JPH02163334A - Titanium alloy having excellent cold workability - Google Patents
Titanium alloy having excellent cold workabilityInfo
- Publication number
- JPH02163334A JPH02163334A JP31920988A JP31920988A JPH02163334A JP H02163334 A JPH02163334 A JP H02163334A JP 31920988 A JP31920988 A JP 31920988A JP 31920988 A JP31920988 A JP 31920988A JP H02163334 A JPH02163334 A JP H02163334A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- weight
- titanium alloy
- cold workability
- workability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001069 Ti alloy Inorganic materials 0.000 title claims abstract description 29
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 239000010936 titanium Substances 0.000 claims abstract description 5
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 229910045601 alloy Inorganic materials 0.000 abstract description 14
- 239000000956 alloy Substances 0.000 abstract description 14
- 239000000463 material Substances 0.000 abstract description 10
- 238000005260 corrosion Methods 0.000 abstract description 5
- 230000007797 corrosion Effects 0.000 abstract description 5
- 229910052720 vanadium Inorganic materials 0.000 abstract description 5
- 229910052758 niobium Inorganic materials 0.000 abstract description 4
- 229910052782 aluminium Inorganic materials 0.000 abstract 2
- 229910052760 oxygen Inorganic materials 0.000 abstract 2
- 230000001105 regulatory effect Effects 0.000 abstract 2
- 229910052726 zirconium Inorganic materials 0.000 abstract 2
- 230000000694 effects Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910001257 Nb alloy Inorganic materials 0.000 description 2
- 238000010273 cold forging Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、航空機用材料、耐食性構造用材料等として
使用されるチタン合金に関し、特に冷1#J1での塑性
加工性に優れたチタン合金に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to titanium alloys used as aircraft materials, corrosion-resistant structural materials, etc., and in particular to titanium alloys that have excellent plastic workability in cold 1#J1. Regarding.
(従来の技術及び発明が解決しようとする課題)チタン
合金は、室温組織によって、六方晶を基本とするα型0
合金、体心立方品を基本とするβ型合金及びこれらの2
相を含むα+β型合金の3種類に大別され、このうちα
型合金は特に高温及び極低温特性に優れ、またβ型合金
は室温近傍で高強度高靭性合金として有利に用いられる
。またα+β型合金は中間の性質を有している。(Problems to be solved by the prior art and the invention) Titanium alloys have a hexagonal α-type 0 structure due to their room temperature structure.
alloys, β-type alloys based on body-centered cubic products, and these two
It is roughly divided into three types of α + β type alloys containing phases, among which α
Type alloys have particularly excellent high-temperature and cryogenic properties, and β-type alloys are advantageously used as high-strength, high-toughness alloys near room temperature. Furthermore, α+β type alloys have intermediate properties.
今日、チタン合金の使用量2種類は未だ少なく、そこで
熱処理の条件を変えて特性に幅を持たせる方法がとられ
ている。而してそのチタン合金として最も一般的なもの
は、α+β型合金に属するTi−6AI−4Vであり、
これがチタン合金使用量の約75%を占めている。Today, the amounts of these two types of titanium alloys used are still small, so methods are being used to vary the properties by changing heat treatment conditions. The most common titanium alloy is Ti-6AI-4V, which belongs to the α+β type alloy.
This accounts for approximately 75% of the titanium alloy used.
このTi −6^1−4V合金は、成分系が単純で造り
易く、強度も十分で比重も純チタンとほぼ同じであり、
且つ使用実績に裏付けされた信頼性の高い優れた合金で
あるが、冷間での加工性能が劣る欠点がある。なかでも
塑性加工性が悪く、冷till M中加工は減面率で2
0%程度が限度で、特に冷間鍛造は実質的に不可能と言
えるほどである。そこでこの種チタン合金製品は、主と
して切削加工によって製作されているが、材料の歩留り
は低く。This Ti-6^1-4V alloy has a simple composition system, is easy to manufacture, has sufficient strength, and has a specific gravity almost the same as pure titanium.
Although it is a highly reliable and excellent alloy backed by a proven track record of use, it has the drawback of poor cold processing performance. Among these, the plastic workability is poor, and cold till M medium processing has an area reduction rate of 2.
The limit is approximately 0%, and cold forging in particular is practically impossible. Therefore, this kind of titanium alloy products are mainly manufactured by cutting, but the material yield is low.
