[go: up one dir, main page]

JPH02166785A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH02166785A
JPH02166785A JP32311988A JP32311988A JPH02166785A JP H02166785 A JPH02166785 A JP H02166785A JP 32311988 A JP32311988 A JP 32311988A JP 32311988 A JP32311988 A JP 32311988A JP H02166785 A JPH02166785 A JP H02166785A
Authority
JP
Japan
Prior art keywords
layer
region
width
active
narrow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32311988A
Other languages
Japanese (ja)
Inventor
Kenji Ikeda
健志 池田
Kimio Shigihara
君男 鴫原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP32311988A priority Critical patent/JPH02166785A/en
Publication of JPH02166785A publication Critical patent/JPH02166785A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To perform a high output with high yield by providing a region having a narrow width to obtain a basic lateral mode, and an active region having a region sequentially increasing in width at an angle of its diffraction angle or more. CONSTITUTION:A semiconductor laser is composed of an N-type GaAs substrate 1, an N-type AlxGa1-xAs layer 2, an AlxGa1-yAs layer 3 in which widths are increased at front and rear end faces, a p-type AlxGa1-xAs layer 4, and a P-type GaAs layer 5. The AlyGa1-yAs layer 3 is operated as an active layer, the N-type AlxGa1-xGa layer 2 and the P-type AlxGa1-xAs layer 4 are operated as a clad layer. An active region having a region 6 in which the width of the active layer is narrow width of about 1mum and regions 7, 8 in which the width of the active layer is increased at about 10 degrees of widening angle is provided. Accordingly, since the active layer width of the region 6 is narrow, a lateral mode capable of propagating is only a basic mode, and a light propagated through the region 6 is extended in the boundary between the regions 6 and 7, 8 by a diffraction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体レーザに関し、特に横モードを基本モ
ードに保ちつつ、かつ生産性よく高出力レーザを得るた
めの構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser, and particularly to a structure for obtaining a high-output laser with good productivity while maintaining the transverse mode as the fundamental mode.

〔従来の技術〕[Conventional technology]

半導体レーザの高出力化の方策として、光出力面の面積
拡大が重要かつ有望である。第4図はアプライド・フィ
ジックス・レターズ(^pplied Physics
 Letters)第50巻第5号、233頁記載の高
出力AlGaAs埋込みへテロ構造レーザを示す斜視図
である。高出力を得るために、フレア(flare)型
の光導波路を備えているのが特徴である。
As a measure to increase the output power of semiconductor lasers, increasing the area of the optical output surface is important and promising. Figure 4 is Applied Physics Letters.
FIG. 2 is a perspective view showing a high-power AlGaAs embedded heterostructure laser described in Letters, Vol. 50, No. 5, page 233. It is characterized by having a flare type optical waveguide in order to obtain high output.

図において、1はn−GaAs基板、2はn−A 1.
Ga、−、As層、3は前後両端面部で幅が広がった(
flare L/た)Aly Gap−、As層、4は
p A1+c Gap−、A3層、5はp−GaAs層
である。
In the figure, 1 is an n-GaAs substrate, 2 is an n-A substrate 1.
The width of Ga, -, As layer 3 expanded at both the front and rear end surfaces (
flare L/ta) Aly Gap-, As layer, 4 is p A1+c Gap-, A3 layer, and 5 is p-GaAs layer.

