JPH02166258A - Machine structural steel with excellent delayed fracture resistance - Google Patents
Machine structural steel with excellent delayed fracture resistanceInfo
- Publication number
- JPH02166258A JPH02166258A JP32286688A JP32286688A JPH02166258A JP H02166258 A JPH02166258 A JP H02166258A JP 32286688 A JP32286688 A JP 32286688A JP 32286688 A JP32286688 A JP 32286688A JP H02166258 A JPH02166258 A JP H02166258A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- delayed fracture
- fracture resistance
- less
- tensile strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、125 kgf/u以」二の引張り強さを
有し、且つ、耐遅れ破壊性に優れた高張力ボルトやPC
鋼棒、更に大型機械用の高張力鋼板などの機械構造用鋼
に関する。[Detailed Description of the Invention] [Field of Industrial Application] This invention is applicable to high-tensile bolts and PCs that have a tensile strength of 125 kgf/u or more and have excellent delayed fracture resistance.
It relates to steel for machine structures, such as steel bars and high-tensile steel plates for large machines.
近年、特に構造物の大型化、自動車やトラック、土木機
械等の軽量化に伴い引張り強さが125+tgf/d以
」二の機械構造用鋼、特に高張力ボルトやPC鋼棒の開
発か要求されてきている。In recent years, as structures have become larger and automobiles, trucks, civil engineering machinery, etc. have become lighter, there has been a demand for the development of mechanical structural steels with a tensile strength of 125+tgf/d or higher, especially high-tensile bolts and PC steel bars. It's coming.
従来、一般に1. OOkgf/m以上の引張り強さを
有する機械構造用強靭鋼は、例えば、0.35%C1)
.0%Cr10.2%MOの組成を存する。1ISG4
105に規定されたSCM435の低合金鋼や、0.3
1’%C1,0,8%Cr51.8%N +’% ’0
.2%M。Conventionally, generally 1. Strong steel for mechanical structures having a tensile strength of OOkgf/m or more is, for example, 0.35% C1)
.. It has a composition of 0% Cr and 10.2% MO. 1ISG4
Low alloy steel of SCM435 specified in 105 and 0.3
1'%C1,0,8%Cr51.8%N +'% '0
.. 2%M.
の組成を有する JIS G 4103 に規定
されたSNCM431の低合金鋼や、更に0.2%C1
0,8%Cr、0.002%B の組成を有するボロン
鋼などの熱間圧延材に焼入れ焼戻し処理を施すことによ
って製造されている。SNCM431 low alloy steel specified in JIS G 4103 with a composition of 0.2%C1
It is manufactured by subjecting a hot rolled material such as boron steel having a composition of 0.8% Cr and 0.002% B to quenching and tempering.
しかし、これらの機械構造用鋼を実用に供した場合、1
25kgf/−以上の引張り強さを有するものにおいて
は、使用中に遅れ破壊を生じる場合があることから、高
張力ボルトやPC鋼捧をはじめとして自動車や土木機械
の重要保安部品としては品質の安定性に欠けるという問
題があった。However, when these mechanical structural steels are put into practical use, 1
Items with a tensile strength of 25 kgf/- or more may suffer delayed fracture during use, so high-tensile bolts, PC steel rods, and other important safety parts for automobiles and civil engineering machinery are of stable quality. The problem was that it lacked sex.
なお、遅れ破壊とは、静荷重下におかれた鋼がある時間
経過後に突然脆性的に破断する現象であり、外部環境か
ら鋼中に侵入した水素による一種の水素脆性とされてい
る。Note that delayed fracture is a phenomenon in which steel under static load suddenly breaks brittle after a certain period of time, and is considered to be a type of hydrogen embrittlement due to hydrogen penetrating into the steel from the external environment.
このようなことから上記の機械構造用鋼においては、実
用上その強度レベルが引張り強さで125kgfl−以
下に制限されているのが現状であり、例えば高力ボルト
に関しては、JIS B 1)86(1979)の
「摩擦接合用高力六角ボルト、六角ナツト、平座金セッ
ト」においてF8Tl張り強さ=80〜100kgf/
w )、FIOT (同100〜120 kgf/i
) 、及びFIIT(同1)0〜l 30 bgf/w
Z )の3種に規定され、しかもFllTについては、
なるべく使用しないことと注意事項が(=1されている
。For this reason, the strength level of the above-mentioned mechanical structural steel is currently limited to a tensile strength of 125 kgfl- or less. For example, for high-strength bolts, JIS B 1) 86 (1979) "High-strength hexagon bolt, hexagon nut, flat washer set for friction bonding" F8Tl tensile strength = 80 to 100 kgf/
w), FIOT (100-120 kgf/i
), and FIIT (same 1) 0~l 30 bgf/w
Z), and for FLLT,
Please avoid using it as much as possible and take precautions (=1).
また、土木建設機械用として耐摩耗性の要求される鋼板
におい□ても、引張り強さが125 kgf/mを超え
るものでは使用中の遅れ破壊が問題とされている。Furthermore, even in the case of steel plates for civil engineering and construction machinery that require wear resistance, those with a tensile strength exceeding 125 kgf/m have a problem of delayed fracture during use.
これに対して、上記の通常の低合金鋼より耐遅れ破壊性
の優れた鋼として、例えば18%Ni57.5%C01
5%Mo10.5%Ti、0.1%A、1.の組成を有
する18%N+マルエージング鋼があり、この鋼は、引
張り強さが150kgf/−程度のものまで遅れ破壊の
発生の恐れなく使用できるが、きわめて高価な鋼である
ため、経済性の点で一部のきわめて限られた用途にしか
実用化されておらず、機械構造用として広く使用される
に至っていない。On the other hand, as a steel with superior delayed fracture resistance than the above-mentioned ordinary low alloy steel, for example, 18%Ni57.5%C01
5%Mo10.5%Ti, 0.1%A, 1. There is an 18%N+ maraging steel with a composition of 18%N+, which can be used without fear of delayed fracture up to a tensile strength of about 150kgf/-, but it is extremely expensive and therefore not economical. In this respect, it has only been put to practical use in a few extremely limited applications, and it has not yet come into widespread use for mechanical structures.