この低い材料歩留りと高い加工費が製品価格を押し上げ
、用途を限定している。This low material yield and high processing costs drive up product prices and limit applications.
一方、上記体心立方晶の結晶構造を持つβ型チタン合金
、例えばTi −11,5No −6Zr −4,53
nTi −+3V −11cr −3AI等は、他のチ
タン合金に比べて冷間での変形能が高い特徴を有するが
、これら合金は固溶化処理状態でも硬度(HRC)が3
0程度と高く、このため冷間線引加工或いは冷間鍛造加
工したとき、ダイスの焼付き、異常摩耳等のトラブルを
起す問題がある。On the other hand, β-type titanium alloys having the above-mentioned body-centered cubic crystal structure, such as Ti-11,5No-6Zr-4,53
nTi -+3V -11cr -3AI etc. have a high cold deformability compared to other titanium alloys, but these alloys have a hardness (HRC) of 3 even in the solution treatment state.
Therefore, when cold wire drawing or cold forging is performed, problems such as die seizure and abnormal wear occur.
(課題を解決するための手段)
本発明はこのような事情を背景とし、軽量、高強度で且
つ冷間加工性に優れたチタン合金を提供すべく為された
ものであって、その要旨は、チタン合金の組成をNb:
10〜40重量%、■:1〜10fi量%、AI=2〜
8重着%、 Fe、 Cr、 Nn:各1重量%以下、
Zr:311量%以下、O:0゜05〜0.3重量%、
残部がTiから成るようにしたことにある。(Means for Solving the Problems) Against this background, the present invention has been made to provide a titanium alloy that is lightweight, has high strength, and has excellent cold workability. , the composition of the titanium alloy is Nb:
10~40% by weight, ■: 1~10fi amount%, AI=2~
8 weight%, Fe, Cr, Nn: each 1% by weight or less,
Zr: 311% by weight or less, O: 0°05 to 0.3% by weight,
The reason is that the remainder is made of Ti.
このように本発明では、合金成分としてNb及びVを添
加しているが、これらは夫々単独ではβ安定型元素とし
て知られたものである。As described above, in the present invention, Nb and V are added as alloy components, but each of these is known as a β-stable element when used alone.
しかしながら例えばWbを合金成分として単独で添加し
た場合、加工性は良くなるものの一定量以上添加すると
強度が低くなり実用に供し得なくなる。またNbは丁1
に比べて比重が相当大きいため、Nbを多量に添加する
とTi合金の比重が高くなって、その特長である軽量性
が減殺されてしまう。However, for example, when Wb is added alone as an alloying component, the workability is improved, but if it is added in excess of a certain amount, the strength becomes low and it cannot be put to practical use. Also, Nb is 1
Since the specific gravity is considerably larger than that of Ti alloy, adding a large amount of Nb will increase the specific gravity of the Ti alloy, which will reduce its lightweight property.
他方Vは、本発明者等の実験によれば加工性向上の効果
の点ではWbに及ばないが、 Nbはど強度を低下させ
ない利点を有しており、特にTi−Nb合金に対して■
を添加すると強度が効果的に向上することが認められた
。第2図はその様子を示したものである(図中横軸はV
の添加量を、縦軸は強度向上の程度を示している)。On the other hand, according to experiments conducted by the present inventors, V is not as effective as Wb in terms of improving workability, but Nb has the advantage of not reducing the strength of the alloy, and is particularly effective against Ti-Nb alloys.
It was found that the addition of . Figure 2 shows this situation (the horizontal axis in the figure is V
(The vertical axis shows the degree of strength improvement.)
そこで本発明者等は、加工性能を高めるためにβ安定型
元素としてNbと■とを併用して添加することに着眼し
、そして更にこれら成分の添加による強度低下をAI添
加により補うようにし、そして種々実験を行う中でそれ
ら成分の適正添加量範囲を確定し、上記発明を完成させ
た。Therefore, the present inventors focused on adding Nb and ■ together as β-stable elements in order to improve processing performance, and further compensated for the decrease in strength due to the addition of these components by adding AI. Through various experiments, the appropriate range of addition of these components was determined, and the above invention was completed.
そこで次にこれら添加成分の添加量範囲について詳述す
る。Therefore, the range of addition amounts of these additive components will be explained in detail next.