”y Ga1−、As層3は活性層で、n−、AlXG
al−8AS層2及び9  A l x G a I−
x A 5層4はクランド層として作用する。順方向に
バイアスすると電流はA ly Gap−y As層3
を主に流れる。これは、l:l−A IX Gap−、
AsJi4とnA 1 x G a + −X A s
 Jig 2とで作られるpn接合の拡散電位が、活性
層を介したpn接合のそれより大きいためである。電流
を増すと発振に至るが、光が幅の狭い領域から幅の広い
領域へ出る際に回折効果によって若干法がることを利用
し、活性層の幅をほぼこの回折角度程度で広げることに
より、幅の狭い領域における横モードをほぼそのまま拡
大した形で前及び後端面まで徐々に光の幅を広げること
ができる。この後、前及び後端面で反射された光が全て
幅の狭い領域へ戻るわけではなく、幅の狭い領域の延長
線上に近いごく限られた一部にしか戻らないため、発振
の闇値は若干高くなるが、端面における幅が広いため、
最大光出力密度を一定にして考えると幅が広い分だけ全
先出力は多く期待でき、真出力化を達成することができ
る。
"y Ga1-, As layer 3 is an active layer, n-, AlXG
al-8AS layer 2 and 9 A l x G a I-
x A 5 layer 4 acts as a ground layer. When biased in the forward direction, the current flows through the A ly Gap-y As layer 3
flows mainly. This is l:l-A IX Gap-,
AsJi4 and nA 1 x Ga + −X A s
This is because the diffusion potential of the pn junction formed with Jig 2 is higher than that of the pn junction via the active layer. Increasing the current leads to oscillation, but by taking advantage of the fact that light is slightly distorted due to the diffraction effect when it exits from a narrow region to a wide region, by increasing the width of the active layer by approximately this diffraction angle. , the width of the light can be gradually expanded to the front and rear end surfaces in the form of almost as-is expansion of the transverse mode in the narrow region. After this, not all of the light reflected by the front and rear end faces returns to the narrow area, but only to a very limited part of the area that is close to the extension of the narrow area, so the dark value of the oscillation is Although it is slightly higher, the width at the end is wider, so
Considering the maximum optical output density as constant, the wider the width, the higher the total output can be expected, and the true output can be achieved.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記実施例では、実際にレーザを作成する場合
、現状の加工技術では活性層の幅を徐々にかつ滑らかに
拡大することは困難で、光の波長と同程度以上(〜0.
5μm以上)の細かい凹凸は避は難い。この凹凸部分に
光が当たると当然散乱を生じ、横モードにゆらぎが生じ
て多くの場合不要な高次モード発振を惹起する。この様
な高次モード発振が許容される状況下では、光出力・電
流特性に屈曲を生じたり、遠視野像に多くの複雑で再現
性に乏しい凹凸を生じ、製造上の歩留まりが著しく低下
してしまうという問題点があった。
However, in the above example, when actually creating a laser, it is difficult to gradually and smoothly expand the width of the active layer using current processing technology, and it is difficult to gradually and smoothly expand the width of the active layer, which is equal to or more than the wavelength of light (~0.
It is difficult to avoid fine irregularities (5 μm or more). Naturally, when light hits this uneven portion, scattering occurs, causing fluctuations in the transverse mode, often causing unnecessary higher-order mode oscillation. Under conditions where such high-order mode oscillation is allowed, the optical output and current characteristics may be distorted, and the far-field pattern may have many complex irregularities with poor reproducibility, resulting in a significant decrease in manufacturing yield. There was a problem with this.

この発明は上記のような問題点を解消するためになされ
たもので、半導体レーザの高出力化を実現できるととも
に、製造に際しても歩留まりの良い半導体レーザを得る
ことを目的とする。
The present invention has been made to solve the above-mentioned problems, and aims to provide a semiconductor laser that can achieve high output and has a good manufacturing yield.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る半導体レーザは、基本横モードを得るた
めの幅の狭い領域と、該幅の狭い領域における回折角以
上の角度で上記幅の狭い領域から順次幅が広くなった領
域とを有する活性領域を備えたものである。
The semiconductor laser according to the present invention has an active active laser having a narrow region for obtaining a fundamental transverse mode, and a region whose width gradually increases from the narrow region at an angle greater than or equal to the diffraction angle in the narrow region. It has an area.