これに対して、経済的であり、高強度且つ耐遅れ破壊性
に優れた構造用鋼として、例えば特開昭58−6121
9号、特開昭513−84960号、特開昭58−1)
3317号、特開昭58−1)7856号、特開昭58
−157’921号及び特開昭81−1)7248号や
特開昭61−130456号等の各公報に各種成分の高
強度鋼及びそれらの製造法が提案されている。On the other hand, as a structural steel that is economical, has high strength, and has excellent delayed fracture resistance, for example, JP-A-58-6121
No. 9, JP-A-513-84960, JP-A-58-1)
No. 3317, JP-A-58-1) No. 7856, JP-A-Sho 58
-157'921, JP-A No. 81-1) 7248, JP-A No. 61-130456, and other publications propose high-strength steels with various components and methods for producing them.
しかしながら、これらの125kgf/−を超える引張
り強さを有する鋼でも、例えば橋梁用高張力ボルトに使
用できるほど完全に遅れ破壊の発生する危険を払底でき
るものではなく、更にこれらの鋼では、冷間での成型時
に断面減少率で60%以上、就中70%以上の強加工が
加わった部位では、次の焼入れ処理時にオーステナイト
粒が粗大化して十分な耐遅れ破壊性を発揮できない場合
があるため、それらの適用範囲は確定できるものでもな
いしまた十分なものでもない。However, even these steels with a tensile strength of over 125 kgf/- cannot completely eliminate the risk of delayed fracture to the extent that they can be used, for example, in high-tensile bolts for bridges; In areas that have been subjected to severe processing with a cross-section reduction rate of 60% or more, especially 70% or more during molding, the austenite grains may become coarse during the next quenching process and may not exhibit sufficient delayed fracture resistance. , their scope of application is neither determinable nor sufficient.
この発明は上記した産業界の要求に答えるべく125
’kgf/−以上の引張り強さを有し、且つ耐遅れ破壊
性に優れた機械構造用鋼を提供することを目的とするも
ので、例えば橋梁用高張力ボルト等と異なり、定期的な
補修或は取替えを前提とし、一定期間、例えば5000
時間以内の遅れ破壊の発生の恐れのない125 kgf
/wr以上の引張り強さを有する機械構造用鋼を提供す
ることを目的とする。このような用途としては、各種構
造物用高張力鋼、自動車、土木機械、産業機械用のボル
ト用鋼及び高張力鋼板があり、これらにこの発明鋼を使
用することによって上記した産業界の要求に答えること
が可能である。This invention was developed in order to meet the above-mentioned demands of the industrial world.
The purpose of this product is to provide mechanical structural steel that has a tensile strength of more than 'kgf/- and has excellent delayed fracture resistance. Or, assuming replacement, for a certain period of time, for example, 5,000
125 kgf with no risk of delayed destruction within hours
The object of the present invention is to provide a mechanical structural steel having a tensile strength of /wr or more. Such uses include high-strength steel for various structures, steel for bolts for automobiles, civil engineering machinery, and industrial machinery, and high-strength steel plates, and by using this invented steel in these, the above-mentioned industrial demands can be met. It is possible to answer.
即ち、この発明は、橋梁用高張力ボルトはどの耐遅れ破
壊性でなくても所定の期間のあいだ遅れ破壊の発生する
危険がなく、従って定期的な補修或は取替えを前提とす
る部品等に好適に使用できる125kgf/−以上の引
張り強さを有する機械構造用鋼を提供することを目的と
する。In other words, the present invention provides that high tensile strength bolts for bridges do not have the risk of delayed fracture occurring for a predetermined period of time even if they are not resistant to delayed fracture, and therefore are suitable for use in parts etc. that require periodic repair or replacement. It is an object of the present invention to provide a mechanical structural steel having a tensile strength of 125 kgf/- or more that can be suitably used.
上記したこの発明の目的を達成するため、本発明者等は
、鋭意実験、研究を重ねた結果、5000時間以上の期
間にわたり遅れ破壊が発生せず、且つ125kgf/−
以上の引張り強さを佇する鋼を得るためには、以下に示
す条件を満足するととが有効であることを知見した。即
ち、
(a)低P1低S化による粒界偏析の軽減及び清浄化、
低Mn化が耐遅れ破壊性の改善に有効であること。In order to achieve the above-mentioned object of the present invention, the inventors of the present invention have conducted extensive experiments and research, and have found that no delayed fracture occurs over a period of 5,000 hours or more, and that 125 kgf/-
It has been found that in order to obtain steel with the above tensile strength, it is effective to satisfy the conditions shown below. That is, (a) reduction and cleaning of grain boundary segregation by lowering P1 and S;
Low Mn is effective in improving delayed fracture resistance.
(b)高Si化による水素の拡散能の低下、Nb添加に
よる鋼の細粒化が耐遅れ破壊性の改善にを効であること
。(b) The reduction in hydrogen diffusion ability due to high Si content and the refinement of steel grains due to Nb addition are effective in improving delayed fracture resistance.
(c)鋼中の炭化物は水素の集積場所となり、従ってこ
の炭化物が針状、棒状等の切欠欠陥形状を呈したり、粗
大に凝集したりする場合には、そこが起点となって遅れ
破壊が発生しやずいが、鋼中にZr を含有させると炭
化物が球状微細に分散して耐遅れ破壊性の著しい改善に
有効であること。(c) Carbides in steel serve as a place for hydrogen to accumulate. Therefore, if these carbides exhibit a notch defect shape such as needles or rods, or coarsely aggregate, this becomes the starting point and delayed fracture occurs. However, when Zr is contained in steel, carbides are dispersed into fine, spherical shapes, which is effective in significantly improving delayed fracture resistance.