(1) Nb: 10〜40重量%
上記のようにNbはTi合金をβ化するために添加され
るものであり、その下限値は10重量%で。(1) Nb: 10 to 40% by weight As mentioned above, Nb is added to β-oxidize the Ti alloy, and its lower limit is 10% by weight.
上限値は40重量%である。その理由は、添加量が10
1i%未満の場合にはβ化が不十分であって加工性が十
分に向上せず、逆に40tlii%より多いと加工性は
十分となるものの強度が低くなり過ぎ、また比重も大き
くなってTi合金の特長が減殺されてしまうからである
。The upper limit is 40% by weight. The reason is that the amount added is 10
If it is less than 1i%, the β conversion will be insufficient and the workability will not be improved sufficiently, and if it is more than 40tlii%, the workability will be sufficient but the strength will be too low and the specific gravity will also become large. This is because the features of the Ti alloy will be diminished.
(2) V : I〜10重縫%
VはNbと同じ(Ti合金先β化するものであるが、N
bと併用する場合には1〜10i1%の範囲で添加する
必要がある。l玉量%未満ではV添加の効果が現われず
、逆に10重量%を越えて添加してもその効果は飽和し
てしまうからである。(2) V: I~10 heavy stitching% V is the same as Nb (Ti alloy tip is β-formed, but N
When used in combination with b, it is necessary to add in a range of 1 to 10i1%. This is because if the amount of V is less than 1% by weight, the effect of V addition will not appear, and conversely, if it is added in excess of 10% by weight, the effect will be saturated.
(3)AI+2〜81着%
AIはNb、Vとは逆にTi合金をα化させるものであ
るが、析出硬化によりTi合金の強度を高める働きをす
る。但し添加量が2重量%未満であるとその効果は殆ど
認められず、逆に8重r%より多いと冷間加工性が損な
われるとともに耐食性も低下する。(3) AI+2 to 81% AI, contrary to Nb and V, alpha-izes the Ti alloy, and works to increase the strength of the Ti alloy through precipitation hardening. However, if the amount added is less than 2% by weight, almost no effect will be observed, while if it is more than 8% by weight, cold workability will be impaired and corrosion resistance will also be reduced.
(4) Fs、 Cr、 Mn:各1重量%以下Fe、
Cr、Mnは夫々Ti合金をβ化させ、しかも強度を高
める働きがあるが、含有量がlfi量%を越えると延性
が低下して加工性が悪くなる上、耐食性が低下してしま
う恐れがある。(4) Fs, Cr, Mn: each 1% by weight or less Fe,
Cr and Mn each have the function of β-izing the Ti alloy and increasing its strength, but if the content exceeds lfi%, the ductility decreases, the workability deteriorates, and there is a risk that the corrosion resistance will decrease. be.
(5) Zr: 3重量%以下
Zrを適量に含有するとTi合金の強度が高くなるが、
3重量%より多く含有すると冷間加工性が低下してしま
う。(5) Zr: 3% by weight or less Including an appropriate amount of Zr increases the strength of the Ti alloy, but
If the content exceeds 3% by weight, cold workability will deteriorate.
(6) O: 0 、05〜0.3玉量%0は耐食性を
悪くせずに強度を高め得る効果の大きい元素である。そ
の効果は0.05重量%以上で現われ、0 、314%
までは若干延性を低下させる傾向があるものの強度は著
しく向上する。(6) O: 0, 05 to 0.3 ball weight% 0 is an element that is highly effective in increasing strength without deteriorating corrosion resistance. The effect appears at 0.05% by weight or more, 0.314%
Although there is a tendency for the ductility to decrease slightly, the strength is significantly improved.
但し0.3.33%を越えると冷間加工性が大幅に低下
し実用上使えなくなる。However, if it exceeds 0.3.33%, cold workability will be significantly reduced and it will become practically unusable.
(実施例)
次に本発明の特長をより明らかにすべく、以下にその実
施例を詳述する。(Example) Next, in order to clarify the features of the present invention, examples thereof will be described in detail below.