〔作用〕[Effect]

この発明においては、高出力を得るための順次幅の広が
った領域の広がり角度を幅の狭い領域における回折角以
上の角度としたから、光導波路側面における光強度は弱
く、該側面における光の散乱の影響は大幅に低減され、
歩留まりよく基本モードを保ったまま高出力化を実現で
きる。
In this invention, in order to obtain high output, the spread angle of the sequentially widened regions is set at an angle greater than the diffraction angle in the narrow region, so the light intensity at the side surface of the optical waveguide is weak, and the light is scattered on the side surface. The impact of
High output can be achieved while maintaining the basic mode with good yield.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例による半導体レーザを示す図
であり、図において、層の構成は第1図と同じであり、
第1図と同一符号は同一または相当部分である。6は活
性層の幅が約1μmの幅の狭い領域、7及び8は活性層
の幅がほぼ10度の広がり角で広がっている領域である
FIG. 1 is a diagram showing a semiconductor laser according to an embodiment of the present invention, and in the figure, the layer configuration is the same as in FIG. 1,
The same reference numerals as in FIG. 1 indicate the same or corresponding parts. Reference numeral 6 indicates a narrow region in which the active layer has a width of approximately 1 μm, and reference numerals 7 and 8 indicate regions in which the width of the active layer widens at a spread angle of approximately 10 degrees.

次に作用効果について説明する。Next, the effects will be explained.

領域6における活性層幅は〜1μmと狭いため、この領
域を伝搬可能な横モードは基本モードのみである。また
領域6と領域7又は領域8との境では、領域6を伝搬し
てきた光が回折現象で拡がる。
Since the active layer width in region 6 is as narrow as ~1 μm, the only transverse mode that can propagate in this region is the fundamental mode. Further, at the boundary between the region 6 and the region 7 or 8, the light that has propagated through the region 6 spreads due to a diffraction phenomenon.

この角度は、 λ θ−tan  −’  () π ωon (ω。はビームのスポットサイズ、nは屈折率)の関係
で示され、ここでは4.5度程度となる。領域7及び8
はそれぞれ光の増幅器として作用するが、上記角度より
極端に広く (例えば45度)しても領域6から(る被
増幅光が少ない上、無駄に電流が流れるので、本実施例
では10度としている。
This angle is expressed by the relationship λ θ−tan −′ () π ωon (ω is the spot size of the beam, n is the refractive index), and is approximately 4.5 degrees here. Areas 7 and 8
Each acts as an optical amplifier, but even if the angle is extremely wider than the above angle (for example, 45 degrees), there will be less amplified light from region 6 (for example), and current will flow unnecessarily, so in this example, the angle is set to 10 degrees. There is.

一般に端面における光出力密度がある値を越えると端面
破壊に至ることから、光の出口の断面積を広げることが
半導体レーザの高出力化にとって重要な課題であったが
、このような本実施例によれば、高出力化を実現できる
とともに、発振モードを基本モードに保つことができ、
歩留まりを向上させることができる。
In general, if the optical output density at the end face exceeds a certain value, it will lead to end face destruction, so increasing the cross-sectional area of the light exit has been an important issue for increasing the output power of semiconductor lasers. According to
Yield can be improved.

第2図はこの発明の第2の実施例による半導体レーザを
示す斜視図である。本第2の実施例は、上記第1の実施
例に比して、領域7及び8の延長線(本来は、活性層の
幅であるが、図が複雑になるので第2図では活性層の形
状を反映した最上層の形状で、延長線は破線で示す)の
端面における幅より広く一定幅の領域9及び10を新た
に加えた点に特徴がある。
FIG. 2 is a perspective view showing a semiconductor laser according to a second embodiment of the invention. In the second embodiment, compared to the first embodiment, the extension line of regions 7 and 8 (originally, it is the width of the active layer, but since the diagram becomes complicated, the width of the active layer is shown in FIG. The top layer has a shape that reflects the shape of the top layer (the extension line is shown by a broken line), and is characterized by the addition of new areas 9 and 10 that have a constant width wider than the width at the end face of the top layer (the extension line is shown by a broken line).