(d) N量を、Ti やBを含有しない鋼では1.9
3≦Afl/ (N−(Zr/8.52)}≦10なる
式を満足するように、またTi9Bを含有する鋼では
1.93≦AA/ (N −(Zr/a 52) −(
Ti/a 43)−(B10.78) }≦10
なる式を満足するように制限すれば、冷間成型時に断面
減少率で70%以上の強加工を加えても焼入れ処理時に
オーステナイト粒は粗大化せず、優れた耐遅れ破壊性が
得られること。(d) The amount of N is 1.9 for steel that does not contain Ti or B.
3≦Afl/ (N-(Zr/8.52)}≦10, and for steel containing Ti9B, 1.93≦AA/ (N-(Zr/a 52)-(
Ti/a 43) - (B10.78) }≦10 If the formula is restricted to satisfy, even if strong working with an area reduction rate of 70% or more is applied during cold forming, the austenite grains will become coarse during quenching. Excellent delayed fracture resistance can be obtained without causing corrosion.
この発明は上記の知見に基づいてなされたものであって
、その要旨とするところは、重量%でC:0.20〜0
.45% Si:0.50超〜zO%Mn:0.5
0%未満 P :O,OL5%以下S:0.
01%以下 Cr : 0.01〜5.0%Z
r : 0.01〜0.15% Nb : 0.0
05〜0.20%AIl:0.005〜0.10%
N :0.035%以下を含有しく以下%は重量%を
示す)、且つ193≦A fl/ (N −(Z r/
6.52) }≦10−==−−−・−(1)なる式を
満足するか、或は更に
V :0.01〜0.30% Mo : 0.01
〜0.80%の1種又は2種を含有し且つ前記(1)式
を満足するか、或は前記■、MOの代りに
Ti:0.01〜0.10% B :0.0003
〜0.0050%の1種又は2種を含有し且つ
193≦All/ (N −(Z r/6.52) −
(T i/ 3.43)−(B10.78) }≦10
・・・(2)なる式を満足するか、或は
v : o、o 1〜0.30% Mo : 0.0
1〜0.80%の1種又は2種及び
Ti:0.01〜0.10% B:0.0003〜0
.0050%の1種又は2種を含有し且つ前記(2)式
を満足し、残部は実質的にFe及び不可避的不純物から
なる成分と、焼入れ焼戻し組織からなることを特徴とす
る125kgf/−以上の引張り強さを有する酎遅れ破
壊性に優れた機械構造用鋼にある。This invention was made based on the above knowledge, and the gist thereof is that C: 0.20 to 0 in weight%.
.. 45% Si: more than 0.50 ~ zO%Mn: 0.5
Less than 0% P: O, OL 5% or less S: 0.
01% or less Cr: 0.01-5.0%Z
r: 0.01-0.15% Nb: 0.0
05-0.20% AIl: 0.005-0.10%
N: Contains 0.035% or less (% indicates weight%), and 193≦A fl/(N − (Z r/
6.52) }≦10-==---・-(1) is satisfied, or further V: 0.01 to 0.30% Mo: 0.01
~0.80% of one or two types and satisfying the above formula (1), or (1) above, in place of MO, Ti: 0.01 to 0.10% B: 0.0003
Contains ~0.0050% of one or two types and 193≦All/(N − (Z r / 6.52) −
(T i / 3.43) - (B10.78) }≦10
... satisfies the formula (2), or v: o, o 1 to 0.30% Mo: 0.0
1 to 0.80% of one or two types and Ti: 0.01 to 0.10% B: 0.0003 to 0
.. 125 kgf/- or more, which contains one or two of 0.0050% and satisfies the above formula (2), with the remainder consisting essentially of Fe and unavoidable impurities, and a quenched and tempered structure. It is a mechanical structural steel with tensile strength and excellent delayed fracture resistance.
以下に、この発明における鋼の成分組成及び組織の限定
理由について述べる。Below, the reasons for limiting the composition and structure of the steel in this invention will be described.
Cは鋼の焼入性増加、強度増加に加えて細粒化のために
も 有効な成分であるが、その含有量が0.20%未膚
では焼入性の劣化を来たし、また所望の強度を確保する
ことが出来ず、一方、045%を超えて含有させると焼
入時の焼割れ感受性が増大し、また他の合金成分と関連
して靭性劣化を招くことから、その含有量を0.20−
0.4 ’5%と定めた。C is an effective component for increasing the hardenability and strength of steel, as well as refining the grains, but if its content is less than 0.20%, the hardenability deteriorates and the desired level is not achieved. On the other hand, if the content exceeds 0.045%, the susceptibility to quenching cracking during quenching increases, and the toughness deteriorates in conjunction with other alloy components, so the content is 0.20-
It was set at 0.4'5%.
Si は鋼の脱酸、強度増加の他、、鋼中の水素の拡
散能を低下させて耐遅れ破壊性の向上にも有効な元素で
あるが、その含有量が0.50%以下では特に酎遅れ破
壊性向上に重要な鋼中水素の拡散能低下に所望の効果が
得難く、一方、その含有量が2.0%を超えると靭性の
劣化が著しくなるため、その含有量を0.50%超〜z
O%と定めた。In addition to deoxidizing steel and increasing its strength, Si is an element that is effective in reducing hydrogen diffusion ability in steel and improving delayed fracture resistance, but when its content is less than 0.50%, it It is difficult to obtain the desired effect on reducing the diffusion ability of hydrogen in steel, which is important for improving delayed fracture properties.On the other hand, if the content exceeds 2.0%, the toughness will deteriorate significantly, so the content should be reduced to 0.0%. Over 50%~z
It was set as 0%.
Mn は脱酸の他、焼入性向上にを効な元素であるが、
多量に含有させると粒界脆化現象が生じ、遅れ破壊の発
生を促進する。更に、Mn はSと結合して、これが割
れ0起点となることからも、耐遅れ破壊性の改善のため
には極力その含有量を低下させなければならない。従っ
て、耐遅れ破壊性の改善を目的とするこの発明ではMn
の含有量を0.5%未満とした。Mn is an element that is effective in deoxidizing and improving hardenability.
