added, or by using C, Ge, or the like. The above effect is observed when the thickness of the non-magnetic underlayer is 10 nm or more;
Even if the thickness is made larger than 500 nm, further improvement in the effect is not expected, and on the contrary, it causes a problem in terms of cost, so it is preferable to make the thickness 500 nm or less. When reading information from these magnetic recording media, a ring-type magnetic head using at least a metal magnetic thin film as part of the magnetic path may be used, or a magneto-optical effect such as the Kerr effect or Faraday effect may be used. At this time, it is more desirable to include at least one of Bi or Fe in the first magnetic thin film because the magneto-optical effect can be particularly enhanced.
上記磁気記録媒体、磁気記録再生方式を用いることで、
小型大容量の磁気記憶装置を提供することができるので
特に好ましい。By using the above magnetic recording medium and magnetic recording/reproduction method,
This is particularly preferable since it is possible to provide a small-sized, large-capacity magnetic storage device.
実施例1゜
以下、本発明の実施例1を第1項により説明す合金基板
、プラスチック基板等の非磁性基板、12.12’はC
oPt、CoFePt、CoCrPt等から成る基板側
磁性薄膜、13゜13′は12.12’ よりも高飽和
磁化でCoNiZr、CoNiSm、CoNiPrなど
から成る情報記録側磁性薄膜、14..14’はC9W
C,WN、TiN、ZrN、HfN、TiC。Example 1 Hereinafter, Example 1 of the present invention will be explained in Section 1. Non-magnetic substrates such as alloy substrates and plastic substrates, 12.12' are C
Substrate-side magnetic thin film made of oPt, CoFePt, CoCrPt, etc.; 13°13' has higher saturation magnetization than 12.12'; information-recording side magnetic thin film made of CoNiZr, CoNiSm, CoNiPr, etc.; 14. .. 14' is C9W
C, WN, TiN, ZrN, HfN, TiC.
ZrC,HfC等の非磁性保護液Uである。以下さらに
詳細に本実施例について説明する。This is a non-magnetic protective liquid U such as ZrC or HfC. This example will be described in more detail below.
N1−Pを10μmメツキし1表面を円周方向に中心線
平均面粗さで10nmとなるように微小傷が入るように
研磨した、外径130 u+n+φのAQ合金基板11
に、基板温度150℃、Arガス圧10 m Torr
、投入電力密度2 W / alでDC?グネトロンス
バッタ法で飽和磁化Msが56Oemu/cc (4π
Ms=7.0kG)の
Co、、、gCrI、2゜T a、。、膜12.12’
を20nm形成した後、連続して膜厚20nmのCo
、、5.Ni、2.P to、、、膜(41M s =
1 、1kG)13.13’ を形成し、最後に膜厚
30nmのC膜14.14’ を形成して磁気ディスク
とした。本磁気ディスクに膜厚2nmの一〇H基を極性
基とするパーフルオロアルキポリエーテルを形成し、ギ
ャップ長0.4μmでギャップ部にF e A Q S
i合金薄膜を設けたメタルインギャップ型のリングヘ
ッドを用いて、相対速度20m/S、90MHz (記
録密度D=23kPCI)で記録再生特性を評価したと
ころ、同条件で成膜した比較例に比べて、第2表に示す
ように高密度における出力E2Fが高く、優れた記録再
生特性を示した。また、本発明よりなる媒体はノイズも
低く。An AQ alloy substrate 11 with an outer diameter of 130 u+n+φ, plated with N1-P to a thickness of 10 μm and polished so that minute scratches are formed on the surface so that the center line average surface roughness is 10 nm in the circumferential direction.
The substrate temperature was 150°C, and the Ar gas pressure was 10 m Torr.
, DC with input power density 2 W/al? The saturation magnetization Ms is 56 Oemu/cc (4π
Ms=7.0kG) Co, , gCrI, 2°T a,. , membrane 12.12'
After forming Co to a thickness of 20 nm, a 20 nm thick Co
,,5. Ni, 2. P to, , membrane (41M s =
1, 1kG) 13.13', and finally a C film 14.14' with a thickness of 30 nm was formed to form a magnetic disk. A 2 nm thick perfluoroalkyl polyether having a polar group of 10H is formed on this magnetic disk, and F e A Q S is applied to the gap portion with a gap length of 0.4 μm.
Using a metal-in-gap ring head provided with an i-alloy thin film, the recording and reproducing characteristics were evaluated at a relative speed of 20 m/s and 90 MHz (recording density D = 23 kPCI), and compared to a comparative example in which the film was formed under the same conditions. As shown in Table 2, the output E2F at high density was high, and excellent recording and reproducing characteristics were exhibited. Furthermore, the medium made according to the present invention has low noise.
例えばCoCr基合金を上層にする比較例1の半分以下
であり、媒体S/Nとしても極めて高い値を示した。For example, it was less than half of Comparative Example 1, which uses a CoCr-based alloy as the upper layer, and exhibited an extremely high value as a medium S/N.
なおここで第2表からも分かるように、20am程度と
薄いCo Cr T aは垂直方向の保磁力も小さく、
納品配向性とは異なり磁気的には面内配向していた。膜
厚が150nm以下であれば磁気的な配向性は同様であ
った。また、複合磁性膜の磁化曲線はいずれも単一の高
い保磁力を有していたが、基板側磁性薄膜と情報記録側
磁性薄膜を形成する間に、Arガス中で1時間程度放置
したり、膜厚10nm程度以上の非磁性中間層を介して
上部磁性薄膜を形成した場合には、蛇形の磁化曲線が得
られ、単一の保磁力で磁力反転はしなかった。Co C
r T aの膜厚を200nm以上に厚くし、垂直磁気
異方性を持たせた場合にも、CoNiPtの保磁力が1
0000 eと高いために、単一の保磁力で磁化反転は
しなかった。このような媒体においては再生波形が複雑
で、記録密度特性も良くなかった。As can be seen from Table 2, CoCrTa, which is as thin as about 20 am, also has a small coercive force in the vertical direction.
Unlike the delivered orientation, it was magnetically oriented in-plane. When the film thickness was 150 nm or less, the magnetic orientation was similar. In addition, although the magnetization curves of the composite magnetic films all had a single high coercive force, it was noted that the magnetic thin film on the substrate side and the magnetic thin film on the information recording side were left in Ar gas for about an hour while forming the magnetic thin film on the substrate side and the magnetic thin film on the information recording side. When the upper magnetic thin film was formed via a nonmagnetic intermediate layer with a film thickness of about 10 nm or more, a serpentine magnetization curve was obtained, and no magnetic force reversal occurred with a single coercive force. CoC
Even when the film thickness of r Ta is increased to 200 nm or more and perpendicular magnetic anisotropy is imparted, the coercive force of CoNiPt is 1.
Because of its high value of 0000 e, magnetization was not reversed by a single coercive force. In such a medium, the reproduced waveform was complicated and the recording density characteristics were also poor.
ここで実施例と比較例とを比較すると、情報記録側磁性
薄膜の保磁力はそれぞれ下地層の状態によって変化して
おり、複合磁性膜の状態において個々の磁性薄膜の保磁
力は単純に各磁性薄膜を下地基板上に直接形成したもの
とは異なることが分かる。CoNiPt、CoCrTa
の膜厚を等しくし、40am、60am、80amとし
ても全く同様の結果が得られた。また、Co Cr T
a合金についてはTaを一定として上記組成の他に。Comparing Examples and Comparative Examples, the coercive force of the magnetic thin film on the information recording side changes depending on the state of the underlying layer, and in the state of the composite magnetic film, the coercive force of each magnetic thin film is simply that of each magnetic thin film. It can be seen that this is different from a thin film formed directly on a base substrate. CoNiPt, CoCrTa
Exactly the same results were obtained when the film thicknesses were made equal to 40 am, 60 am, and 80 am. Also, CoCrT
For alloy a, in addition to the above composition with Ta constant.
Crを12at%、15a t%、23at%として4
1M sを8.0kG、6.3kG、2.4kGとした
場合や、CoNiPt合金についてもNiを30at%
、Ptを5at%、10at%。4 with Cr as 12at%, 15at%, 23at%
When 1M s is 8.0kG, 6.3kG, and 2.4kG, and also for CoNiPt alloy, Ni is 30at%.
