[go: up one dir, main page]

JPH02160333A - Heater for electron tube - Google Patents

Heater for electron tube

Info

Publication number
JPH02160333A
JPH02160333A JP63314227A JP31422788A JPH02160333A JP H02160333 A JPH02160333 A JP H02160333A JP 63314227 A JP63314227 A JP 63314227A JP 31422788 A JP31422788 A JP 31422788A JP H02160333 A JPH02160333 A JP H02160333A
Authority
JP
Japan
Prior art keywords
insulating material
resistant insulating
material layer
heater
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63314227A
Other languages
Japanese (ja)
Inventor
Kinjiro Sano
佐野 金治郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63314227A priority Critical patent/JPH02160333A/en
Publication of JPH02160333A publication Critical patent/JPH02160333A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid Thermionic Cathode (AREA)

Abstract

PURPOSE:To enhance the reliability of a heater for use in an electron tube, by using aluminium nitride as high radiation heat resistant material which has insulating property. CONSTITUTION:A layer 3 of heat resistant insulating material is provided around a core wire 2 made of metal with a high melting point, and the surface of the layer 3 of heat resistant insulating material is covered by aluminum nitride as a layer 4 of high radiation heat resistant insulating material with a thickness of 1 to 3mum. Aluminum nitride has an insulation resistance of 10OMEGAcm and a high rate of heat radiation because of its brown color, so that its insulating property will not be damaged even when the aluminium nitride is infiltrated into pin holes in the layer 3 of heat resistant insulating material. A highly reliable heater for an electron tube can thus be obtained without damaging its performance.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は陰極線管などのカソードを加熱するために用い
られる電子管用ヒータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heater for an electron tube used to heat a cathode of a cathode ray tube or the like.

[従来の技術] 陰極線管などのカソード加熱用に、最近は第2図に示す
ようなダークヒータ(51が好んで用いられている。こ
のダークヒータ(5)は、たとえば3%Re−のような
タングステンとレニウムとの合金からなる芯線(aの表
面に、酸化アルミニウム(アルミナ)の耐熱性絶縁物質
層(3)が被覆形成され、さらにこの表面上に熱輻射性
の高い、たとえばタングステン粉末とアルミナ粉末との
混合物からなるダーク物質層(6)が被覆形成されてい
る。このようなダークヒータ(5)は熱輻射効率がよい
ため、ダーク物質層(6)の形成されていないヒータに
比べて同じカソード温度をうるための芯線(2の濃度を
約200℃程度下げることが可能である。したがって信
頼性が高く、近年好んで多用されている。
[Prior Art] Recently, a dark heater (51) as shown in Fig. 2 has been preferably used to heat the cathode of a cathode ray tube or the like. A heat-resistant insulating material layer (3) of aluminum oxide (alumina) is coated on the surface of the core wire (a) made of an alloy of tungsten and rhenium. A dark material layer (6) made of a mixture with alumina powder is formed as a covering.Such a dark heater (5) has a high heat radiation efficiency, so it is less expensive than a heater without a dark material layer (6). It is possible to lower the concentration of the core wire (2) by about 200°C to obtain the same cathode temperature. Therefore, it is highly reliable and has been frequently used in recent years.

つぎにこの従来のダークヒータ(5)の製法について述
べる。
Next, the manufacturing method of this conventional dark heater (5) will be described.

まず3%Re−からなる芯線(2)を第2図に示すよう
なスパイラル状のコイル部と直線状の脚部に成形する。
First, a core wire (2) made of 3% Re- is formed into a spiral coil part and a straight leg part as shown in FIG.

つぎにこの芯線(2の直線状脚部の一部を除く部分にア
ルミナからなる耐熱性絶縁物質層(3)を被覆形成する
。この被覆形成は、アルミナをアルコールなどの有機液
体に懸濁したのち、電気泳動などの方法を用いることに
より行なわれる。っいで耐熱性絶縁物質層(3)の最表
面の付着強度の弱い耐熱性絶縁物質層をアセトンなどの
有機液体でリンスして除去する。つぎに、これらの工程
で使用したアルコールやアセトンなどの有機液体を乾燥
により完全に除去する。ついで、これをタングステン粉
末とアルミナ粉末との混合物質からなるダーク物質を、
酢酸ブチルやニトロセルロースなどの有機液体と混合し
たダーク液の中に浸漬してダーク物質層(6)を被覆形
成する。つぎにダーク物質層(6)の最表面の付着強度
の弱いダーク物質層をアルコールなどの有機液体でリン
スする。、Ji後に、耐熱性絶縁物質層(3)およびダ
ーク物質層(6)の付着強度を増大させるために、たと
えば水素などの非酸化性雰囲気中で約1650℃に加熱
して焼結することにより、ダークヒータ(5)が製造さ
れる。
Next, a heat-resistant insulating material layer (3) made of alumina is coated on the core wire (2) except for a part of the straight leg part.This coating is formed by suspending alumina in an organic liquid such as alcohol. This is then carried out using a method such as electrophoresis.Then, the heat-resistant insulating material layer on the outermost surface of the heat-resistant insulating material layer (3), which has weak adhesion strength, is removed by rinsing with an organic liquid such as acetone. Next, the organic liquids such as alcohol and acetone used in these steps are completely removed by drying.Then, this is mixed with a dark substance consisting of a mixture of tungsten powder and alumina powder.
A dark substance layer (6) is formed by immersing it in a dark liquid mixed with an organic liquid such as butyl acetate or nitrocellulose. Next, the outermost dark material layer (6) with weak adhesion strength is rinsed with an organic liquid such as alcohol. , by heating and sintering at about 1650° C. in a non-oxidizing atmosphere such as hydrogen, to increase the adhesion strength of the heat-resistant insulating material layer (3) and the dark material layer (6) after Ji. , a dark heater (5) is manufactured.