If it is contained in a large amount, grain boundary embrittlement phenomenon will occur, promoting the occurrence of delayed fracture. Furthermore, since Mn combines with S and becomes the starting point for cracking, its content must be reduced as much as possible in order to improve delayed fracture resistance. Therefore, in this invention, which aims to improve delayed fracture resistance, Mn
The content was set to less than 0.5%.
Pはいかなる熱処理を施してもその粒界偏析を完全に消
滅することはできず、且つ粒界強度を低下させ耐遅れ破
壊性を劣化させるため、その」二限を0.045%とし
た。P cannot completely eliminate its grain boundary segregation no matter what heat treatment is applied, and it lowers the grain boundary strength and deteriorates delayed fracture resistance, so its second limit was set at 0.045%.
Sは上述したようにMnと結合して割れの起点となり、
更に単独でも粒界に偏析して脆化を促進するため、極力
その含有量を低く制限することが必要である。従って、
この発明ではSを0.01%以下とした。As mentioned above, S combines with Mn and becomes the starting point of cracking.
Furthermore, even if it is used alone, it segregates at grain boundaries and promotes embrittlement, so it is necessary to limit its content as low as possible. Therefore,
In this invention, S is set to 0.01% or less.
Cr は鋼の焼入性を向上させ、且つ鋼に焼戻し軟化抵
抗を付与する作用があるが、その含有量が0.01%未
満では前記作用に所望の効果が得られず、他方、Crは
高価な合金元素であるため経済性を考慮し、その含有量
を0.01〜5.0%と定めた。Cr has the effect of improving the hardenability of steel and imparting temper softening resistance to the steel, but if its content is less than 0.01%, the desired effect cannot be obtained; on the other hand, Cr Since it is an expensive alloying element, its content was determined to be 0.01 to 5.0% in consideration of economic efficiency.
Zr はこの発明において重要な元素であって、鋼中に
炭化物を球状微細に分散させて耐遅れ破壊性を著しく改
善する効果を存するが、001%未満ではその効果が小
さく、一方、0.15%を超えて含有させると靭性劣化
をきたすので、その含有量を0.01〜0.15%と定
めた。Zr is an important element in this invention, and has the effect of dispersing carbides into fine spherical particles in the steel to significantly improve delayed fracture resistance, but if it is less than 0.1%, the effect is small; If the content exceeds 0.01% to 0.15%, the toughness deteriorates, so the content was set at 0.01 to 0.15%.
Nbは鋼の強度、靭性の向上と細粒化に対して効果を存
し、特にこの発明鋼のような高Simにおける鋼の粗粒
化を防止して、粗粒化による耐遅れ破壊性の劣化を防止
するのに極めて有効である。Nb has the effect of improving the strength and toughness of steel and making the grains finer. In particular, it prevents grains from becoming coarser in high-Sim steels such as the steel of this invention, and improves delayed fracture resistance due to grain coarsening. It is extremely effective in preventing deterioration.
しかしながら、その効果を確保するためには0.005
%以上の添加が必要である。一方、020%を超えて添
加すると、その効果は飽和し、且つコスト的に高(つく
ので、その含有量を0. OO5〜020%と定めた。However, in order to ensure the effect, 0.005
It is necessary to add more than %. On the other hand, if it is added in excess of 0.020%, the effect will be saturated and the cost will be high, so the content was set at 0.005 to 0.020%.
AIl、は鋼の脱酸の安定化、均質化および細粒化を図
るのに有効であるが、0.005%未満では所望の効果
を得ることができず、一方、o、io%を超えて含有さ
せてもその効果は飽和してしまい、また介在物の増大に
より疵が発生し、靭性も劣化するので、その含有量を0
005〜0.10%と定めた。Al is effective in stabilizing the deoxidation of steel, homogenizing it, and refining the grains, but if it is less than 0.005%, the desired effect cannot be obtained; on the other hand, if it exceeds o,io% Even if it is contained, its effect will be saturated, and the increase in inclusions will cause cracks and deteriorate toughness, so the content should be reduced to 0.
0.005 to 0.10%.
Nもこの発明において重要な元素である。すなわちNは
鋼の細粒化を図り、耐遅れ破壊性を改善するのに有効な
元素であるが、低合金鋼において0、035%を超えて
添加することは難しいため、その含有量を0.035%
以下とした。N is also an important element in this invention. In other words, N is an effective element for making steel grains finer and improving delayed fracture resistance, but it is difficult to add more than 0.035% to low alloy steel, so it is necessary to reduce the content to 0. .035%
The following was made.
一方、N量に関して、更に前記(1)式あるいは(2)
式を溝足するように定めたのは以下の試験結果によるも
のである。On the other hand, regarding the amount of N, further the above formula (1) or (2)
The reason why the formula was determined to be summing was based on the following test results.
即ち、本発明者等はC1、SilMn、P、S。That is, the inventors have C1, SilMn, P, and S.
Crs Zr、 Nbs All、VN MO% Ti
及びBの含有量がこの発明の範囲内にあり、N量が0.
035%以下で、A、1./ (N−(Z r/ 8.
52) )又は12/ (N−(Zr/6.52) −
(Ti/3.43) −(B10.78) )が種々の
値を有する鋼を実験室的に溶製し、次いで熱間で圧延を
行ない、更に球状化焼鈍後断面減少率で80%の冷間加
工を施し、これを焼入れ焼戻し処理を行って引張り強さ
130〜14(ltgf/−とした後遅れ破壊特性を試
験した。第3図(a、)は用いた定荷重型の遅れ破壊試
験装置の構成を模式的に示した説明図で、ノツチ部を有
する外径63.φの棒状の試験片(1)を恒温の水(2
)を循環させて25°Cに保持したpH2のワルボール
緩衝液(3)に浸漬し、1600kgf の一定荷重を
かけて200時間経過後の割れ発生の佇無を調べた。試
験片0)のノツチ部は第3図(b)に示すように角度6
0°、深さ1塵簡、みぞ底半径R0,1ml−の形状を
有し、試験片(1)の全周にわたり形成されている。こ
のようなノツチ部を佇する試験片(1)を前記の各焼入
れ焼戻し処理材からそれぞれ5本ずつ切出し、試験に供
した。Crs Zr, Nbs All, VN MO% Ti
and B content is within the range of this invention, and the N amount is 0.