, 5at% and 10at% of Pt.
20a t%として41M sを9.OkG、8.7k
G、8.4kGとした場合にも同様の効果が認められた
。9.41Ms as 20a t%. OkG, 8.7k
A similar effect was observed when G was set to 8.4 kG.
実施例2゜
以下、本発明の実施例2を第2図により説明する。21
は表面樹脂コート強化ガラス、Ti合金。Example 2 Hereinafter, Example 2 of the present invention will be explained with reference to FIG. 2. 21
is surface resin coated tempered glass, Ti alloy.
N1−PメツキAQ合金等の非磁性基板、22゜22′
はTi、Ti合金、Cr、Cr合金、M o 。Non-magnetic substrate such as N1-P plating AQ alloy, 22°22'
is Ti, Ti alloy, Cr, Cr alloy, Mo.
Mo合金、C,Geなとの非磁性下地層、23゜23′
はCoCr、CoMo、CoW、CoTi。Non-magnetic underlayer with Mo alloy, C, Ge, 23°23'
are CoCr, CoMo, CoW, CoTi.
CoNiSm、CoCrTi、CoCrZr。CoNiSm, CoCrTi, CoCrZr.
CoCrAfl、CoCrSi、CoSmなどから成る
本発明の基板側磁性薄膜、24.24’はCoNbZr
、CoTaZr、CoWZr。The substrate side magnetic thin film of the present invention is made of CoCrAfl, CoCrSi, CoSm, etc., and 24.24' is CoNbZr.
, CoTaZr, CoWZr.
CoNiZr、CoFeTa、CoNbHf。CoNiZr, CoFeTa, CoNbHf.
CoTaHf、CoTaMo、CoMo Zr。CoTaHf, CoTaMo, CoMo Zr.
Co M o Hfなどから成る、本発明の情報記録側
磁性薄膜、及び25.25’はC,Rh。The information recording side magnetic thin film of the present invention is made of Co Mo Hf, etc., and 25.25' is C, Rh.
S i O,、Z r O2,A O20,などより成
る非磁性保護薄膜である。なお、非磁性保護膜を特に設
けず、有機系潤滑剤を設けただけでも良い9以下さらに
詳細に本実施例について説明する。It is a non-magnetic protective thin film made of S i O, Z r O2, A O20, etc. Note that this embodiment will be described in more detail below in Section 9, in which the non-magnetic protective film is not particularly provided, and only an organic lubricant may be provided.
厚さ1mのAQ合金ディスク基板の上に、ディスク円周
方向に中心線平均面粗さで8nmの溝を有する紫外線硬
化型樹脂を設けた、直径89IIIIIφの非磁性基板
21上に、基板温度100℃、純度99.999%のA
rガス圧15mTorr、投入電力密度I W/a#と
したDCマグネトロンスパッタ法で膜厚250nmのT
iO,、□N bo、□、合金非磁性下地層22.2
2’ 、次いで膜厚250nmのCO,、、Cro、、
Z roo、膜から成り、飽和磁化Msが56Oem
u/cc (4sMs=7kG)である基板側磁性薄膜
23.23’ 、さらに連続して膜厚30nmのCO(
1,7s M OO,x、Z r、、、、膜から成り、
飽和磁化Msが700 e m u / c c(4π
Ms=8.8kG)である情報記録側磁性薄膜24.2
4’ を形成し1次いで最後に膜厚20nmのAQ20
.非磁性保護被覆層25゜25′を形成して磁気ディス
クとした。本磁気ディスクに外部から磁界を印加したと
ころ、面内。A non-magnetic substrate 21 with a diameter of 89IIIφ was provided with an ultraviolet curable resin having grooves with a center line average surface roughness of 8 nm in the circumferential direction of the disk on an AQ alloy disk substrate with a thickness of 1 m, and the substrate temperature was 100. °C, purity 99.999% A
A film with a thickness of 250 nm was formed by DC magnetron sputtering at a gas pressure of 15 mTorr and an input power density of I W/a#.
iO,, □N bo, □, alloy nonmagnetic underlayer 22.2
2', then CO, , Cro, with a film thickness of 250 nm.
Zroo, consists of a film, saturation magnetization Ms is 56Oem
The magnetic thin film 23,23' on the substrate side is u/cc (4sMs=7kG), and the CO(
1,7s M OO,x, Z r, , consisting of a film,
The saturation magnetization Ms is 700 em u / c c (4π
Ms=8.8kG) information recording side magnetic thin film 24.2
4' and then finally AQ20 with a film thickness of 20 nm.
.. A non-magnetic protective coating layer 25°25' was formed to obtain a magnetic disk. When a magnetic field was applied to this magnetic disk from the outside, it was in-plane.
垂直方向の保磁力Hcl 、 Hc工がそれぞれ363
゜369Oeである単一の磁化曲線を示した。ここで面
内及び垂直磁化曲線は第14図に示したものと同様であ
った。本磁気ディスクに膜厚3nmの吸着性パーフルオ
ロアルキルポリエーテルをデイツプ法で設け、ギャップ
長0.3μmのMIGヘッド(ギャップ近傍部をFe−
Afl−Si合金などの高飽和磁束密度合金で形成した
複合型磁気ヘッド)でコンタクト状態で記録再生特性を
評価したところ、第3表に示すように、同様の方法でC
oCrZrとCoMoZrを逆の順序で形成した比較例
に比べて、高記録密度でも高い再生出力が得られた。こ
こでCoMo Zrは非晶質であった。The vertical coercive forces Hcl and Hc are each 363
It showed a single magnetization curve of 369 Oe. Here, the in-plane and perpendicular magnetization curves were similar to those shown in FIG. This magnetic disk was coated with adsorbent perfluoroalkyl polyether with a film thickness of 3 nm using the dip method, and an MIG head with a gap length of 0.3 μm (the area near the gap was made of Fe-
When the recording and reproducing characteristics were evaluated in a contact state using a composite magnetic head (formed from a high saturation magnetic flux density alloy such as Afl-Si alloy), as shown in Table 3, C
Compared to the comparative example in which oCrZr and CoMoZr were formed in the reverse order, a high reproduction output was obtained even at a high recording density. Here, CoMo Zr was amorphous.
なお、Co M o Z rのみをT1Nbを形成した
基板上に直接形成した時の面内、垂直方向保磁力はそれ
ぞれ25,110Oeであり、
Co M o Z rは単独では半硬磁性を示す。ただ
し保磁力の値は一般に下地膜の状態等によって大きく変
わるので、実施例のようにCoCrZr上に形成した場
合の磁性特性については厳密にはよく分らない。また、
CoCrZrを基板上にT1Nb上に直接形成した場合
の面内、垂直保磁力Ha、 、 I(CJLはそれぞれ
240.370Oeで、実施例におけるCoCrZrは
垂直異方性を示した。ここで、本実施例のように基板側
磁性薄膜23.23’および情報記録側磁性薄膜24゜
24′をCoを主たる成分とする磁性合金で形成し、両
者を磁気的に結合するように、界面において酸化層等の
非磁性介在層ができないようにすることで、情報記録側
磁性薄膜24.24’が垂直磁化膜であるとしても、複
合磁性薄膜としては面内磁化膜とすることができる。こ
の効果は、垂直磁化膜の垂直保磁力が小さく、膜厚が小
さい程著しいが、Coを主たる成分とする膜における強
い交換相互作用に基づくものである。Note that when CoMoZr alone is directly formed on a substrate on which T1Nb is formed, the in-plane and perpendicular coercive forces are 25,110 Oe, respectively, and CoMoZr alone exhibits semi-hard magnetism. However, since the value of coercive force generally varies greatly depending on the condition of the underlying film, etc., the magnetic properties when formed on CoCrZr as in the example are not precisely known. Also,
When CoCrZr is directly formed on T1Nb on a substrate, the in-plane and perpendicular coercive forces Ha, , I (CJL are each 240.370 Oe, and CoCrZr in the example showed perpendicular anisotropy. As in the example, the substrate side magnetic thin film 23, 23' and the information recording side magnetic thin film 24, 24' are formed of a magnetic alloy containing Co as a main component, and an oxide layer or the like is added at the interface so as to magnetically couple the two. By preventing the formation of a non-magnetic intervening layer, even if the information recording side magnetic thin film 24, 24' is a perpendicularly magnetized film, the composite magnetic thin film can be made into an in-plane magnetized film.This effect is as follows. The smaller the perpendicular coercive force of the perpendicularly magnetized film and the smaller the film thickness, the more significant this is, but this is due to the strong exchange interaction in the film whose main component is Co.