このように幅の広い一定幅の領域9及び10を加えるこ
とにより、上記第1の実施例において領域7及び8の幅
が素子製作上清開位置のずれによりわずかながらバラつ
き、不揃いで商品価値を下落させるのを防ぐことができ
る。
By adding regions 9 and 10 having a wide constant width in this way, in the first embodiment, the widths of regions 7 and 8 will vary slightly due to deviations in the opening position during device manufacturing, and the irregularity will reduce the commercial value. You can prevent it from falling.

なお、上記第2の実施例では領域7から9や、領域8か
ら10への幅の変化を非連続的に表わしているが、ゆる
やかな角度で直線的に、あるいは曲線でゆるやかに連続
的に幅を広げても良く、実際作製する場合には、このよ
うにした方が結晶の面方位との関係上有利となる。
In addition, in the above-mentioned second embodiment, the change in width from region 7 to 9 and from region 8 to 10 is expressed discontinuously, but it is expressed linearly at a gentle angle or gently and continuously with a curve. The width may be widened, and in actual production, this is more advantageous in relation to the plane orientation of the crystal.

また、上記第1.第2の実施例では、前後方向共に同様
の形状を持たせているが、実際高い光出力を要するのが
前方のみであれば、領域8及び10を設けなくても良い
し、更には領域6も長さを最低限にして良い。最低限の
長さとは、零でも良いという意味である。
In addition, the above 1. In the second embodiment, the shapes are the same in both the front and rear directions, but if high light output is actually required only in the front, regions 8 and 10 may not be provided; It is also good to keep the length to a minimum. The minimum length means that it may be zero.

第3図はこの発明の第3の実施例による半導体レーザを
示す図であり、図において、11はpGaAs基板、1
2はp−Al0.40ao、h As層、13はn−G
aAs1,14はp−A10.。
FIG. 3 is a diagram showing a semiconductor laser according to a third embodiment of the present invention, in which 11 is a pGaAs substrate;
2 is p-Al0.40ao, h As layer, 13 is n-G
aAs1,14 is p-A10. .

G;to、bAs層、15はp−Alo、r Gao、
g As層、16はnA 16,4 G a o、6 
A 3層、17はn−GaAs層である。本第3の実施
例は、電流阻止層であるn−GaAs層13をエツチン
グして、上記第1又は第2の実施例に示した活性領域(
第2の実施例の場合はilJ!!9.7及び6のみで構
成)と同様の形状を有する溝を上記n−A10.。
G; to, bAs layer, 15 is p-Alo, r Gao,
g As layer, 16 is nA 16,4 Ga o, 6
A 3 layer and 17 are n-GaAs layers. In the third embodiment, the n-GaAs layer 13, which is a current blocking layer, is etched to form the active region shown in the first or second embodiment.
In the case of the second embodiment, ilJ! ! 9.7 and 6)) is formed into a groove having the same shape as n-A10. .

Gao、hAS層14以降を成長させたものである。Gao, hAS layer 14 and subsequent layers are grown.

実際に加工した例では、溝の底の幅を1.8μmにする
とその領域の活性領域の幅Wは1.2μmとなり、35
.6μmにした領域ではW=35.0μmとなった。活
性層り−A lo、+ Gao、++ A s層15の
層厚を0.07 p mとした場合、W=1.2μmの
領域では高次の横モードは全て遮断状態となり、基本モ
ードした伝搬せず、しかもW=35μmの領域では端面
破壊の起こる光出力が通常のレーザの約28倍となるた
め、最大約500mW、通常光出力140mWの高出力
レーザとなる。もちろん発振も横モードはW=35μm
と広いにもかかわらず基本横モードが得られる。また、
本第3の実施例では、電流阻止層(n−GaAs層13
)を用いているので、上記第1.第2の実施例より広い
動作範囲(バイアス、温度等)で活性領域へ′g1流を
集中でき、−層実用的である0作製方法としてはMOC
VD法やMBE法等、微細な加工にたえられる結晶成長
法がよい。
In an example of actual processing, if the width of the bottom of the groove is 1.8 μm, the width W of the active region in that region is 1.2 μm, which is 35 μm.
.. In the region where the thickness was 6 μm, W was 35.0 μm. When the layer thickness of the active layer -A lo, + Gao, + A s layer 15 is 0.07 pm, all higher-order transverse modes are blocked in the region of W = 1.2 μm, and the fundamental mode is In the region where there is no propagation and where W=35 μm, the optical power at which end face destruction occurs is approximately 28 times that of a normal laser, resulting in a high output laser with a maximum optical output of approximately 500 mW and a normal optical output of 140 mW. Of course, the transverse mode of oscillation is W = 35μm
Even though it is wide, the basic transverse mode can be obtained. Also,
In this third embodiment, a current blocking layer (n-GaAs layer 13
), so the above 1. MOC is the most practical method for producing the 0 layer, since it can concentrate the 'g1 flow to the active region over a wider operating range (bias, temperature, etc.) than the second embodiment.
A crystal growth method that can withstand fine processing, such as the VD method or MBE method, is preferable.