035% or less, A, 1. / (N-(Z r/8.
52) ) or 12/ (N-(Zr/6.52)-
Steels having various values of (Ti/3.43) - (B10.78) ) are melted in the laboratory, then hot rolled, and further reduced in area by 80% after spheroidizing annealing. The delayed fracture characteristics were tested after cold working and quenching and tempering to give a tensile strength of 130 to 14 (ltgf/-). Figure 3 (a) shows the delayed fracture characteristics of the constant load type used. This is an explanatory diagram schematically showing the configuration of the test device, in which a rod-shaped test piece (1) with an outer diameter of 63.φ and a notched portion is placed in constant temperature water (2
) was circulated and immersed in Walbor's buffer solution (3) of pH 2 maintained at 25°C, and a constant load of 1600 kgf was applied to examine the appearance of cracks after 200 hours had elapsed. The notch part of test piece 0) has an angle of 6 as shown in Figure 3(b).
It has a shape of 0°, a depth of 1 inch, and a groove bottom radius R0, 1 ml-, and is formed all around the test piece (1). Five test pieces (1) having such a notch were cut out from each of the above-mentioned quenched and tempered materials and used for testing.
上記試験の結果を第1図及び第2図に示す。第1図はT
iやBを含有しない鋼の場合、第2図はTiやBを含有
する鋼の場合で、横軸はいずれもAfl含存量を、縦軸
は第1図においては(N−Zr/ 8.、.52 )を
、第2図ニオイテは(N −(Zr/a52) −=(
Ti/3.43) −(B10.78) )を示す。
また、両図中において、○印は前記試験に供した5本の
試験片のいずれにも割れの発生が認められないことを、
X印は5本の試験片の少なくとも1本に割れの発生が認
められたことを示す。第1図から、AIl(N −(Z
r/ 8.52> )の値が1.93未満又は10を
超えると割れが発生し、また第2図からl!/ (N(
Zr/8.52) −(Ti/3.43) −(B10
.78) )の値が1.93未満又は10を超えると割
れが発生ずることがわかる。The results of the above test are shown in FIGS. 1 and 2. Figure 1 is T
In the case of steel that does not contain i or B, FIG. 2 shows the case of steel that contains Ti or B, the horizontal axis shows the Afl content, and the vertical axis shows (N-Zr/8. , .52), and the Nioite in Figure 2 is (N - (Zr/a52) -=
Ti/3.43)-(B10.78)).
In addition, in both figures, the ○ mark indicates that no cracking was observed in any of the five test pieces used in the above test.
An X mark indicates that cracking was observed in at least one of the five test pieces. From Fig. 1, it can be seen that AIl(N − (Z
When the value of r/8.52>) is less than 1.93 or more than 10, cracking occurs, and as shown in Figure 2, l! / (N(
Zr/8.52) -(Ti/3.43) -(B10
.. 78) It can be seen that cracks occur when the value of ) is less than 1.93 or more than 10.
従って、N量に関しては、Ti やBを含有しない場合
は前記(1)式を、また、Ti やBを含有する場合
は前記(2:Jを満足するように定めた。Therefore, the amount of N was determined to satisfy the above formula (1) when Ti and B are not contained, and to satisfy the above (2:J) when Ti and B are contained.
■は鋼を細粒化し、更に析出硬化して鋼の強度を向上さ
せる作用があるので、より高い強度が要求される場合に
必要に応じて添加するが、0.01%未満では前記効果
が得られず、一方、0.3%を超えて含有させると添加
効果が飽和してより一層の強度向上効果は得られないこ
とから、その含有量を0.01〜0.30%と定めた。(2) has the effect of making the steel grain finer and further improving the strength of the steel by precipitation hardening, so it is added as necessary when higher strength is required, but if it is less than 0.01%, the above effect will not be achieved. On the other hand, if the content exceeds 0.3%, the addition effect will be saturated and further strength improvement effect will not be obtained, so the content was set at 0.01 to 0.30%. .
Mo1Ti及びBには鋼の焼入性を一段と向」ニさせる
作用があるので、特に鋼製品寸法が大きい場合に高強度
を確保する目的で含有させるとよいが、夫々 MoO,
01%未満、 Ti0.01%未満、BO,0003%
未満では、前記作用に所望の効果が得られず、一方、M
Oについては0.8%を超えて含有させてもその効果は
飽和しコストの上昇を招くだけであり、またTiについ
ては0.10%、Bについては0. OO50%を超え
て含有させると鋼の靭性及び耐遅れ破壊性が劣化するよ
うになり、且つ、Tiにおいては切削性も劣化するよう
になる。従って、Mo1Ti及びBについてはその含有
量を夫々MoO,01〜080%、Ti0.01〜01
0%、80.0003〜0.0050%と定めた。Since Mo1Ti and B have the effect of further improving the hardenability of steel, it is recommended to include them in order to ensure high strength especially when the steel product size is large.
Less than 0.01%, Ti less than 0.01%, BO, 0003%
If it is less than M, the desired effect cannot be obtained;
Even if O is contained in an amount exceeding 0.8%, the effect will be saturated and the cost will only increase, Ti is 0.10%, and B is 0.8%. If the content exceeds 50% of OO, the toughness and delayed fracture resistance of the steel will deteriorate, and in the case of Ti, the machinability will also deteriorate. Therefore, for Mo1Ti and B, the contents are MoO, 0.01~080%, Ti0.01~01%, respectively.
0% and 80.0003 to 0.0050%.