CoCrZr膜については膜厚0.15μm。The CoCrZr film has a film thickness of 0.15 μm.
0.2μm、0.3μm+o、5μmとしても同様の結
果が得られ、Co M o Z r膜についてはさらに
膜厚を20nm、40nm、60nm、80nmとした
が同様に高密度記録時にも高い再生出力が得られた。T
1Nbの代りにTi−Cr。Similar results were obtained with the thicknesses of 0.2 μm, 0.3 μm+o, and 5 μm, and when the CoMoZr film was further increased in thickness to 20 nm, 40 nm, 60 nm, and 80 nm, high reproduction output was obtained even during high-density recording. was gotten. T
Ti-Cr instead of 1Nb.
Ti−Ta等のTi基合金や、Ti、C,Geを用いて
も同様の効果が認められた。Similar effects were observed using Ti-based alloys such as Ti-Ta, Ti, C, and Ge.
以上の効果は、基板側磁性薄膜として Co Cr Z rの代りにCoCr、CoMo。The above effects can be achieved as a magnetic thin film on the substrate side. CoCr, CoMo instead of Co Cr Z r.
Co W 、 Co T i 、 Co S i 、
Co A n 。Co W , Co T i , Co S i ,
Co An.
CoSm、NdFeB、PrFeB等の垂直磁化膜を用
いても得られた。また、情報記録側の磁性薄膜として、
Co M o Z rの代りに、上記垂直磁化膜より高
飽和磁化で、非晶質状態で半硬磁性のCoNbZr、C
oTaZr、CoFeTa。It was also obtained using a perpendicular magnetization film such as CoSm, NdFeB, PrFeB, etc. In addition, as a magnetic thin film on the information recording side,
Instead of CoMoZr, CoNbZr, C
oTaZr, CoFeTa.
CoWZr等の磁性合金を用いても同様の効果が認めら
れた。これ等は従来は半硬磁性もしくは軟磁性で磁気記
録媒体として用いられなかった材料で互に3〜4Jll
積層した場合について比較例として検討したが、特性の
向上は認められなかった。基板側磁性薄膜とSiO2非
磁性層とを交互に4〜5層積層した場合も効果は認めら
れなかった。A similar effect was observed even when a magnetic alloy such as CoWZr was used. These are materials that were conventionally semi-hard magnetic or soft magnetic and not used as magnetic recording media, and each has a magnetic field of 3 to 4 Jll.
As a comparative example, the case of lamination was investigated, but no improvement in properties was observed. No effect was observed even when 4 to 5 substrate-side magnetic thin films and SiO2 nonmagnetic layers were alternately laminated.
実施例3゜
第2図により実施例3を説明する。21は表面ガラスコ
ート強化ガラス、有機樹脂、N1−PメツキAQ合金等
の非磁性基板、22.22’はCr、Cr−8i、Cr
−Ti、Mo−8i。Example 3 Example 3 will be explained with reference to FIG. 21 is a non-magnetic substrate such as surface glass coated tempered glass, organic resin, N1-P plating AQ alloy, etc. 22.22' is Cr, Cr-8i, Cr
-Ti, Mo-8i.
M o −T i等の非磁性下地層、23.23’は、
CoNiSm、CoCu5m、CoNiPr。A non-magnetic underlayer such as M o -Ti, 23.23' is
CoNiSm, CoCu5m, CoNiPr.
CoNi I r、CoNiPtAl2.CoNiTi
。CoNiIr, CoNiPtAl2. CoNiTi
.
CoNiPt、CoNiCr、CoCrTa。CoNiPt, CoNiCr, CoCrTa.
CoCrTaSi、CoCrPt等から成る基板側磁性
薄膜、24.24’はNiFe。Substrate side magnetic thin film made of CoCrTaSi, CoCrPt, etc., 24.24' is NiFe.
NiFeMo、GdFeCoPt。NiFeMo, GdFeCoPt.
GdB1FeCo、TbFeCo、CoTaZr等から
成る。情報記録側磁性薄膜、25,25’はC,i−C
,WN、TiN、WC,ZrCN。It is made of GdB1FeCo, TbFeCo, CoTaZr, etc. Information recording side magnetic thin film, 25, 25' are C, i-C
, WN, TiN, WC, ZrCN.
H,fCN、HfN等の非磁性保護被覆層である。It is a non-magnetic protective coating layer made of H, fCN, HfN, etc.
以下さらに詳細に本実施例について説明する。This example will be described in more detail below.
厚さ1.9un、直径133 noφのAf1合金基板
上に、N1−Pを15μmメツキし、表面を円周方向に
中心線平均面粗さで8nmとなるように微小傷が入るよ
うに研磨して非磁性基板21とし。An Af1 alloy substrate with a thickness of 1.9 nm and a diameter of 133 noφ was plated with N1-P to a thickness of 15 μm, and the surface was polished in the circumferential direction so that minute scratches were formed to have a center line average surface roughness of 8 nm. and a non-magnetic substrate 21.
この上に基板温度120℃、Arガス圧15mTorr
、投入電力I W/aJのRFマグネトロンスパッタ法
で、膜厚400nmのCr非磁性下地層22.22’
、次いで膜厚50nmのCo、、、1Cr、、8.P
t、、、sから成り、飽和磁化Ms 70Oemu/c
c (4iMs=8.8kG)で面内磁気異方性を有す
る基板側磁性薄膜23゜23′、さらに連続して投入電
力密度0.5W/dで膜厚26nmのGo、7,2T
ao、。4Z r、、。、から成り、飽和磁化Ms 1
200 em、u/ c c (4πMs=15kG)
で面内磁気異方性を有する情報記録側磁性薄膜24.2
4’ を形成した後、最後に非磁性保護被覆層として膜
厚25nmのZ r CN膜25,25’ を形成して
磁気ディスク1200Oeの磁界で磁化反転(単一の保
磁カニ1200Oe) した。なお、基板側、情報記録
側の磁性薄膜をそれぞれCr膜上に直接形成した場合に
は、単独で面内磁気異方性を有し保磁力の値がそれぞれ
1600Oe、60oOeの面内磁化膜であった。さら
に、本実施例の磁気ディスクに膜厚4nmでエステル基
を有するパーフルオロアルキルポリエーテルをデイツプ
法で形成し、ギャップ長0.4μmのMIGヘッドで浮
上量0.18μmとして磁気ディスク装置に組み込み、
その記録再生特性を評価したところ、基板側磁性薄膜と
情報側磁性薄膜を逆にして成膜した比較例及び単層のみ
成膜した比較例に比べ、40kPCI程度の高密度で約
1.2倍と高い再生出力が得られ、従来装置に比べて1
.2倍以上の高い装置容量の装置が得られた。CoTa
Zr膜はCo Cr P を膜に比べて耐食性が2倍以
上高く、
CoNiZrCr単層膜に比べて本実施例は2倍程度高
い耐食性を示した。On top of this, the substrate temperature is 120℃ and the Ar gas pressure is 15mTorr.
, a Cr nonmagnetic underlayer 22.22' with a film thickness of 400 nm was formed by RF magnetron sputtering with an input power of I W/aJ.
, then Co with a film thickness of 50 nm, , 1Cr, , 8. P
Consisting of t, , s, saturation magnetization Ms 70Oemu/c
c (4iMs=8.8kG) and a substrate-side magnetic thin film 23°23' having in-plane magnetic anisotropy, and then a Go, 7,2T film with a film thickness of 26 nm at an input power density of 0.5 W/d.
ao,. 4Z r... , and the saturation magnetization Ms 1
200 em, u/cc (4πMs=15kG)
Information recording side magnetic thin film 24.2 having in-plane magnetic anisotropy at
After forming Z r CN films 25 and 25' with a thickness of 25 nm as a non-magnetic protective coating layer, the magnetization was reversed in the magnetic field of a magnetic disk of 1200 Oe (single coercive crab 1200 Oe). In addition, when the magnetic thin films on the substrate side and the information recording side are formed directly on the Cr film, the in-plane magnetized films each have in-plane magnetic anisotropy and coercive force values of 1600 Oe and 60 Oe, respectively. there were. Furthermore, perfluoroalkyl polyether having a film thickness of 4 nm and having an ester group was formed on the magnetic disk of this example by the dip method, and the flying height was set to 0.18 μm using an MIG head with a gap length of 0.4 μm, and the magnetic disk was incorporated into a magnetic disk device.
