[go: up one dir, main page]

JPH02166754A - Molding material for sealing semiconductor - Google Patents

Molding material for sealing semiconductor

Info

Publication number
JPH02166754A
JPH02166754A JP32281188A JP32281188A JPH02166754A JP H02166754 A JPH02166754 A JP H02166754A JP 32281188 A JP32281188 A JP 32281188A JP 32281188 A JP32281188 A JP 32281188A JP H02166754 A JPH02166754 A JP H02166754A
Authority
JP
Japan
Prior art keywords
base material
inorganic base
molding material
semiconductor
silanol group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32281188A
Other languages
Japanese (ja)
Other versions
JPH0750760B2 (en
Inventor
Hideki Okabe
岡部 秀樹
Atsushi Nagaoka
淳 長岡
Koji Ikeda
幸二 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP63322811A priority Critical patent/JPH0750760B2/en
Publication of JPH02166754A publication Critical patent/JPH02166754A/en
Publication of JPH0750760B2 publication Critical patent/JPH0750760B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain a molding material for sealing a semiconductor having the excellent heat-dissipating properties of sealing, low viscosity and superior moldability by forming constitution in which an inorganic base material having an alkoxylated silanol group on a surface thereof is compounded. CONSTITUTION:An inorganic base material having an alkoxylated silanol group on a surface thereof is compounded. Crystal silica and/or silicon nitride, etc., can be exampled as the inorganic base material having the silanol group, and the base material having conductivity of 150X10<-4>cal/cm.sec. deg.C or more is preferable. A substance having low magnetic quantity is favorable as the inorganic base material, and grain size of approximately 1-50mum is preferable. A substance manufactured by alkoxylating the silanol group on the surface of the inorganic base material is employed as a filler, but the kind of alcohol used is not limited particularly, and ethanol, propanol, etc., can be employed. An epoxy resin, etc., can be used properly as a base resin with which the filler of a molding material for sealing a semiconductor is compounded, and a novolak type phenol resin, etc., are employed as a curing agent.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、半導体封止用成形材料に関するものである
。さらに詳しくは、この発明は、熱放散性に優れ、かつ
成形性を向上させた半導体封止用成形材料に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a molding material for semiconductor encapsulation. More specifically, the present invention relates to a molding material for semiconductor encapsulation that has excellent heat dissipation properties and improved moldability.

(従来の技術) 半導体素子の封止用成形材料としては、従来より耐湿性
、耐熱性等の性能や、価格などの点においてエポキシ樹
脂を主成分とするものが広く使用されているが、近年で
は半導体素子の高密度、高集積化に伴い、素子の発熱に
よる熱疲労を低減すべく熱放散性を向上させること、半
導体素子と封止用樹脂との間に発生ずる熱応力を低減さ
せること、および成形性や耐湿(a 9性を向上させる
ことが必要となってきている。
(Prior art) As a molding material for encapsulating semiconductor elements, epoxy resin-based materials have traditionally been widely used due to their performance such as moisture resistance and heat resistance, as well as their price. With the increasing density and integration of semiconductor devices, it is important to improve heat dissipation to reduce thermal fatigue caused by heat generation of devices, and to reduce thermal stress that occurs between semiconductor devices and sealing resin. It has become necessary to improve moldability, moldability, and moisture resistance (a9).

このような半導体素子の封正にともなう熱放散性の向上
や低応力化等のために、一般には、結晶性シリカやアル
ミナ等のフィラーをエポキシ樹脂等の封止用樹脂に配合
することがなされてきている。また、これらフィラーの
配合についての様々な試みも提案されている。
In order to improve heat dissipation and reduce stress associated with the encapsulation of semiconductor elements, fillers such as crystalline silica and alumina are generally blended into encapsulation resins such as epoxy resins. It's coming. Various attempts have also been made regarding the blending of these fillers.