上記した成分組成を有する鋼であっても、125kgf
/−以上の引張り強さと良好な耐遅れ破壊性とを具備さ
せるには、通常の熱間圧延を行い、圧延後直ちに炉入れ
するか、又は再加熱してから焼入れを行うか、或いは冷
間や温間で成型後頁加熱してから焼入れを施して低温変
態生成物(マルテンサイFやベイナイト)となし、これ
を焼戻しした所謂焼入れ炉戻し組織とすることが必要で
ある。Even if the steel has the above-mentioned composition, 125kgf
In order to have a tensile strength of /- or more and good delayed fracture resistance, it is necessary to carry out normal hot rolling and furnace immediately after rolling, or to reheat and then quench, or to perform cold rolling. It is necessary to heat the product after molding at a warm temperature and then quench it to obtain a low-temperature transformation product (martensis F or bainite), which is then tempered to form a so-called quenching furnace returned structure.
即ち、炉ならし材、焼ならし焼戻し材、圧延のまま材、
圧延材を焼戻ししたものといった高温での変態生成物で
ある高温ベイナイト、フェライト、パーライトを主とす
る組織では、安定して引張り強さで125 kgf/w
i以上の高強度を得難く、耐遅れ破壊性と引張り強さで
125kgf/−以上の高強度を共に得ようとするこの
発明の所期の目的を達成することができない。一方、焼
入れままの鋼は引張り強さは高いが降伏点が低く、機械
構造用鋼として使用される場合に使用中に応力緩和の増
大が生じ、更に焼入れままでは耐遅れ破壊性、靭性、加
工性などが良好でないという問題がある。Namely, furnace conditioned material, normalized and tempered material, as-rolled material,
A structure consisting mainly of high-temperature bainite, ferrite, and pearlite, which are transformation products at high temperatures, such as that of tempered rolled material, has a stable tensile strength of 125 kgf/w.
It is difficult to obtain a high strength of 125 kgf/- or more in terms of delayed fracture resistance and tensile strength. On the other hand, as-quenched steel has high tensile strength but low yield point, and when used as mechanical structural steel, stress relaxation increases during use. There is a problem that the characteristics are not good.
従って、鋼に所定の強度と耐遅れ破壊性をf′N+与す
るためには、焼入れ焼戻し処理を行って、鋼の組織を焼
入れ焼戻し組織とする必要がある。Therefore, in order to impart a predetermined strength and delayed fracture resistance f'N+ to the steel, it is necessary to perform a quenching and tempering treatment to transform the structure of the steel into a quenched and tempered structure.
次にこの発明を実施例により比較例と対比しながら説明
する。Next, the present invention will be explained using examples and comparing with comparative examples.
実施例1
先ず通常の方法によって第1表に示す成分組成のfi4
(符号A−3)を溶製した。鋼A−Lは、この発明の範
囲内の組成を有しているものであり、鋼M−3は第1表
中本印を付した点で、この発明の範囲から外れた組成の
ものである。Example 1 First, fi4 of the component composition shown in Table 1 was prepared by a conventional method.
(Symbol A-3) was melted. Steel A-L has a composition within the scope of this invention, and Steel M-3 has a composition outside the scope of this invention in terms of the points marked with this mark in Table 1. be.
(以下余白)
これらの溶製した鋼を連続鋳造法、或は造塊法にて鋼片
となした後、1200〜1250℃に加熱後通常の方法
で15mm厚さの鋼板に熱間圧延し、次にこれを920
〜1020°Cの温度から、熱間圧延後直ちに焼入れを
施す直接焼入れ、或は前記の温度領域に再加熱した後焼
入れする再加熱焼入れを行った後、200〜680°C
の温度で焼戻しして、その組織が焼入れ焼戻し組織で、
その引張り強さが125 kgf/i以上となるように
調整してぶれ破壊特性を調査した。(Left below) These molten steels are made into steel slabs by continuous casting or ingot-forming, heated to 1200-1250°C, and then hot-rolled into 15mm thick steel plates using normal methods. , then convert this to 920
From a temperature of ~1020°C, directly quenching is performed, which is quenching immediately after hot rolling, or after reheating and quenching, which is quenching after being reheated to the above temperature range, it is 200~680°C.
Tempered at a temperature of , the structure is a quenched and tempered structure,
The tensile strength was adjusted to be 125 kgf/i or more, and the vibration fracture characteristics were investigated.
その結果を第2表に示した。The results are shown in Table 2.
なお、遅れ破壊の発生有無の確認は、第4図に示ずくさ
び挿入型の遅れ破壊試験方法によった。The presence or absence of delayed fracture was confirmed by the wedge insertion type delayed fracture test method shown in Fig. 4.
即ち、第4図(a)に示すような形状、月決の試験片の
ノッヂ部 (第4図(b)に示す)に第4図(C)に示
すようなくさびを挿入して静荷重をかけ、これを55°
Cに保持した温水中に入れ、割れの発生時間を求めた。In other words, a wedge as shown in Fig. 4(C) is inserted into the notch part (shown in Fig. 4(b)) of a monthly test specimen having the shape shown in Fig. 4(a), and a static load is applied. Multiply this by 55°
The specimen was placed in hot water maintained at a temperature of 100° C., and the time required for cracking to occur was determined.
なお、同図中において、数字はff1)1の単位の長さ
を示す。In addition, in the figure, the numbers indicate the length of the unit of ff1)1.
上記の試験において、耐遅れ破壊性の一つの判断基準を
5000時間としたが、これは3ケ月を機材の定期的な
補修あるいは点検期間と仮定し、その約2倍の誤差を見
積ったからである。試験環境として55°Cの温水中は
、実使用環境の最も厳しい環境に相当する。In the above test, one criterion for delayed fracture resistance was 5000 hours, but this was because we assumed that 3 months was the period for regular maintenance or inspection of the equipment, and estimated an error of about twice that. . The test environment in warm water at 55°C corresponds to the most severe environment in actual use.
従って、得られた遅れ破壊時間は実使用のうちもっとも
厳しい環境での遅れ破壊発生時間に相当すると考えられ
る。Therefore, the obtained delayed fracture time is considered to correspond to the delayed fracture occurrence time in the harshest environment in actual use.