When we evaluated its recording and reproducing characteristics, we found that it was approximately 1.2 times as high at a high density of about 40 kPCI as compared to a comparative example in which the substrate side magnetic thin film and information side magnetic thin film were formed in reverse, and a comparative example in which only a single layer was formed. A high playback output can be obtained, 1
.. A device with a device capacity more than twice as high was obtained. CoTa
The corrosion resistance of the Zr film is more than twice as high as that of the CoCr P film, and this example exhibited corrosion resistance that is about twice as high as that of the CoNiZrCr single-layer film.
基板側、情報記録側の磁性薄膜を、それぞれCoCrS
m、CoNi Zrとした場合や、CoCrTaSi、
CoNiZrとした場合でも同様の効果が認められた。The magnetic thin films on the substrate side and information recording side are each made of CoCrS.
m, CoNi Zr, CoCrTaSi,
Similar effects were observed when CoNiZr was used.
さらに、各層をCoNiZr系合金で形成し、情報記録
側磁性薄膜の方が高飽和磁化となるように2つの磁性薄
膜の組成を選んだ場合も同様の効果が認められた。Furthermore, a similar effect was observed when each layer was formed of a CoNiZr alloy and the compositions of the two magnetic thin films were selected so that the information recording side magnetic thin film had higher saturation magnetization.
実施例4゜
実施例3と同様の構成でさらに別の実施例4について説
明する。厚さ1.2an、直径51mφの強化基板21
上に、基板温度80℃、02を0.05voQ含むAr
ガス圧I Q m T orr +投入電力密度1.5
W/dで、DCマグネトロンスパッタ法で、膜厚300
nmのCr、、、T io、3非磁性下地層2,2.2
2’ 、次いで膜厚50nmのCo、、、Ni0.、Z
r、。、Cr、、8.から成る、飽和磁化Ms30Oe
mu/cc (4膜Ms=3.8kG)の基板側磁性薄
膜23.23’ 、さらに連続して膜厚が30nm、飽
和磁化Msが50Oemu/ c c (4πMs =
6.3 kG)のT b、、、、Fe、、、、Co。、
Nb、。、膜、もしくは膜厚30nm、飽和磁化M s
600 e m u / c c(4膜Ms=7.5
kG)の
G d、、17F e、、、、Co、、、、N b、、
、4膜、もしくは膜厚30nm、飽和磁化Msが80O
emu/cc (4膜Mg=10kG)のNi@4Fe
、、、から成る情報記録側磁性薄膜24.24’ 、及
び最後に膜厚30nmのWN非磁性層25.25’ を
形成して磁気ディスクとした。これらの磁気ディスクは
面内保磁力がそれぞれ500,600゜300Oeの単
一の保磁力を有する磁化曲線を示し、基板側および情報
記録側の磁性薄膜は互いに強く磁気的に結合しているこ
とが確認された。なお、基板側磁性層を設けなかった場
合のそれぞれの面内保磁力は200,300,50Oe
であった。さらに、いずれの磁気ディスクも、磁気ディ
スク装置に組み込み、M n −Z nフェライトリン
グヘッドで記録し、半導体レーザを用い、カー効果を用
いて再生したところ、100 M b /in”程度の
高記録密度時にリングヘッドを用いて再生した場合に比
べて5倍以上高いS/Nが得られた。Embodiment 4 Another embodiment 4 having the same configuration as embodiment 3 will be described. Reinforced substrate 21 with a thickness of 1.2 an and a diameter of 51 mφ
Above, Ar containing 0.05 voQ of 02 at a substrate temperature of 80°C.
Gas pressure I Q m T orr + input power density 1.5
W/d, film thickness 300 by DC magnetron sputtering
nm of Cr,,,Tio,3 non-magnetic underlayer 2,2.2
2', then Co, . . . Ni0.2' with a film thickness of 50 nm. ,Z
r. ,Cr,,8. Saturation magnetization Ms30Oe consisting of
The substrate side magnetic thin film 23.23' of mu/cc (4 films Ms=3.8 kG) is further continuously coated with a film thickness of 30 nm and a saturation magnetization Ms of 50 Oemu/cc (4πMs =
6.3 kG) T b, , , Fe, , Co. ,
Nb. , film or film thickness 30 nm, saturation magnetization M s
600 e m u / c c (4 films Ms = 7.5
kG) G d,, 17F e, , Co, ,, N b,,
, 4 films or film thickness 30 nm, saturation magnetization Ms 80O
Ni@4Fe of emu/cc (4 films Mg=10kG)
An information recording side magnetic thin film 24, 24' consisting of , , , and finally a WN nonmagnetic layer 25, 25' having a thickness of 30 nm were formed to form a magnetic disk. These magnetic disks exhibit magnetization curves with a single in-plane coercive force of 500 and 600°300 Oe, respectively, indicating that the magnetic thin films on the substrate side and the information recording side are strongly magnetically coupled to each other. confirmed. The respective in-plane coercive forces when the substrate side magnetic layer is not provided are 200, 300, and 50 Oe.
Met. Furthermore, when both magnetic disks were installed in a magnetic disk drive, recorded with an Mn-Zn ferrite ring head, and reproduced using a semiconductor laser using the Kerr effect, a high recording speed of about 100 Mb/in was obtained. At high density, an S/N ratio more than 5 times higher than that obtained when reproducing using a ring head was obtained.
ここで情報記録側磁性薄膜に
Co、、、、T a、、4Z ro、o*を用いた場合
についても検討したが、FeもしくはBiの少なくとも
いずれか一方を含ませると3倍以上高いS/Nが得られ
るので、この方がより望ましい。Here, we also considered the case where Co, ..., Ta, 4Z ro, o* was used for the magnetic thin film on the information recording side, but if at least one of Fe or Bi is included, the S/ This is more desirable because N can be obtained.
実施例5゜
第3図によりさらに別の実施例5について説明する。3
1は強化ガラス、アルマイト表面処理A2合金、Ti−
Mg合金等の非磁性基板、32゜32′はTi、Ti−
Nb合金、Ti−Ta合金。Embodiment 5 Another embodiment 5 will be explained with reference to FIG. 3
1 is tempered glass, alumite surface treated A2 alloy, Ti-
Non-magnetic substrate such as Mg alloy, 32°32' is Ti, Ti-
Nb alloy, Ti-Ta alloy.
Cr、Cr−Ti合金等の非磁性下地層、33゜33′
はCoCr、CoCrTa、CoCrSi。Non-magnetic underlayer such as Cr, Cr-Ti alloy, 33°33'
are CoCr, CoCrTa, and CoCrSi.
Co T i 、 Co M o 、 Co W 、
Co N i Z r Cr 。CoTi, CoMo, CoW,
Co N i Z r Cr .
CoCrSm、CoPtSm等の磁性合金から成る基板
側磁性薄膜、34.34’はCoNiCr。The substrate side magnetic thin film is made of a magnetic alloy such as CoCrSm or CoPtSm, and 34.34' is CoNiCr.
CoNiZr、CoNi、CoFeZr。CoNiZr, CoNi, CoFeZr.
FeCoNi、CoFePt、CoPt。FeCoNi, CoFePt, CoPt.
Co N i P t 、 Co Cr P t 、
N d F e B 。Co N i P t , Co Cr P t ,
NdFeB.
S m Co 、 Co P r 、 Co Ce 、
Co G d 。SmCo, CoPr, CoCe,
Co G d.
Co Y 、 Co N d 、 Co P r 、
Co P m 。CoY, CoNd, CoPr,
CoPm.
CoDy、CoLa、Co I r、CoTi。CoDy, CoLa, CoIr, CoTi.
CoZr、CoHf、CoV、CoNb。CoZr, CoHf, CoV, CoNb.
CoTa、CoRu、Coos、CoRh。CoTa, CoRu, Coos, CoRh.