たとえば、このような試みとしては、水酸化アルミニウ
ムと水酸化アルミニウムによって表面処理した赤燐の粉
末とをエポキシ樹脂に配合する方法(特開昭61−27
6816 )などが提案されている。
For example, one such attempt is a method of blending aluminum hydroxide and red phosphorus powder whose surface has been treated with aluminum hydroxide into an epoxy resin (Japanese Unexamined Patent Publication No. 61-27
6816) etc. have been proposed.

まな、この発明の発明者らは、従来の結晶性シリカやア
ルミナ等のフィラーに比、べて高い熱放散性と低応力化
を実現することのできる窒化珪素フィラーを使用するこ
とをすでに提案してもいる。
The inventors of this invention have already proposed the use of silicon nitride filler, which can achieve higher heat dissipation and lower stress than conventional fillers such as crystalline silica and alumina. There are also.

(発明が解決しようとする課題)  ゛しかしながら、
熱放散性を向上させるためにこれらのフィラーを封止用
成形材料中に大きな割合で充填する場合には、その封止
用成形材料の粘度が高まって流動性が低下し、ワイヤー
の変形、カスレあるいは未充填部等が生じるなど成形性
の低下が問題となる。
(Problem to be solved by the invention) ゛However,
When filling a large proportion of these fillers into a molding material for sealing in order to improve heat dissipation, the viscosity of the molding material for sealing increases and fluidity decreases, causing wire deformation and fraying. Alternatively, there is a problem of deterioration of moldability, such as the formation of unfilled areas.

このため、フィラーの充填により熱放散性を向上さぜる
ことと封止用成形材料の成形性を良好とすることの双方
を満足させることができないのが実状である。
For this reason, the reality is that it is not possible to satisfy both of the requirements of improving heat dissipation properties and improving the moldability of the sealing molding material by filling the filler.

この発明は以上の通りの事情に鑑みなされたものであり
、従来の半導体封止用の成形材料の欠点を改善し、封止
の熱放散性に優れ、かつ、その粘度が低く成形性の良好
な半導体封止用成形材料を提供することを目的としてい
る。
This invention was made in view of the above circumstances, and it improves the drawbacks of conventional molding materials for semiconductor encapsulation, and provides excellent heat dissipation properties for encapsulation, low viscosity, and good moldability. The purpose of this invention is to provide a molding material for semiconductor encapsulation.

(課題を解決するための手段) この発明は、上記の目的を実現するため、アルコキシ化
したシラノール基を表面に有する無機質基材を配合して
なることを特徴とする半導体封止用成形材料を提供する
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a molding material for semiconductor encapsulation, which is characterized in that it contains an inorganic base material having an alkoxylated silanol group on the surface. provide.

この発明は、半導体索子封止の熱放散性を向」−させ、
低応力化を図るために、フィラーとしてその表面にシラ
ノール基(−3i−OH)を有する無機質基材を用い、
シラノール基をアルコキシ化することが、封止用成形材
料の粘度を低下させ、成形性を向上させるとの知見に基
づいてなされたものである。
This invention improves the heat dissipation properties of semiconductor cord sealing,
In order to reduce stress, an inorganic base material having silanol groups (-3i-OH) on its surface is used as a filler.
This was done based on the knowledge that alkoxylating a silanol group lowers the viscosity of a molding material for sealing and improves moldability.

この発明で使用する無機質基材としては、上記の通り表
面にシラノール基を有するものを使用する。
As the inorganic base material used in this invention, one having a silanol group on the surface is used as described above.

このシラノール基は、@機質基材の表面に所定の反応を
施すことにより導入したものでもよく、あるいは、単に
空気中に放置しておくことにより生成したものでもよい
。このようなシラノール基を有する無機質基材としては
、従来よりフィラーとして用いられている結晶シリカお
よび/または窒化珪素等を例示することができる。たと
えば窒化珪素の場合には空気中で酸素や水と反応し、表
面がS s O2で覆われる。
This silanol group may be introduced by subjecting the surface of the organic substrate to a predetermined reaction, or may be generated by simply leaving it in the air. Examples of such an inorganic base material having a silanol group include crystalline silica and/or silicon nitride, which have been conventionally used as fillers. For example, in the case of silicon nitride, it reacts with oxygen and water in the air, and its surface is covered with S s O2.