このように本第3の実施例においても、高出力化を実現
できるとともに、端面近傍に一定の幅を持った活性領域
を所定の長さで有しているので、製造に際しての歩留ま
りを向上させることができる。
In this way, in the third embodiment as well, high output can be achieved, and since the active region with a certain width and a predetermined length is provided near the end face, the yield during manufacturing can be improved. be able to.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の半導体レーザによれば、基本
横モードを得るための幅の狭い領域と、該幅の狭い領域
における回折角以上の角度で上記幅の狭い領域から順次
幅が広くなった領域とを有する活性層を備えた構成とし
たから、製作加工時に不可避の側面の凹凸を許容して基
本モード発振の特性を損なうことなく、高い歩留まりで
高出力化を達成できる効果がある。
As described above, according to the semiconductor laser of the present invention, there is a narrow region for obtaining a fundamental transverse mode, and the width gradually increases from the narrow region at an angle equal to or greater than the diffraction angle in the narrow region. Since the structure includes an active layer having a region with a large area, it is possible to achieve high output with a high yield without impairing fundamental mode oscillation characteristics by allowing unevenness on the side surface that is inevitable during manufacturing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1の実施例による半導体レーザを
示す斜視図、第2図はこの発明の第2の実施例による半
導体レーザを示す斜視図、第3図はこの発明の第3の実
施例による半導体レーザを示す斜視図、第4図は従来の
半導体レーザを示す斜視図である。 1はn−GaAs基板、2はn−A Ill Ga、−
。 As層、3はAI、Ga、−、A5層、4はp−A1、
lGa、−1lAs層、5はp−GaAs層、6は幅の
狭い活性領域部、7,8は幅の徐々に広がった活性領域
部、9.10は幅が広く一定である活性領域部、11は
p−GaAs基板、12はp−A I 6.4 G a
 6,6 A 3層、13はn−GaAs層、14はり
−A 111.40ao、b As層、15はp−A 
16.1 Gao、q As層、16はn−A1.0.
Ga0.6ASJ1% 17はn−GaAs層。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a perspective view showing a semiconductor laser according to a first embodiment of the invention, FIG. 2 is a perspective view showing a semiconductor laser according to a second embodiment of the invention, and FIG. 3 is a perspective view showing a semiconductor laser according to a second embodiment of the invention. FIG. 4 is a perspective view showing a semiconductor laser according to an embodiment, and FIG. 4 is a perspective view showing a conventional semiconductor laser. 1 is n-GaAs substrate, 2 is n-A Ill Ga, -
. As layer, 3 is AI, Ga, -, A5 layer, 4 is p-A1,
1Ga, -1lAs layer, 5 is a p-GaAs layer, 6 is a narrow active region part, 7 and 8 are active region parts whose width gradually increases, 9.10 is a wide and constant active region part, 11 is p-GaAs substrate, 12 is p-AI 6.4 Ga
6,6 A 3 layers, 13 is n-GaAs layer, 14 beam-A 111.40ao, b As layer, 15 is p-A
16.1 Gao, q As layer, 16 is n-A1.0.
Ga0.6ASJ1% 17 is an n-GaAs layer. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも2つの端面を有する半導体レーザにお
いて、少なくとも、 一方の端面部又は内部の少なくとも1ヶ所に設けられた
基本横モードのみが通過可能な幅の狭い領域と、 上記幅の狭い領域における回折角以上の角度で上記幅の
狭い領域から順次幅が広くなった領域とを有する活性領
域を備えたことを特徴とする半導体レーザ。
(1) In a semiconductor laser having at least two end faces, at least a narrow region provided at one end face portion or at least one location inside thereof through which only the fundamental transverse mode can pass; and a narrow region in the narrow region. What is claimed is: 1. A semiconductor laser comprising: an active region having an active region whose width is gradually increased from the narrow region to the region whose width is gradually widened at an angle greater than the above angle.
JP32311988A 1988-12-20 1988-12-20 Semiconductor laser Pending JPH02166785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32311988A JPH02166785A (en) 1988-12-20 1988-12-20 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32311988A JPH02166785A (en) 1988-12-20 1988-12-20 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH02166785A true JPH02166785A (en) 1990-06-27