CoPd、CoAl、CoSi等の磁性合金から成る中
間磁性薄膜である。ここで、中間磁性薄膜は少なくとも
基板側磁性薄膜に比べ飽和磁化が高い方がより望ましい
、さらに、35,35’ はCoNiZr、CoTaZ
r、CoTaHf。This is an intermediate magnetic thin film made of a magnetic alloy such as CoPd, CoAl, CoSi, etc. Here, it is more desirable that the intermediate magnetic thin film has a higher saturation magnetization than at least the substrate side magnetic thin film.
r, CoTaHf.
CoNbTa、CoNbTi、CoNbZr。CoNbTa, CoNbTi, CoNbZr.
CoNbHf、CoTaMo、CoNbMo。CoNbHf, CoTaMo, CoNbMo.
Co Z r M o 、 Co Z r W 、 C
o Hf M o等の磁性合金から成る情報記録側磁性
薄膜、36゜36′は、WC,WN、WCH,HfC,
HfN。Co Z r M o , Co Z r W , C
The information recording side magnetic thin film, 36°36', is made of a magnetic alloy such as o HfMo, WC, WN, WCH, HfC,
HfN.
NbN、NbC,NbCN、C,i−C。NbN, NbC, NbCN, C, i-C.
ZrO2,TaC,TaN、TaCN等の非磁性保護被
覆層である。It is a non-magnetic protective coating layer made of ZrO2, TaC, TaN, TaCN, etc.
以下さらに詳細に本実施例について説明する。This example will be described in more detail below.
厚さ2.5膜m、直径22001φのAQ合金基板上に
、N1−Pを12μmメツキし、表面を微小傷が入るよ
うに研磨し、略円局方向に中心線平均面粗さを6nmと
した非磁性基板31とし、この上に基板温度150℃、
Arガス圧10 m Torrs投入電力密度3W/a
dでDCマグネトロンスパッタ法で膜厚500nmのC
r、、、T i、2下地層32.32’ &いで投入電
力密度2W/ajで膜厚40nm飽和磁化M s 80
0 e m u / c c (4xMs=10kG)
の
Co、、、、Cr、、iT a、、o、P t、、1゜
から成る基板側磁性薄膜33.33’ 、次いで連続し
て投入電力1.5W/aJで膜厚30nm、飽和磁化M
s104Qemu/cc (4πMs=13kG)のC
O@、1@N i@4Cro、ozから成る中間磁性薄
膜34.34’ 、さらに連続して投入電力密度1.0
W/Jで、膜厚20nm、飽和磁化Ms120Oemu
/cc (4πMg=15kG)のCo、、、、T a
o、lls Z r、8.、から成る情報記録側磁性薄
膜35.35’ 、次いで最後に、投入電力3W/jで
膜厚30nmのWNから成る非磁性保護−チルを含むフ
レオン中にデイツプして膜厚4nmの潤滑層を形成して
磁気ディスクとした。本磁気ディスクについて静磁気特
性を評価したところ、単一の保磁力1100Oeで磁化
反転することが確認された。なお、CoNiCr、Co
TaZr単層の媒体の保磁力はそれぞれ1000,60
0Oeであった。さらに該磁気ディスク8枚と、ギャッ
プ長0.4μmの薄膜磁気ヘッド32個を組み合わせて
磁気ディスク装置とし、その記録再生特性について評価
したところ、比較例として形成した
、Co Cr T a P tもしくはCoNiCrも
しくはCo T a Z r単層膜から成り、本実施例
と同じ磁束量(飽和磁束密度と膜厚との積)を有する媒
体に比べて、それぞれ30kPCIの高い記録密度で1
.2,1.3,1.3倍高い再生出力が得られ、面記録
密度が100〜120Mb/in2と高〈従来技術のも
のに比べて高性能の磁気ディスク及び大容量の磁気記録
装置が得られた。An AQ alloy substrate with a thickness of 2.5 m and a diameter of 22001φ was plated with N1-P to a thickness of 12 μm, and the surface was polished to create minute scratches, with a center line average surface roughness of 6 nm in the approximately circular direction. A non-magnetic substrate 31 with a temperature of 150° C.
Ar gas pressure 10 m Torrs Input power density 3 W/a
d to a film thickness of 500 nm using DC magnetron sputtering.
r, ,, T i, 2 underlayer 32.32'& input power density 2 W/aj, film thickness 40 nm, saturation magnetization M s 80
0 e m u / c c (4xMs=10kG)
Substrate side magnetic thin film 33.33' consisting of Co, , Cr, , iTa, , o, P t, , 1°, and then successively applied power of 1.5 W/aJ to a film thickness of 30 nm and saturation magnetization. M
C of s104Qemu/cc (4πMs=13kG)
Intermediate magnetic thin film 34.34' consisting of O@, 1@N i@4Cro, oz, and further successively an input power density of 1.0
W/J, film thickness 20nm, saturation magnetization Ms120Oemu
/cc (4πMg=15kG) Co,..., Ta
o, lls Z r, 8. , an information recording side magnetic thin film 35.35', and finally, a lubricating layer with a thickness of 4 nm is formed by dipping it into Freon containing a non-magnetic protective chill made of WN with a thickness of 30 nm at an input power of 3 W/j. It was formed into a magnetic disk. When the magnetostatic properties of this magnetic disk were evaluated, it was confirmed that the magnetization was reversed with a single coercive force of 1100 Oe. In addition, CoNiCr, Co
The coercivity of TaZr single layer media is 1000 and 60, respectively.
It was 0 Oe. Furthermore, when we combined these eight magnetic disks and 32 thin-film magnetic heads with a gap length of 0.4 μm to form a magnetic disk device, and evaluated its recording and reproducing characteristics, we found that CoCrTaPt or CoNiCr formed as a comparative example. 1 at a higher recording density of 30 kPCI, respectively, compared to a medium made of a CoTaZr single layer film and having the same amount of magnetic flux (product of saturation magnetic flux density and film thickness) as in this example.
.. 2, 1.3, 1.3 times higher reproduction output can be obtained, and the areal recording density is as high as 100 to 120 Mb/in2 (compared to the conventional technology, a high-performance magnetic disk and a large-capacity magnetic recording device can be obtained). It was done.
実施例6゜
ユーピレックス■、ポリイミド等の有機非磁性基板上に
、実施例1と同様に、基板側磁性薄膜、情報記録側磁性
薄膜及び非磁性保護被覆層を基板片面のみに形成して磁
気テープとした0本磁気テープと非磁性基板上に金属磁
性薄膜を用いて磁気コアを形成した磁気ヘッドとを組み
合わせてVTR、バックアップ用磁気記憶装置に用いた
ところ。Example 6 A magnetic thin film on the substrate side, a magnetic thin film on the information recording side, and a nonmagnetic protective coating layer were formed on only one side of the substrate in the same manner as in Example 1 on an organic nonmagnetic substrate such as Upilex ■ or polyimide to produce a magnetic tape. A combination of a zero magnetic tape and a magnetic head in which a magnetic core is formed using a metal magnetic thin film on a non-magnetic substrate is used in a VTR and a backup magnetic storage device.
従来媒体に比べて1.2〜1.5倍大容量化できた。The capacity can be increased by 1.2 to 1.5 times compared to conventional media.
また従来の金属系テープ媒体に比べて2倍以上高い耐食
性が得られた。Furthermore, corrosion resistance was more than twice as high as that of conventional metal tape media.
実施例7゜
実施例3と同条件で、第4表に示す磁性薄膜で磁気ディ
スクを作製した。Example 7 Under the same conditions as Example 3, a magnetic disk was fabricated using the magnetic thin film shown in Table 4.
いずれの磁気ディスクも基板側磁性層を設けなかった場
合に比べて高い、単一の保磁力で磁化反転し、40kP
CI程度の高密度で高い媒体S/Nを示した。さらに耐
食性も良好であった。Both magnetic disks have magnetization reversal with a single coercive force of 40kP, which is higher than when no substrate-side magnetic layer is provided.
It exhibited high medium S/N at a high density comparable to CI. Furthermore, the corrosion resistance was also good.
第
表
第
表
実施例8゜
実施例4と同条件で、第5表に示す磁性膜で磁気ディス
クを作製した。Table 5 Example 8 Under the same conditions as Example 4, a magnetic disk was fabricated using the magnetic films shown in Table 5.