Si  N  +30  →3 S i O2モN2S
j3N4+61(20→3SiO2+4NI(3この窒
化珪素の表面のS + 02は、さらに空気中の水と反
応してシラノール基(−3iOH)を生成する。このよ
うなS i O2からの一3iOHの生成は結晶シリカ
の表面でも同様に生じる。結晶シリカや窒化珪素は、こ
のように表面シラノール基を有する無機質基材としてこ
の発明において好ましく使用することかできる。なお、
これらの無機質基材の使用に際しては、その全量を表面
にシラノール基を有する結晶シリカや窒化珪素等として
もよく、他の無機質基材と併用するようにしてもよい。
Si N +30 →3 Si O2MoN2S
j3N4+61(20→3SiO2+4NI(3) This S + 02 on the surface of silicon nitride further reacts with water in the air to generate silanol groups (-3iOH). The generation of 13iOH from such SiO2 is The same phenomenon occurs on the surface of crystalline silica.Crystalline silica and silicon nitride can thus be preferably used in the present invention as inorganic base materials having surface silanol groups.
When using these inorganic base materials, the entire amount thereof may be made of crystalline silica or silicon nitride having silanol groups on the surface, or they may be used in combination with other inorganic base materials.

この発明においては、このように表面にシラノール基を
有する無機質基材を使用するが、その熱伝導率が150
 X io−’cal / ctn−3ec ・”C以
上のものであることが好ましい。これにより、封止の熱
放散性を向上させることが可能となる。
In this invention, an inorganic base material having silanol groups on the surface is used, and its thermal conductivity is 150.
X io-'cal / ctn-3ec · "C or higher is preferable. This makes it possible to improve the heat dissipation properties of sealing.

まな、無機質基材としては、封正にリーク不良が発生ず
るのを防止するなめ、磁性分量が低いものが好ましい。
Furthermore, the inorganic base material preferably has a low magnetic content in order to prevent leakage defects from occurring in the seal.

特に、無機質基材として窒化珪素を使用する場合には、
200ppl′0以下程度のものとするのがよい。
In particular, when using silicon nitride as the inorganic base material,
It is preferable to set it to about 200 ppl'0 or less.

!−椴質基材の粒径としては、1〜50μm程度とする
ことが好ましい。
! - The grain size of the corpuscular base material is preferably about 1 to 50 μm.

また、この発明においては、このような無機質基材の表
面のシラノール基をアルコキシ化したものをフィラーと
して使用するが、このアルコキシ化は、無機質基材の表
面のシラノール基に常法によりアルコールを反応させて
行うことができる。
In addition, in the present invention, alkoxylated silanol groups on the surface of such an inorganic base material are used as fillers, but this alkoxylation is achieved by reacting alcohol with the silanol groups on the surface of the inorganic base material by a conventional method. You can do it by letting me do it.

この場合、使用するアル:1−ルの種類には特に制限は
なく、エタノール、10パノール、ペンタノール、オク
タツール等を使用することができる。
In this case, there is no particular restriction on the type of alcohol used, and ethanol, 10-panol, pentanol, octatool, etc. can be used.

また、その反応条件は使用する無4B質基材やアルコー
ル等に応じて適宜定めることができる。たとえば無機質
基材として窒化珪素を使用する場合には、その窒化珪素
に対して数%の低級アルコールを、室温〜250℃で、
2〜20時間程度、反応の進行度に応じて作用させれば
よい、その場合、反応の進行度は、加熱減量、FT−T
 RlESCA、反応さぜな窒化珪素をn−ヘキサン等
の油相と水相との2相からなる浴に入れた場合にその油
相と水相との界面に浮くか否かくアルコキシ化が十分に
進行したものは界面に浮く)等の方法により評価するこ
とができる。
Further, the reaction conditions can be determined as appropriate depending on the 4B-free base material, alcohol, etc. used. For example, when using silicon nitride as an inorganic base material, several percent of lower alcohol is added to the silicon nitride at room temperature to 250°C.
It is sufficient to act for about 2 to 20 hours depending on the progress of the reaction. In that case, the progress of the reaction is determined by heating loss, FT-T
RlESCA, when unreacted silicon nitride is placed in a bath consisting of two phases, an oil phase and an aqueous phase such as n-hexane, whether or not it floats on the interface between the oil phase and the aqueous phase, the alkoxylation is sufficient. Those that have progressed will float on the interface).