第1表に示す組成の原料をプラズマ溶解し、次に真空ア
ーク溶解(2回溶解)した後、熱間鍛造により20m層
φの丸棒に加工した1次いでこれを固溶化処理(750
℃×1時間の条件で加熱した後水冷処理)し、更に切削
加工により第3図(A)に示すテストピース10を作成
して硬さ及び変形能を調査した。結果が第1表及び第1
図に示しである。尚硬さ測定はロックウェルのCスケー
ルにより行い、また変形源の測定は、テストピース10
を軸方向に圧縮して割れ(第1図中Xで示している)が
発生したときの歪を調べることによって行った。ここで
歪とはin ho/h (ho:テストピース10の
初期高さ、h:圧縮変形量12の高さ)で表わされる量
である。The raw materials having the compositions shown in Table 1 were plasma melted, then vacuum arc melted (melted twice), and hot forged into a round bar with a diameter of 20m.
The test piece 10 shown in FIG. 3(A) was prepared by heating (heating at 1 hour at 100° C., followed by water cooling) and cutting, and its hardness and deformability were investigated. The results are shown in Table 1 and
It is shown in the figure. The hardness was measured using the Rockwell C scale, and the source of deformation was measured using test piece 10.
This was done by compressing the material in the axial direction and examining the strain when a crack (indicated by X in FIG. 1) occurs. Here, the strain is an amount expressed as in ho/h (ho: initial height of test piece 10, h: height of compressive deformation amount 12).
第1表及び第1図の結果より、本発明例のものは変形能
が高く、冷間加工性に優れていることが分かる。From the results shown in Table 1 and FIG. 1, it can be seen that the examples of the present invention have high deformability and excellent cold workability.
以上本発明の実施例を詳述したが1本発明はその主旨を
逸脱しない範囲において、様々な変更を加えたIE様に
おいて実施5T濠である。The embodiments of the present invention have been described in detail above, but one embodiment of the present invention is a 5T moat implemented in IE with various changes made without departing from the spirit thereof.
(発明の効果)
本発明のチタン合金は冷間加工性、特に塑性加工性源に
優れている外、超伝導材料としてのNb−46,57i
の屑及びTi −6AI −4Vの屑を夫々原料として
用い得るため、コスト的にも安価に提供し得る特長を有
している。特に超伝導材料としてのNb−46,57i
の屑は従来その用途がないために捨てざるを得なかった
のが、本発明によりチタン合金用材料として用い得るよ
うになり、以て資源を有効に活用できるようになると同
時にチタン合金のコスト低減が果たされるのである。(Effects of the Invention) The titanium alloy of the present invention has excellent cold workability, especially good plastic workability, and is also suitable for Nb-46,57i as a superconducting material.
Since scraps of Ti-6AI-4V and Ti-6AI-4V can be used as raw materials, it has the advantage that it can be provided at low cost. Especially Nb-46,57i as a superconducting material
Conventionally, scraps had to be thrown away because they had no use for them, but with the present invention, they can now be used as materials for titanium alloys, making it possible to use resources effectively and at the same time reducing the cost of titanium alloys. will be fulfilled.
第1図は本発明の一実施例であるチタン合金の変形能を
表わす図であり、第2図はTi−Nb合今にVを添加し
たときのVの添加量と強度の向上との関係を表わす図で
ある。第3図(A)は本発明の実施例であるチタン合金
の特性評価のために作成したテストピースを表わす図で
あり、同図(B)は(A)のテストピースを圧縮した後
の形状を示す図である。
10:テストピース
12:圧縮変形品
第
図
第
図
■添加量
Cフ
妹Figure 1 is a diagram showing the deformability of a titanium alloy that is an example of the present invention, and Figure 2 is a diagram showing the relationship between the amount of V added and the improvement in strength when V is added to a Ti-Nb alloy. FIG. Figure 3 (A) is a diagram showing a test piece prepared for characterizing a titanium alloy according to an embodiment of the present invention, and Figure 3 (B) shows the shape of the test piece in (A) after being compressed. FIG. 10: Test piece 12: Compression deformed product Figure ■ Addition amount C
Claims (1)
2〜8重量%、Fe、Cr、Mn:各1重量%以下、Z
r:3重量%以下、O:0.05〜0.3重量%、残部
がTiから成ることを特徴とする冷間加工性に優れたチ
タン合金。Nb: 10-40% by weight, V: 1-10% by weight, Al:
2 to 8% by weight, Fe, Cr, Mn: 1% by weight or less each, Z
A titanium alloy with excellent cold workability, characterized in that r: 3% by weight or less, O: 0.05 to 0.3% by weight, and the balance consists of Ti.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31920988A JPH02163334A (en) | 1988-12-16 | 1988-12-16 | Titanium alloy having excellent cold workability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31920988A JPH02163334A (en) | 1988-12-16 | 1988-12-16 | Titanium alloy having excellent cold workability |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02163334A true JPH02163334A (en) | 1990-06-22 |