かった場合に比べて高い、単一の保磁力で磁化反転し、
37kPCI程度の高密度で高い媒体S/Nを示した。Magnetization is reversed with a single coercive force, which is higher than when
It exhibited a high medium S/N ratio at a high density of about 37 kPCI.
耐食性も良好で、本媒体を用いることで面記録密度が1
50〜300Mb/in”ときわめて高く、大容量の小
型磁気ディスク装置が提供できた。It also has good corrosion resistance, and by using this medium, the areal recording density can be reduced to 1.
We were able to provide a compact magnetic disk device with an extremely high capacity of 50 to 300 Mb/in.
本発明によれば、高密度記録時にも従来媒体に比べ配向
性が高く、少なくとも1.2倍以上の高出力化、低ノイ
ズ化が図れるので磁気記憶装置の大容量化、小型化に効
果がある。また、磁気ヘッドの浮上量を高くしても従来
と同様の記録密度が達成できるので、耐摺動信頼性を向
上できる効果もある。さらに従来は高飽和磁化であるが
保磁力が小さいために磁記録媒体として用いることので
きなかった半硬磁性材料も、本発明によれば用いること
が出来るので、磁性膜の使用組成、材料領域が広がり、
耐食性等も格段に向上できる効果もある。According to the present invention, the orientation is higher than that of conventional media even during high-density recording, and it is possible to achieve at least 1.2 times higher output and lower noise, which is effective in increasing the capacity and reducing the size of magnetic storage devices. be. Further, since the same recording density as the conventional one can be achieved even if the flying height of the magnetic head is increased, there is also the effect of improving the sliding reliability. Furthermore, semi-hard magnetic materials, which conventionally could not be used as magnetic recording media due to their high saturation magnetization but low coercive force, can be used according to the present invention. spreads,
It also has the effect of significantly improving corrosion resistance.
第1図は本発明の実施例1および実施例6の断面図、第
2図は本発明の実施例2.実施例3.実施例4.実施例
7および実施例8の断面図、第3図は本発明の実施例5
の断面図、第4図は磁性薄膜の耐食性を示す図、第5図
、第6図、第7図および第8図は各々CoCr、CoN
iPt。
Co Cr / Co N i P t 。
Co N i P t / Co Cr膜の配向性を示
す図、第9図は第5図、第6図、第7図および第8図の
構成の磁気ディスクの媒体S/Nと媒体磁束量Bs・L
magとの関係を示す図、第10図は再生出力とスペー
シング、飽和磁化との関係を示す図、第11図は出力半
減記録密度と飽和磁化との関係を示す図、第12図は磁
性膜の保磁力と膜厚との関係を示す図、第13図は本発
明の複合磁性媒体の磁気特性、記録再生特性と膜厚との
関係を示す図、第14図は本発明の媒体の磁化曲線の1
例を示す図である。
11.21.31・・・非磁性基板、12.12’23
.23’ 、33,33’・・・基板側磁性薄膜、13
.13’ 、24.24’ 、35.35’・・・情報
記録側磁性薄膜、14,14’ 25,25’36.3
6’・・・非磁性保護被覆層、22.22’32.32
’・・・非磁性下地層、34.34’・・・中間磁性薄
膜。
$t/−図
時間
(んと〕
CI:L)面T7!7号向
rly) 4’ 1 方(−il
′第2図
第7図
名g図
2σ(a)
27F(す
葛7m
f3t−t−al (gσ綿)
70図
a$mイこ嬬た1s(T)
4υσ厖化
仝ルMsCT)FIG. 1 is a sectional view of Embodiment 1 and Embodiment 6 of the present invention, and FIG. 2 is a sectional view of Embodiment 2 of the present invention. Example 3. Example 4. Cross-sectional views of Example 7 and Example 8, FIG. 3 is Example 5 of the present invention
4 is a diagram showing the corrosion resistance of magnetic thin films, and FIGS. 5, 6, 7, and 8 are CoCr, CoN, respectively.
iPt. CoCr/CoNiPt. A diagram showing the orientation of the CoNiPt/CoCr film, and FIG. 9 shows the medium S/N and medium magnetic flux amount Bs of the magnetic disks with the configurations shown in FIGS. 5, 6, 7, and 8.・L
Figure 10 is a diagram showing the relationship between reproduction output, spacing, and saturation magnetization, Figure 11 is a diagram showing the relationship between output half-reduced recording density and saturation magnetization, and Figure 12 is a diagram showing the relationship between magnetic FIG. 13 is a diagram showing the relationship between the coercive force and film thickness of the film. FIG. 13 is a diagram showing the relationship between the magnetic properties, recording and reproducing characteristics, and film thickness of the composite magnetic medium of the present invention. FIG. 1 of magnetization curve
It is a figure which shows an example. 11.21.31...Nonmagnetic substrate, 12.12'23
.. 23', 33, 33'... Substrate side magnetic thin film, 13
.. 13', 24.24', 35.35'... Information recording side magnetic thin film, 14, 14' 25, 25' 36.3
6'...Nonmagnetic protective coating layer, 22.22'32.32
'...Nonmagnetic underlayer, 34.34'...Intermediate magnetic thin film. $t/- Figure time CI: L) Plane T7! No. 7 direction rly) 4' 1 direction (-il ' Figure 2 Figure 7 name g Figure 2σ (a) 27F (Sukura 7m f3t- t-al (gσ cotton) 70 figure a $m iko tsuta 1s (T) 4υσ厖厖廝る MsCT)
Claims (1)
複合磁性膜を形成した面内磁気記録媒体において、上記
複合磁性膜を構成する全ての磁性膜は磁気的に結合して
おり、上記複合磁性膜は唯1つの面内保磁力を有してお
り、かつ該面内保磁力は上記複合磁性膜を構成する磁性
膜のうち最も情報記録側の磁性膜を構成する面内磁気異
方性磁性膜の面内保持力より大きいことを特徴とする面
内磁気記録媒体。 2、前記最情報記録側磁性薄膜は単独では半硬磁性で、
該磁性薄膜に隣接する磁性薄膜は単独では垂直磁気異方
性を有する特許請求の範囲第1項の面内磁気記録媒体。 3、前記最情報記録側磁性薄膜に隣接する磁性薄膜は単
独では面内磁気異方性を有する特許請求の範囲第1項記
載の面内磁気記録媒体。 4、前記複合磁性膜の面内保磁力は1000Oe以上で
ある特許請求の範囲第1項記載の面内磁気記録媒体。 5、前記複合磁性膜の面内保磁力は1500Oe以上で
ある特許請求の範囲第4項記載の面内磁気記録媒体。 6、上記最情報記録側磁性膜の飽和磁化は上記最基板側
磁性膜の飽和磁化よりも高い特許請求の範囲第1項記載
の面内磁気記録媒体。 7、上記複合磁性膜を構成する磁性膜の各々単独の面内
保磁力は、上記最基板側磁性膜の面内保磁力が最も高い
特許請求の範囲第6項記載の面内磁気記録媒体。 8、上記飽和磁化は上記最情報記録側磁性膜から上記最
基板側磁性膜に向かって順次減少し、上記面内保磁力は
上記最情報記録側磁性膜から上記最基板側磁性膜に向か
って順次増加している特許請求の範囲第7項記載の面内
磁気記録媒体。 9、非磁性基板上に直接もしくは非磁性下地層を介して
形成された少なくとも2種類の磁性薄膜から成る複合磁
気記録媒体において、最も情報記録側の磁性薄膜はCo
、Feから成る第1の群から選ばれた少なくとも1つの
元素と、N、Tb、Mo、W、Gd、Y、Sm、Nd、
Pr、Pm、Ce、Dy、La、Pt、Ir、Ti、Z
r、Hf、V、Nb、Ta、Ru、Os、Rh、Pd、
Al、Siとから成る第2の群から選ばれた少なくとも
1つの元素もしくはNiの少なくとも1種とを含む合金
を主成分をする面内磁気異方性磁性薄膜であり、前記最
基板側磁性薄膜は前記最情報記録側磁性膜とは成分もし
くは組成を異にし、かつ前記第1の群から選ばれた少な
くとも1つの元素と、Cu、Cr、Mo、W、Tb、G
d、Sm、Nd、Pm、Pr、Ce、Dy、Pt、Ir
とから成る第3の群から選ばれる少なくとも1つの元素
もしくはNiの少なくとも1種とを含む合金を主たる成
分としており、かつ上記複合磁性膜を構成するすべての
磁性薄膜は磁気的に結合しており、該複合磁性膜の面内
外部磁界に対する磁化反転時の面内保磁力は250Oe
以上の1つの値を有することを特徴とする面内磁気記録
媒体。 10、前記最情報記録側磁性薄膜は前記第2の群の元素
を少なくとも含み、前記第2の群の元素の総量は、前記
第1の群の元素の総量に対し 0.1at%以上30at%以下である特許請求の範囲
第9項記載の面内磁気記録媒体。 11、前記最情報記録側磁性薄膜は少なくともNiを含