この発明の半導体封止用成形材料のフィラーを配合する
ベース樹脂としては、従来より耐湿性耐熱性等の性能の
良好なものとして知られている公知のエポキシ樹脂等を
適宜便用することができる。
As the base resin in which the filler of the molding material for semiconductor encapsulation of the present invention is blended, publicly known epoxy resins that are conventionally known to have good performance such as moisture resistance and heat resistance can be used as appropriate. .

たとえばエポキシ樹脂自体としては、ノボラック型エポ
キシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェ
ノールF型エポキシ樹脂、脂環式エポキシ樹脂、ハロゲ
ン化エポキシ回脂などを例示することができる。
For example, as the epoxy resin itself, novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, alicyclic epoxy resin, halogenated epoxy resin, etc. can be exemplified.

また、硬化剤としてもノボラック型フェノール樹脂など
従来より使用されているものを用いることができる。特
に、ノボラック型フェノール樹脂としては、1分子中に
2個以上のフェノール性水酸基を有するしのを好適な硬
化剤として例示することができる。
Further, as a curing agent, a conventionally used curing agent such as a novolak type phenol resin can be used. In particular, as the novolak type phenolic resin, a resin having two or more phenolic hydroxyl groups in one molecule can be exemplified as a suitable curing agent.

以上のように、この発明の半導体封止用成形材料は、従
来のエポキシ樹脂等を樹脂成分とする半導体封止用組成
物において、フィラーとして表面をアルコキシ化した無
機質基材を含有するものであるが、さらに封止用樹脂と
しての特性を損なわない限り池の種々の添加剤を含有す
ることができる。たとえば、シリコーン系改質剤、難燃
剤、硬化促進剤、飛型剤、着色剤、充填剤などを半導体
素子の種類、用途に応じて適宜配合することができる。
As described above, the molding material for semiconductor encapsulation of the present invention is a conventional semiconductor encapsulation composition containing an epoxy resin or the like as a resin component, which contains an inorganic base material whose surface is alkoxylated as a filler. However, various additives can be added as long as they do not impair the properties of the sealing resin. For example, silicone modifiers, flame retardants, curing accelerators, flying agents, colorants, fillers, and the like can be blended as appropriate depending on the type and use of the semiconductor element.

また、この発明の半導体封止用成形材料を用いて半導体
を封止する方法としては、従来と同様の方法を封止する
半導体素子の種類等に応じて適宜採用することができる
Further, as a method for encapsulating a semiconductor using the molding material for semiconductor encapsulation of the present invention, a conventional method can be appropriately employed depending on the type of semiconductor element to be encapsulated.

(作 用) この発明の半導体封止用成形材料は、フィラーの表面を
アルコキシ化しているので、半導体封止の熱放散性の向
上、低応力化を図るためにフィラーを高含有率で充填し
ても、その成形材料の高粘度化、流動性の低下を防止す
ることができる。しかも熱放散性および低応力性に優れ
たものとすることが可能となる。
(Function) Since the molding material for semiconductor encapsulation of the present invention has the surface of the filler alkoxylated, it is filled with a high filler content in order to improve the heat dissipation property of semiconductor encapsulation and reduce stress. However, it is possible to prevent the molding material from increasing in viscosity and decreasing fluidity. Furthermore, it is possible to achieve excellent heat dissipation and low stress properties.

(実施例) 以下、実施例を示して、この発明の半導体封止用成形材
料を具体的に説明する。
(Example) Hereinafter, the molding material for semiconductor encapsulation of the present invention will be specifically explained with reference to Examples.