第2表より、この発明の鋼は遅れ破壊発生時間が長く、
耐遅れ破壊性に優れていることが明らかである。From Table 2, the steel of this invention has a long delayed fracture occurrence time;
It is clear that it has excellent delayed fracture resistance.
即ち、この発明によると125kgf/−以上の引張り
強さを有し、且つ5000時間以上の期間にわたり遅れ
破壊を発生しない機械構造用鋼を得ることができ、前述
したように定期的補修または取替を前提とし、どの程度
の耐遅れ破壊性が必要であるかが明確な用途の鋼材には
、この発明にょるa械構造用鋼を広範囲に使用できる。That is, according to the present invention, it is possible to obtain a mechanical structural steel that has a tensile strength of 125 kgf/- or more and does not cause delayed fracture for a period of 5,000 hours or more, and can be periodically repaired or replaced as described above. Based on this premise, the A-machine structural steel according to the present invention can be widely used for steel materials for applications where it is clear how much delayed fracture resistance is required.
(以下余白)
実施例2
適格の方法によって前記第1表に示した成分組成のm<
符号A −1−)及び第3表に示す成分組成の鋼(符号
T−Y)を溶製した。@A−Lは既に述べたようにこの
発明の範囲内の組成を任しているものであり、一方、m
T−Yは第3表中*印を(t した点で、この発明の範
囲から外れた組成のものである。(Left below) Example 2 m< of the component composition shown in Table 1 above by a qualified method.
A steel (code A-1-) and a steel (code TY) having the composition shown in Table 3 were melted. As mentioned above, @A-L is responsible for the composition within the scope of this invention, while m
TY has a composition that is outside the scope of the present invention, as indicated by the * mark (t) in Table 3.
(以下余白)
これらの鋼を直径17■■の丸棒に熱間圧延した後球状
化焼鈍を行い、その後冷間で加工して直径7I1mの丸
棒としく断面減少率83%)、これを940 ’Cで焼
入れ後種々の温度で焼戻しして、その組織が焼入れ焼戻
し組織で、その引張り強さが125kgf/−以上とな
るように調整して遅れ破壊特性を調査した。(Left below) These steels were hot-rolled into a round bar with a diameter of 17mm, then subjected to spheroidizing annealing, and then cold-processed into a round bar with a diameter of 7I1m (section reduction rate of 83%). After quenching at 940'C, the specimens were tempered at various temperatures to obtain a quenched and tempered structure with a tensile strength of 125 kgf/- or more, and their delayed fracture characteristics were investigated.
その結果を第4表に示す。The results are shown in Table 4.
なお、遅れ破壊性の確認は前記の定荷重型の遅れ破壊試
験により行った。In addition, the delayed fracture property was confirmed by the above-mentioned constant load type delayed fracture test.
即ち、第3図(a)に示したような装置を用いて第3図
(b)に示した試験片(1)を取り付け、25℃に保持
したpH2のワルボール緩衝液(3)に浸漬し、160
0kgfの一定荷重をかけて200時間経過後の割れ発
生の有無を調べた。That is, the test piece (1) shown in FIG. 3(b) was attached using the apparatus shown in FIG. , 160
A constant load of 0 kgf was applied and the occurrence of cracks was examined after 200 hours had elapsed.
第4表に示した結果より、この発明の鋼は5本の試験片
のいずれにも割れの発生は認められず、耐遅れ破壊性に
優れていることが明らかである。From the results shown in Table 4, it is clear that the steel of the present invention has excellent delayed fracture resistance, with no cracking observed in any of the five test specimens.
(以下余白)
第 4
表
〔発明の効果〕
上記した如く、この発明は125kgf/−以上の引張
り強さを有し、かつ耐遅れ破壊性に優れた機械構造用鋼
を提供することができる。特にこの発明の機械構造用鋼
は一定期間内での遅れ破壊の発生の恐れがないため、定
期的な補修或は取替えを前提として、例えば各種構造物
用高張力鋼、自動車、土木機械、産業機械用のボルト用
鋼等に好適に使用でき、また、廉価な低合金高強度鋼で
あって、実用的な価値はきわめて大きい。(The following is a blank space) Table 4 [Effects of the Invention] As described above, the present invention can provide a mechanical structural steel having a tensile strength of 125 kgf/- or more and excellent delayed fracture resistance. In particular, the mechanical structural steel of this invention has no risk of delayed fracture within a certain period of time, so it can be used as high-strength steel for various structures, automobiles, civil engineering machinery, industrial machinery, etc. on the premise of periodic repair or replacement. It is an inexpensive, low-alloy, high-strength steel that can be suitably used as steel for machine bolts, etc., and has extremely high practical value.
第1図は化学組成及び鋼の組織がこの発明の範囲内にあ
る鋼の耐遅れ破壊特性に及ぼすl/ (N(Zr/a2
5))の影響を示す線図、第2図は同じ<Aj2/(N
−(Zr/a52)−(Ti/3.43)−CB10.
78))の影響を示す線図、第3図は実施例で用いた定
荷重型の遅れ破壊試験装置の説明図で、第3図(a)は
全体構成図、第3図(b)は試験片のノツチ部の形状を
示す外観図、第4図は他の実施例における遅れ破壊試験
で用いた試験片及びくさびの形状と寸法を示す説明図で
、第4図(a>は試験片を、第4図(b)は試験片のノ
ツチ部の詳細を、第4図(C)は試験片のノツチ部に挿
入して負荷を加えるためのくさびを示す。なお、第4図
中において、数字は1単位の長さを示す。
1・・・試験片 2・・・水3・・ワルボー
ル緩衝液
(zi軍9
(ど!;’9/’Z )
N
(Z1靭
(glダ秒〜へVリ−c゛Vグ八〜Figure 1 shows the effects of chemical composition and steel structure on the delayed fracture resistance of steel within the scope of this invention.