み、Ni組成は前記第1の群の元素の総量に対して10
at%以上60at%以下である特許請求の範囲第10
項記載の面内磁気記録媒体。 12、前記最基板側磁性薄膜は前記第3の群の元素を少
なくとも含み、かつ、前記第3の群の元素の総量は、前
記第1の群の元素の総量に対し0.1at%以上30a
t%以下である特許請求の範囲第9項記載の面内磁気記
録媒体。 13、前記最基板側磁性薄膜は少なくともNiを含み、
Niの組成は、前記第1の群の元素の総量に対して、1
0at%以上60at%以下である特許請求の範囲第1
2項記載の面内磁気記録媒体。 14、前記最基板側磁性薄膜は、前記第1の元素の総量
に対してさらにTi、Zr、Hf、Nb、Ta、Ru、
Os、Rh、Pd、Al、Siから成る第4の群の元素
の少なくとも1種を 0.1at%以上20at%以下含み、かつ優位的に結
晶質である特許請求の範囲第9項記載の面内磁気記録媒
体。 15、前記最情報記録側磁性薄膜はCoNi基3元もし
くは4元合金、前記最基板側磁性薄膜はCoCrもしく
はCoSm基3元、4元合金である特許請求の範囲第9
項記載の面内磁気記録媒体。 16、前記最情報記録側磁性薄膜は少なくともFe、B
iの一方を含む特許請求の範囲第9項記載の面内磁気記
録媒体。 17、前記最情報記録側磁性薄膜の膜厚は、前記最基板
側磁性薄膜の膜厚の2倍以下である特許請求の範囲第9
項記載の面内磁気記録媒体。 上100nm以下である特許請求の範囲第17項記載の
面内磁気記録媒体。 19、前記最情報記録側磁性薄膜の飽和磁化は最基板側
磁性薄膜の飽和磁化よりも高い特許請求の範囲第9項記
載の面内磁気記録媒体。 20、前記複合磁性膜を構成する磁性薄膜の各々単独の
面内保磁力は、前記最基板側磁性薄膜の面内保磁力が最
も高い特許請求の範囲第19項記載の面内磁気記録媒体
。 21、上記飽和磁化は上記最情報記録側磁性膜から上記
最基板側磁性膜に向かって順次減少し、上記面内保磁力
は上記最情報記録側磁性膜から上記最基板側磁性膜に向
かって順次増加している特許請求の範囲第20項記載の
面内磁気記録媒体。 22、前記複合磁性膜は少なくとも3種類の磁性薄膜か
ら成る特許請求の範囲第9項記載の面内磁気記録媒体。 23、前記最情報記録側磁性薄膜は単独では半硬磁性で
、該磁性薄膜に隣接する磁性薄膜は単独では垂直磁気異
方性を有する特許請求の範囲第9項の面内磁気記録媒体
。 24、前記最情報記録側磁性薄膜に隣接する磁性薄膜は
単独では面内磁気異方性を有する特許請求の範囲第9項
記載の面内磁気記録媒体。 25、前記複合磁性膜の面内保磁力は1000Oe以上
である特許請求の範囲第9項記載の面内磁気記録媒体。 26、前記複合磁性膜の面内保磁力は1500Oe以上
である特許請求の範囲第25項記載の面内磁気記録媒体
。 27、前記非磁性下地層は、Cr、Mo、W、Ti、C
、Geもしくはこれらを主たる成分とする非磁性材料か
ら成る特許請求の範囲第9項記載の面内磁気記録媒体。 28、前記最情報記録側磁性薄膜の上にさらに膜厚10
nm以上40nm以下の非磁性保護被覆層が形成されて
いる特許請求の範囲第9項記載の面内磁気記録媒体。 29、非磁性基板上に直接もしくは非磁性下地層を介し
て複合磁性膜を形成した面内磁気記録媒体において、上
記複合磁性膜は唯1つの面内保磁力を有しており、かつ
該面内保磁力は1000Oe以上であることを特徴とす
る面内磁気記録媒体。 30、上記面内保磁力は1500Oe以上である特許請
求の範囲第29項記載の面内磁気記録媒体。 31、面記録密度が100Mb/in^2以上である磁
気記憶装置。 32、上記面記録密度が150Mb/in^2以上であ
る特許請求の範囲第31項記載の磁気記憶装置。 33、特許請求の範囲第1項記載の面内磁気記録媒体を
、磁気コアの少なくとも1部を強磁性金属薄膜で形成し
たリング型磁気ヘッドで記録再生する磁気記憶装置。 34、特許請求の範囲第1項記載の磁気記録媒体を光を
用いて再生する磁気記憶装置。[Claims] 1. In a longitudinal magnetic recording medium in which a composite magnetic film is formed on a non-magnetic substrate directly or via a non-magnetic underlayer, all the magnetic films constituting the composite magnetic film are magnetically The composite magnetic film has only one in-plane coercive force, and the in-plane coercive force constitutes the magnetic film closest to the information recording side among the magnetic films constituting the composite magnetic film. An in-plane magnetic recording medium characterized in that the in-plane coercive force is greater than that of an in-plane magnetic anisotropic magnetic film. 2. The most information recording side magnetic thin film is semi-hard magnetic by itself,
The longitudinal magnetic recording medium according to claim 1, wherein the magnetic thin film adjacent to the magnetic thin film alone has perpendicular magnetic anisotropy. 3. The in-plane magnetic recording medium according to claim 1, wherein the magnetic thin film adjacent to the most information recording side magnetic thin film alone has in-plane magnetic anisotropy. 4. The in-plane magnetic recording medium according to claim 1, wherein the composite magnetic film has an in-plane coercive force of 1000 Oe or more. 5. The longitudinal magnetic recording medium according to claim 4, wherein the composite magnetic film has an in-plane coercive force of 1500 Oe or more. 6. The longitudinal magnetic recording medium according to claim 1, wherein the saturation magnetization of the magnetic film on the most information recording side is higher than the saturation magnetization of the magnetic film on the most substrate side. 7. The longitudinal magnetic recording medium according to claim 6, wherein the single in-plane coercive force of each of the magnetic films constituting the composite magnetic film is the highest in-plane coercive force of the magnetic film closest to the substrate. 8. The saturation magnetization decreases sequentially from the most information recording side magnetic film to the most substrate side magnetic film, and the in-plane coercive force decreases from the most information recording side magnetic film to the most substrate side magnetic film. The longitudinal magnetic recording medium according to claim 7, which is increasing in number. 9. In a composite magnetic recording medium consisting of at least two types of magnetic thin films formed directly on a non-magnetic substrate or via a non-magnetic underlayer, the magnetic thin film closest to the information recording side is Co.
, at least one element selected from the first group consisting of Fe, and N, Tb, Mo, W, Gd, Y, Sm, Nd,
Pr, Pm, Ce, Dy, La, Pt, Ir, Ti, Z
r, Hf, V, Nb, Ta, Ru, Os, Rh, Pd,
A magnetic thin film with in-plane magnetic anisotropy, the main component of which is an alloy containing at least one element selected from the second group consisting of Al and Si or at least one element of Ni, and the magnetic thin film on the outermost substrate side. has a different component or composition from the most information recording side magnetic film, and contains at least one element selected from the first group, and Cu, Cr, Mo, W, Tb, and G.
d, Sm, Nd, Pm, Pr, Ce, Dy, Pt, Ir
The main component is an alloy containing at least one element selected from the third group consisting of and at least one type of Ni, and all the magnetic thin films constituting the composite magnetic film are magnetically coupled. , the in-plane coercive force of the composite magnetic film when magnetization is reversed in response to an in-plane external magnetic field is 250 Oe.