実施例1 クレーゾールノボラック型エポキシ樹脂に硬化剤として
フェノールノボラック系硬化剤を配合し、フィラーとし
て表面をエトキシ化した結晶シリカ(熱伝導率160 
X 10−’cal / an ・Sec ・’C)を
得られた半導体封止用成形材料により半導体素子を封止
し、その封止の熱伝導率、150℃における溶融粘度、
スパイラルフロー、ワイヤー変形、および成形性につい
て評価した。
Example 1 A phenol novolac curing agent was blended into a cresol novolac type epoxy resin, and crystalline silica (thermal conductivity: 160
A semiconductor element is sealed with the molding material for semiconductor sealing obtained with
Spiral flow, wire deformation, and formability were evaluated.

この場合、ワイヤー変形と成形性を評価する半導体素子
としては、松下電工株式会社製の耐湿性評価用TEG 
16DTP^1標準素子を用いた。
In this case, the semiconductor element used to evaluate wire deformation and formability is TEG for moisture resistance evaluation manufactured by Matsushita Electric Works Co., Ltd.
A 16DTP^1 standard element was used.

これらの評価結果は表1に示す通りであった。The results of these evaluations are shown in Table 1.

熱放散性、成形性ともに優れている。Excellent heat dissipation and moldability.

実施例2 フィラーとして表面をエトキシ化した窒化珪素(熱伝導
率180 X io−’cal / aIII−313
C・’C)を80wt%添加して、実施例1と同様に半
導体封止用成形材料を調製し、半導体素子を封止してそ
の性質を評価した。
Example 2 Silicon nitride whose surface was ethoxylated as a filler (thermal conductivity 180 X io-'cal/aIII-313
A molding material for semiconductor encapsulation was prepared in the same manner as in Example 1 by adding 80 wt% of C.'C), a semiconductor element was encapsulated, and its properties were evaluated.

結果を表1に示す。The results are shown in Table 1.

実施例1と同様に熱放散性に優れ、溶融粘度が低く、ス
パイラルフロー、ワイヤ変形、成形性とらに良好であっ
た。
As in Example 1, it had excellent heat dissipation, low melt viscosity, and good spiral flow, wire deformation, and moldability.

比敦例1 表面にシラノール基をもたないアルミナをエタノール処
理し、これをフィラーとして80wt%添加して、実施
例1と同様に半導体封止用成形材料を調製し、半導体素
子を封止してその性質を評価した。この場合、アルミナ
の表面にエトキシ基は生成していなかった。
Specific Example 1 Alumina having no silanol group on its surface was treated with ethanol, 80 wt% of this was added as a filler, a molding material for semiconductor encapsulation was prepared in the same manner as in Example 1, and a semiconductor element was encapsulated. and evaluated its properties. In this case, no ethoxy groups were generated on the surface of alumina.

結果を表1に示す。The results are shown in Table 1.

熱放散性、成形性は満足できるものではなかった。Heat dissipation and moldability were not satisfactory.

比較例2 フィラーとして、表面にシラノール基は有するがエトキ
シ化はしていない結晶シリカを80wt%添加して、実
施例1と同様に半導体封止用成形材料を調製し、半導体
素子を封止してその性質を評価した。
Comparative Example 2 A molding material for semiconductor encapsulation was prepared in the same manner as in Example 1 by adding 80 wt % of crystalline silica having silanol groups on the surface but not ethoxylated as a filler, and encapsulating a semiconductor element. and evaluated its properties.

結果を表1に示す、溶融粘度が高く、スパイラルフロー
、ワイヤ変形も実施例に比べて劣っていた。
The results are shown in Table 1, and the melt viscosity was high, and the spiral flow and wire deformation were also inferior to those of the Examples.