Family
ID=18107626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31920988A Pending JPH02163334A (en) | 1988-12-16 | 1988-12-16 | Titanium alloy having excellent cold workability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02163334A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0539152A1 (en) * | 1991-10-21 | 1993-04-28 | General Electric Company | Titanium niobium aluminide alloys |
US6979375B2 (en) | 2000-05-02 | 2005-12-27 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Titanium alloy member |
US7261782B2 (en) | 2000-12-20 | 2007-08-28 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Titanium alloy having high elastic deformation capacity and method for production thereof |
CN104313393A (en) * | 2014-11-10 | 2015-01-28 | 西北有色金属研究院 | Ultrahigh-temperature titanium alloy |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62103330A (en) * | 1985-10-28 | 1987-05-13 | Sumitomo Metal Ind Ltd | High strength titanium alloy with excellent cold workability |
-
1988
- 1988-12-16 JP JP31920988A patent/JPH02163334A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62103330A (en) * | 1985-10-28 | 1987-05-13 | Sumitomo Metal Ind Ltd | High strength titanium alloy with excellent cold workability |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0539152A1 (en) * | 1991-10-21 | 1993-04-28 | General Electric Company | Titanium niobium aluminide alloys |
US6979375B2 (en) | 2000-05-02 | 2005-12-27 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Titanium alloy member |
US7261782B2 (en) | 2000-12-20 | 2007-08-28 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Titanium alloy having high elastic deformation capacity and method for production thereof |
CN104313393A (en) * | 2014-11-10 | 2015-01-28 | 西北有色金属研究院 | Ultrahigh-temperature titanium alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01298127A (en) | Intermetallic compound tial-base lightweight heat-resisting alloy | |
CN104451213A (en) | Preparation method for titanium alloy with high dynamic bearing performance and low cost | |
JPH03274238A (en) | Manufacture of high strength titanium alloy excellent in workability and its alloy material as well as plastic working method therefor | |
CN108531774A (en) | A kind of high-hardness titanium alloy and preparation method thereof | |
JPH0730419B2 (en) | Chromium and silicon modified .GAMMA.-titanium-aluminum alloys and methods for their production | |
CN114592142A (en) | Medium-strength high-toughness titanium alloy with yield strength of 800MPa for ocean engineering and preparation process thereof | |
JPH05279773A (en) | High strength titanium alloy with uniform microstructure | |
EP0202791A1 (en) | Titanium alloys | |
JPH02163334A (en) | Titanium alloy having excellent cold workability | |
JPH05255780A (en) | High strength titanium alloy with uniform microstructure | |
JP2669004B2 (en) | Β-type titanium alloy with excellent cold workability | |
CN113151711A (en) | Novel low-cost high-strength high-plasticity titanium alloy | |
JP4263987B2 (en) | High-strength β-type titanium alloy | |
CN111057904A (en) | High-strength high-elongation forged titanium alloy material, and preparation method and application thereof | |
JP2002235133A (en) | beta TYPE TITANIUM ALLOY | |
US3405016A (en) | Heat treatable titanium base alloys and method | |
JPH01272743A (en) | High tensile aluminum alloy having excellent heat resistance | |
JP2003201530A (en) | High-strength titanium alloy with excellent hot workability | |
JPH032218B2 (en) | ||
CN111041273A (en) | Low-cost forged titanium alloy material, preparation method and application thereof | |
JPH03197638A (en) | High strength, high corrosion resistance titanium-based alloy | |
CN103614590B (en) | A kind of low-temperature high-strength antifatigue titanium aluminium niobium alloy | |
JPH01290738A (en) | Aluminum alloy having excellent heat resistance | |
JPH03240939A (en) | Manufacture of high ductility and high toughness titanium alloy | |
JPH01129941A (en) | Low strength and high ductile ti alloy for cold working |