Family

ID=18151296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32311988A Pending JPH02166785A (en) 1988-12-20 1988-12-20 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH02166785A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823133A (en) * 1994-07-05 1996-01-23 Nec Corp Flare structure semiconductor laser
US5555544A (en) * 1992-01-31 1996-09-10 Massachusetts Institute Of Technology Tapered semiconductor laser oscillator
US5651018A (en) * 1993-01-07 1997-07-22 Sdl, Inc. Wavelength-stabilized, high power semiconductor laser
US5696779A (en) * 1993-01-07 1997-12-09 Sdl, Inc. Wavelength tunable semiconductor laser with mode locked operation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5555544A (en) * 1992-01-31 1996-09-10 Massachusetts Institute Of Technology Tapered semiconductor laser oscillator
US5651018A (en) * 1993-01-07 1997-07-22 Sdl, Inc. Wavelength-stabilized, high power semiconductor laser
US5696779A (en) * 1993-01-07 1997-12-09 Sdl, Inc. Wavelength tunable semiconductor laser with mode locked operation
US5864574A (en) * 1993-01-07 1999-01-26 Sdl, Inc. Semiconductor gain medium with a light Divergence region that has a patterned resistive region
JPH0823133A (en) * 1994-07-05 1996-01-23 Nec Corp Flare structure semiconductor laser

Similar Documents

Publication Publication Date Title
JPH07503581A (en) Tapered semiconductor laser gain structure with cavity spoil groove
JPH08330671A (en) Semiconductor optical device
JPS5940592A (en) Semiconductor laser element
JPH02166785A (en) Semiconductor laser
US6137625A (en) Semiconductor optical amplifier and integrated laser source information
US5200968A (en) Laser amplifier for amplifying optical waves without saturation
JPH03116121A (en) Optical logic arithmetic unit
JP2846668B2 (en) Broad area laser
JPS6320038B2 (en)
US4592061A (en) Transverse junction stripe laser with steps at the end faces
JPS6362292A (en) Semiconductor laser device and manufacture thereof
CN115864135B (en) DFB laser chip with graded ridge waveguides at two ends
JPH10107373A (en) Semiconductor laser
JP2822195B2 (en) Semiconductor laser manufacturing method
JP2004023004A (en) Semiconductor laser device
JP2005517281A (en) Laser diode with internal mirror
JPS6054796B2 (en) semiconductor laser
JPH0316192A (en) Semiconductor laser
JP2024164794A (en) Optical semiconductor devices
JPH01238082A (en) Semiconductor laser
Ben-Michael et al. InGaAs/InGaAsP multiple quantum well laser with an integrated tapered beam expander waveguide
JPH02281681A (en) Semiconductor laser
JPS6022392A (en) Semiconductor laser and its manufacturing method
JPS62202582A (en) Integrated semiconductor laser
JPH04370993A (en) Semiconductor laser device