比較例3 フィラーとして、表面にシラノール基は有するがエトキ
シ化はしていない窒化珪素をsowt%添加して、実施
例1と同様に半導体封止用成形材料を調製し、半導体素
子を封止してその性質を評価しな。
Comparative Example 3 A molding material for semiconductor encapsulation was prepared in the same manner as in Example 1 by adding sowt% silicon nitride, which has a silanol group on the surface but is not ethoxylated, as a filler, and encapsulated a semiconductor element. Evaluate its nature.

結果を表1に示す、熱放散性、成形性ともに劣っていた
。成形は未充填となった。
The results are shown in Table 1, and both heat dissipation and moldability were poor. The molding was not filled.

比較例4 フィラーとして、表面にシラノール基をもたないアルミ
ナをそのまま8Qwtχ添加して、実施例1と同様に半
導体封止用成形材料を調製し、半導体素子を封止してそ
の性質を評価した。この場合、アルミナの表面に工)・
キシ基は生成していなかった。
Comparative Example 4 A molding material for semiconductor encapsulation was prepared in the same manner as in Example 1 by adding 8Qwtχ of alumina which does not have a silanol group on the surface as a filler, and a semiconductor element was encapsulated and its properties were evaluated. . In this case, the surface of the alumina is
No xy group was formed.

結果を表1に示す。The results are shown in Table 1.

この場合にも熱放散性、成形性は全く不充分なものであ
った。また、成形時にはボイドおよびカスレが発生した
In this case as well, the heat dissipation properties and moldability were completely inadequate. Additionally, voids and scratches occurred during molding.

実施例3 エタノールをプロパツールに代えて、実施例1と同様に
してグロボキシル化した結晶性シリカをフィラーとし、
半導体封止用成形材料を調製し、封止した。
Example 3 Using globoxylated crystalline silica as a filler in the same manner as in Example 1, replacing ethanol with propatool,
A molding material for semiconductor encapsulation was prepared and encapsulated.

熱放散性および成形性ともに、上記比較例に比べて良好
であった。
Both heat dissipation properties and moldability were better than those of the comparative example.

実施例4 エタノールをペンタノールに代えて、実施例2と同様に
してペンタノイル化した窒化珪素をフィラーとし、樹脂
封止した。
Example 4 Pentanoylated silicon nitride was used as a filler in the same manner as in Example 2, except that ethanol was replaced with pentanol, and resin sealing was performed.

同様に熱放散性および成形性は良好であった。Similarly, heat dissipation and moldability were good.

以上の実施例により、この発明の実施例の半導体封止は
、高い熱放散性を有しつつ、浴融粘度も低く、スパイラ
ルフロー、ワイヤー変形、および成形性に優れているこ
とが確認できた。
From the above examples, it was confirmed that the semiconductor encapsulation of the example of this invention has high heat dissipation, low bath melt viscosity, and excellent spiral flow, wire deformation, and moldability. .

(発明の効果) この発明の半導体素子封止用成形材料により、半導体封
止の熱放散性を向上さぜ、かつ成形性も優れたものとす
ることができる。このため、この発明の半導体素子封止
用成形材料を用いることにより、パワートランジスタデ
バイスや高集積化LSIの良好な樹脂封止が可能となる
(Effects of the Invention) The molding material for encapsulating a semiconductor element of the present invention can improve the heat dissipation properties of semiconductor encapsulation and provide excellent moldability. Therefore, by using the molding material for encapsulating semiconductor elements of the present invention, it becomes possible to perform good resin encapsulation of power transistor devices and highly integrated LSIs.

Claims (3)