5)) Figure 2 shows the influence of the same <Aj2/(N
-(Zr/a52)-(Ti/3.43)-CB10.
78)), and Figure 3 is an explanatory diagram of the constant load type delayed fracture test device used in the examples. Fig. 4 is an explanatory drawing showing the shape and dimensions of the test piece and wedge used in the delayed fracture test in other examples; Fig. 4(b) shows the details of the notch part of the test piece, and Fig. 4(C) shows the wedge to be inserted into the notch part of the test piece to apply a load. , the number indicates the length of one unit. 1...Test piece 2...Water 3...Walbol buffer solution (zi army 9 (do!;'9/'Z) N (Z1 toughness (gl da seconds) ~ to V Lee-c゛Vgu8~
Claims (3)
Mn:0.50%未満P:0.015%以下S:0.0
1%以下Cr:0.01〜5.0%Zr:0.01〜0
.15%Nb:0.005〜0.20%Al:0.00
5〜0.10%N:0.035%以下を含有し、且つ 1.93≦Al/{N−(Zr/6.52)}≦10な
る式を満足し、残部は実質的にFe及び不可避的不純物
からなる成分と、焼入れ焼戻し組織からなることを特徴
とする125kgf/mm^2以上の引張り強さを有す
る耐遅れ破壊性に優れた機械構造用鋼。(1) C: 0.20 to 0.45% Si: More than 0.50 to 2.0% by weight
Mn: less than 0.50% P: 0.015% or less S: 0.0
1% or less Cr: 0.01-5.0% Zr: 0.01-0
.. 15%Nb: 0.005-0.20%Al: 0.00
5 to 0.10% N: Contains 0.035% or less and satisfies the formula 1.93≦Al/{N-(Zr/6.52)}≦10, and the remainder is substantially Fe and A mechanical structural steel having a tensile strength of 125 kgf/mm^2 or more and excellent delayed fracture resistance, characterized by comprising a component consisting of unavoidable impurities and a quenched and tempered structure.
の1種又は2種を含有する第1項記載の耐遅れ破壊性に
優れた機械構造用鋼。(2) Further as component elements: V: 0.01-0.30% Mo: 0.01-0.80%
2. The mechanical structural steel having excellent delayed fracture resistance according to item 1, which contains one or two of the following.
050%の1種又は2種を含有し、且つ満たすべき式が
1.93≦Al/{N−(Zr/6.52)−(Ti/
3.43)−(B/0.78)}≦10 である第1項又は第2項記載の耐遅れ破壊性に優れた機
械構造用鋼。(3) As component elements, Ti: 0.01 to 0.10% B: 0.0003 to 0.0
050% of one or two types, and the formula to be satisfied is 1.93≦Al/{N-(Zr/6.52)-(Ti/
3.43)-(B/0.78)}≦10 The mechanical structural steel having excellent delayed fracture resistance according to item 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32286688A JPH02166258A (en) | 1988-12-20 | 1988-12-20 | Machine structural steel with excellent delayed fracture resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32286688A JPH02166258A (en) | 1988-12-20 | 1988-12-20 | Machine structural steel with excellent delayed fracture resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02166258A true JPH02166258A (en) | 1990-06-26 |
Family
ID=18148485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32286688A Pending JPH02166258A (en) | 1988-12-20 | 1988-12-20 | Machine structural steel with excellent delayed fracture resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02166258A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09511282A (en) * | 1995-01-24 | 1997-11-11 | キャタピラー インコーポレイテッド | Deep-hardening boron steel with improved fracture resistance and wear properties |
-
1988
- 1988-12-20 JP JP32286688A patent/JPH02166258A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09511282A (en) * | 1995-01-24 | 1997-11-11 | キャタピラー インコーポレイテッド | Deep-hardening boron steel with improved fracture resistance and wear properties |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101011072B1 (en) | High strength thick steel sheet and its manufacturing method | |
EP1746176B1 (en) | Shaped steel article with excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and methods of production of the same | |
JPH0790485A (en) | High-toughness high-strength nonrefined steel and its production | |
JP3809004B2 (en) | Induction quenching steel with excellent high strength and low heat treatment strain characteristics and its manufacturing method | |
US4584032A (en) | Bolting bar material and a method of producing the same | |
US6261388B1 (en) | Cold forging steel having improved resistance to grain coarsening and delayed fracture and process for producing same | |
CN109790602B (en) | steel | |
JPH02250941A (en) | Low carbon chromium molybdenum steel and its manufacturing method | |
JPS6144121A (en) | Manufacture of high strength, high toughness steel for pressurized vessel | |
JP3733229B2 (en) | Manufacturing method of high strength bolt steel bar with excellent cold workability and delayed fracture resistance | |
JPH06271975A (en) | High strength steel excellent in hydrogen embrittlement resistance and its production | |
JP4344126B2 (en) | Induction tempered steel with excellent torsional properties | |
JP4213855B2 (en) | Case-hardening steel and case-hardening parts with excellent torsional fatigue properties | |
JPH07188840A (en) | High strength steel excellent in hydrogen embrittlement resistance and its production | |
JPH03243745A (en) | Machine structural steel with excellent delayed fracture resistance | |
JPH0454725B2 (en) | ||
JPH02166258A (en) | Machine structural steel with excellent delayed fracture resistance | |
JPH08209289A (en) | Mechanical structural steel with excellent delayed fracture resistance | |
JPH03243744A (en) | Machine structural steel with excellent delayed fracture resistance | |
JPH0860291A (en) | Mechanical structural steel with excellent delayed fracture resistance | |
JPH0770695A (en) | Mechanical structural steel with excellent delayed fracture resistance | |
JPH0570890A (en) | Steel for high strength bolt excellent in delayed fracture resistance | |
JPH04297548A (en) | High strength and high toughness non-heat treated steel and its manufacture | |
JPH0347948A (en) | Mechanical structural steel with excellent fatigue properties | |
JPH01191762A (en) | Steel for machine structure having excellent delayed fracture resistance |