A longitudinal magnetic recording medium characterized by having one of the above values. 10. The most information recording side magnetic thin film contains at least the elements of the second group, and the total amount of the elements of the second group is 0.1 at% or more and 30 at% of the total amount of the elements of the first group. A longitudinal magnetic recording medium according to claim 9, which is as follows. 11. The most information recording side magnetic thin film contains at least Ni, and the Ni composition is 10% of the total amount of elements in the first group.
Claim 10: at% or more and 60 at% or less
The longitudinal magnetic recording medium described in . 12. The substrate-side magnetic thin film contains at least an element of the third group, and the total amount of the third group of elements is 0.1 at% or more 30a with respect to the total amount of the first group of elements.
The longitudinal magnetic recording medium according to claim 9, wherein the longitudinal magnetic recording medium is t% or less. 13. The most substrate-side magnetic thin film contains at least Ni,
The composition of Ni is 1 with respect to the total amount of the elements of the first group.
Claim 1 which is 0 at% or more and 60 at% or less
2. The longitudinal magnetic recording medium according to item 2. 14. The substrate-side magnetic thin film further contains Ti, Zr, Hf, Nb, Ta, Ru,
The surface according to claim 9, which contains at least one element of the fourth group consisting of Os, Rh, Pd, Al, and Si from 0.1 at% to 20 at%, and is predominantly crystalline. Internal magnetic recording medium. 15. Claim 9, wherein the magnetic thin film on the most information recording side is a CoNi-based ternary or quaternary alloy, and the magnetic thin film on the most substrate side is a CoCr or CoSm-based ternary or quaternary alloy.
The longitudinal magnetic recording medium described in . 16. The most information recording side magnetic thin film contains at least Fe and B.
The longitudinal magnetic recording medium according to claim 9, which includes one of i. 17. Claim 9, wherein the thickness of the magnetic thin film on the most information recording side is not more than twice the thickness of the magnetic thin film on the most substrate side.
The longitudinal magnetic recording medium described in . 18. The longitudinal magnetic recording medium according to claim 17, which has a thickness of 100 nm or less. 19. The longitudinal magnetic recording medium according to claim 9, wherein the saturation magnetization of the magnetic thin film on the most information recording side is higher than the saturation magnetization of the magnetic thin film on the most substrate side. 20. The in-plane magnetic recording medium according to claim 19, wherein the in-plane coercive force of each of the magnetic thin films constituting the composite magnetic film is the highest in-plane coercive force of the magnetic thin film closest to the substrate. 21. The saturation magnetization decreases sequentially from the most information recording side magnetic film to the most substrate side magnetic film, and the in-plane coercive force decreases from the most information recording side magnetic film to the most substrate side magnetic film. The longitudinal magnetic recording medium according to claim 20, which is increasing in number. 22. The longitudinal magnetic recording medium according to claim 9, wherein the composite magnetic film is composed of at least three types of magnetic thin films. 23. The in-plane magnetic recording medium according to claim 9, wherein the magnetic thin film on the most information recording side is semi-hard magnetic by itself, and the magnetic thin film adjacent to the magnetic thin film by itself has perpendicular magnetic anisotropy. 24. The in-plane magnetic recording medium according to claim 9, wherein the magnetic thin film adjacent to the most information recording side magnetic thin film alone has in-plane magnetic anisotropy. 25. The in-plane magnetic recording medium according to claim 9, wherein the composite magnetic film has an in-plane coercive force of 1000 Oe or more. 26. The longitudinal magnetic recording medium according to claim 25, wherein the composite magnetic film has an in-plane coercive force of 1500 Oe or more. 27. The non-magnetic underlayer is made of Cr, Mo, W, Ti, C
, Ge, or a nonmagnetic material containing these as main components. 28. Further film thickness 10 on the most information recording side magnetic thin film
10. The longitudinal magnetic recording medium according to claim 9, wherein a non-magnetic protective coating layer with a thickness of nm or more and 40 nm or less is formed. 29. In a longitudinal magnetic recording medium in which a composite magnetic film is formed on a non-magnetic substrate directly or via a non-magnetic underlayer, the composite magnetic film has only one in-plane coercive force, and A longitudinal magnetic recording medium having an internal coercive force of 1000 Oe or more. 30. The in-plane magnetic recording medium according to claim 29, wherein the in-plane coercive force is 1500 Oe or more. 31. A magnetic storage device having an areal recording density of 100 Mb/in^2 or more. 32. The magnetic storage device according to claim 31, wherein the areal recording density is 150 Mb/in^2 or more. 33. A magnetic storage device for recording and reproducing the longitudinal magnetic recording medium according to claim 1 using a ring-shaped magnetic head in which at least a portion of the magnetic core is formed of a ferromagnetic metal thin film. 34. A magnetic storage device for reproducing the magnetic recording medium according to claim 1 using light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24913789A JP2865731B2 (en) | 1988-09-28 | 1989-09-27 | In-plane magnetic recording medium and magnetic storage device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63-241102 | 1988-09-28 | ||
JP24110288 | 1988-09-28 | ||
JP24913789A JP2865731B2 (en) | 1988-09-28 | 1989-09-27 | In-plane magnetic recording medium and magnetic storage device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02168418A true JPH02168418A (en) | 1990-06-28 |
JP2865731B2 JP2865731B2 (en) | 1999-03-08 |
Family
ID=26535092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24913789A Expired - Lifetime JP2865731B2 (en) | 1988-09-28 | 1989-09-27 | In-plane magnetic recording medium and magnetic storage device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2865731B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6544672B1 (en) | 1994-11-11 | 2003-04-08 | Hitachi, Ltd. | Magnetic recording medium and magnetic storage |
-
1989
- 1989-09-27 JP JP24913789A patent/JP2865731B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6544672B1 (en) | 1994-11-11 | 2003-04-08 | Hitachi, Ltd. | Magnetic recording medium and magnetic storage |
Also Published As
Publication number | Publication date |
---|---|
JP2865731B2 (en) | 1999-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5147732A (en) | Longitudinal magnetic recording media and magnetic memory units | |
US8597723B1 (en) | Perpendicular magnetic recording medium with single domain exchange-coupled soft magnetic underlayer and device incorporating same | |
US7498092B2 (en) | Perpendicular magnetic recording medium with magnetic torque layer coupled to the perpendicular recording layer | |
CN101197138B (en) | Perpendicular magnetic recording medium with multilayer recording structure including intergranular exchange enhancement layer | |
JP5195189B2 (en) | Magnetic recording medium | |
US9299379B2 (en) | Reduced spacing recording apparatus | |
EP1302931A1 (en) | Magnetic recording medium | |
US8119264B2 (en) | Perpendicular magnetic recording disk with ultrathin nucleation film for improved corrosion resistance and method for making the disk | |
CN101335016A (en) | Perpendicular magnetic recording media with exchange-coupled magnetic layers and improved coupling layers | |
US6773826B2 (en) | Perpendicular magnetic recording media and magnetic storage apparatus using the same | |
US7862913B2 (en) | Oxide magnetic recording layers for perpendicular recording media | |
JP4707265B2 (en) | Perpendicular magnetic recording medium | |
JP3900999B2 (en) | Perpendicular magnetic recording medium | |
US20060269792A1 (en) | Perpendicular magnetic recording medium with improved antiferromagnetically-coupled recording layer | |
US8404368B2 (en) | Multi-layer stack adjacent to granular layer | |
JP2005302109A (en) | Manufacturing method of multilayer film vertical magnetic recording medium | |
JPH02168418A (en) | In-plane magnetic recording media and magnetic storage devices | |
JP2004310944A (en) | Perpendicular magnetic recording medium and magnetic storage device | |
JPWO2004019322A1 (en) | Backed magnetic film | |
US8338005B2 (en) | Recording layer and multilayered soft underlayer | |
JP2001250223A (en) | Magnetic recording medium and magnetic recorder | |
US6967061B1 (en) | Bilayer magnetic structure for high density recording media | |
JP2002216339A (en) | Perpendicular magnetic recording media | |
JP2003162812A (en) | Perpendicular magnetic recording media | |
JP2002298336A (en) | Perpendicular magnetic recording media |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071218 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081218 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081218 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091218 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091218 Year of fee payment: 11 |