【特許請求の範囲】[Claims] (1)アルコキシ化したシラノール基を表面に有する無
機質基材を配合してなることを特徴とする半導体封止用
成形材料。
(1) A molding material for semiconductor encapsulation characterized by containing an inorganic base material having an alkoxylated silanol group on the surface.
(2)無機質基材が、熱伝導率150×10^−^4c
al/cm・sec・℃以上である請求項(1)記載の
半導体封止用成形材料。
(2) The inorganic base material has a thermal conductivity of 150 x 10^-^4c
The molding material for semiconductor encapsulation according to claim 1, which has a temperature of at least al/cm·sec·°C.
(3)無機質基材が、結晶シリカおよび/または窒化珪
素である請求項(1)記載の半導体封止用成形材料。
(3) The molding material for semiconductor encapsulation according to claim (1), wherein the inorganic base material is crystalline silica and/or silicon nitride.
JP63322811A 1988-12-21 1988-12-21 Resin molding material for semiconductor encapsulation Expired - Lifetime JPH0750760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63322811A JPH0750760B2 (en) 1988-12-21 1988-12-21 Resin molding material for semiconductor encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63322811A JPH0750760B2 (en) 1988-12-21 1988-12-21 Resin molding material for semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JPH02166754A true JPH02166754A (en) 1990-06-27
JPH0750760B2 JPH0750760B2 (en) 1995-05-31

Family

ID=18147881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63322811A Expired - Lifetime JPH0750760B2 (en) 1988-12-21 1988-12-21 Resin molding material for semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JPH0750760B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281067A (en) * 1989-04-22 1990-11-16 Matsushita Electric Works Ltd Epoxy resin molding material
KR100738595B1 (en) * 2000-01-11 2007-07-11 피비알 오스트레일리아 피티와이 리미티드 Brake assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5018397A (en) * 1973-06-22 1975-02-26
JPS61296020A (en) * 1985-06-26 1986-12-26 Toshiba Corp Epoxy resin liquid composition for sealing electronic part
JPS62149743A (en) * 1985-12-25 1987-07-03 Sumitomo Bakelite Co Ltd Epoxy resin molding material for use in sealing semiconductor
JPS63282109A (en) * 1987-05-13 1988-11-18 Seitetsu Kagaku Co Ltd Production of silica fine powder particle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5018397A (en) * 1973-06-22 1975-02-26
JPS61296020A (en) * 1985-06-26 1986-12-26 Toshiba Corp Epoxy resin liquid composition for sealing electronic part
JPS62149743A (en) * 1985-12-25 1987-07-03 Sumitomo Bakelite Co Ltd Epoxy resin molding material for use in sealing semiconductor
JPS63282109A (en) * 1987-05-13 1988-11-18 Seitetsu Kagaku Co Ltd Production of silica fine powder particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281067A (en) * 1989-04-22 1990-11-16 Matsushita Electric Works Ltd Epoxy resin molding material
KR100738595B1 (en) * 2000-01-11 2007-07-11 피비알 오스트레일리아 피티와이 리미티드 Brake assembly

Also Published As

Publication number Publication date
JPH0750760B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
JP2874089B2 (en) Resin composition for semiconductor encapsulation and semiconductor device
KR101287712B1 (en) Epoxy resin composition and semiconductor device
JP2000034393A (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JPH07268186A (en) Epoxy resin composition
JP4557148B2 (en) Liquid epoxy resin composition and semiconductor device
JPH062799B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2002212269A (en) Epoxy resin composition and semiconductor device
JPH02166754A (en) Molding material for sealing semiconductor
JP2991849B2 (en) Epoxy resin composition
JPH07107091B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2864415B2 (en) Resin composition for semiconductor encapsulation and semiconductor device
JP2690795B2 (en) Epoxy resin composition
JPH05206331A (en) Resin composition for sealing semiconductor
JP3023023B2 (en) Resin composition for semiconductor encapsulation
JPH0794533B2 (en) Semiconductor device
JP3011807B2 (en) Epoxy resin composition
JP2005336329A (en) Surface-treated inorganic filler, epoxy resin composition for semiconductor encapsulation, and semiconductor device
JP3278304B2 (en) Semiconductor device
KR970000093B1 (en) Exopy resin compositions for encapsulating semiconductor and encapsulated semiconductor device thereof
JP3093051B2 (en) Epoxy resin composition
KR100480946B1 (en) Epoxy molding compound having improved crack resistance and heat conductivity for use as semiconductor encapsulant
JPH0515744B2 (en)
JPH06228275A (en) Epoxy resin composition
JP3568654B2 (en) Epoxy resin composition
JPH1180509A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080531

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 14