これらの工程中で最も重要なポイントは、浸漬によるダ
ーク物質層(6)の形成の際、多孔質状である耐熱性絶
縁物質層(3)の中ヘダーク物質が浸透するのを防ぐこ
とである。導電性を有するダーク物質の浸透が生じると
、芯線(21とダーク物質層(6)との間でリーク電流
が生じ、ヒータとカソード間の電気絶縁性が損なわれて
しまう。その結果、カソードに加えられる映像信号がヒ
ータを通じて他の回路に流出してしまうため映像品位が
極めて劣化してしまう。この浸透を防ぐためには、第1
層である耐熱性絶縁物質層(3)の被覆形成、リンス工
程のあと、用いた有機液体を乾燥により完全に除去する
ことが必須である。この方法として特公昭53−315
92号公報に示されるように、芯線(aが酸化されない
程度の温度で空気中で加熱することにより耐熱性絶縁物
質層(3)に含まれた有機液体を完全に除去することが
有効とされている。しかし、一方で、耐熱性絶縁物質M
l(3)の被覆形成の際のN前液の組成変化、または芯
線(2の部分的な汚れなどにより耐熱性絶縁物質層(3
)の一部に微少なピンホールが形成されるばあいがあり
、このような状態の下にダーク物質層(6)を形成する
と、導電性を有するダーク物質が耐熱性絶縁物質層(3
)のピンホールの中に浸透して耐熱性絶縁物質層の絶縁
破壊がおこるという問題がある。
The most important point in these steps is to prevent the dark material from penetrating into the porous heat-resistant insulating material layer (3) during the formation of the dark material layer (6) by dipping. . When the conductive dark substance penetrates, a leakage current occurs between the core wire (21) and the dark substance layer (6), and the electrical insulation between the heater and the cathode is impaired.As a result, the cathode The applied video signal leaks to other circuits through the heater, resulting in extremely poor video quality.To prevent this penetration, the first step is to
After forming the heat-resistant insulating material layer (3) and rinsing, it is essential to completely remove the organic liquid used by drying. As for this method,
As shown in Publication No. 92, it is effective to completely remove the organic liquid contained in the heat-resistant insulating material layer (3) by heating it in air at a temperature that does not oxidize the core wire (a). However, on the other hand, the heat-resistant insulating material M
The heat-resistant insulating material layer (3) may be damaged due to a change in the composition of the N preliquid during the formation of the coating of (3), or due to partial contamination of the core wire (2).
), and if the dark material layer (6) is formed under such conditions, the conductive dark material may form in the heat-resistant insulating material layer (3).
) Penetration into the pinholes causes dielectric breakdown of the heat-resistant insulating material layer.

[発明が解決しようとする課題] 従来の電子管用ヒータは以上のように構成されているた
め、耐熱性絶縁物質層の被覆形成の際の品質バラツキに
よって耐熱性絶縁物質層の絶縁が破壊されるという問題
があった。本発明は、上記のような問題点を解消するた
めになされたものであり、性能を損うことなく信頼性の
高い電子管用ヒータをうることを目的とする。
[Problems to be Solved by the Invention] Since the conventional electron tube heater is configured as described above, the insulation of the heat-resistant insulating material layer is destroyed due to quality variations in forming the coating of the heat-resistant insulating material layer. There was a problem. The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a highly reliable heater for an electron tube without impairing performance.

[課題を解決するための手段] 本発明は、高融点金属材料からなる芯線、この芯線の周
囲に被覆形成された耐熱性絶縁物質層およびこの耐熱性
絶縁物質層の表面に被覆形成された高輻射耐熱性絶縁物
質層からなる電子管用ヒータであって、前記高輻射耐熱
性絶縁物質としてチッ化アルミニウムを用いたことを特
徴とする電子管用ヒータに関する。
[Means for Solving the Problems] The present invention provides a core wire made of a high-melting point metal material, a heat-resistant insulating material layer coated around the core wire, and a high-temperature insulating material layer coated on the surface of the heat-resistant insulating material layer. The present invention relates to an electron tube heater comprising a radiation heat resistant insulating material layer, the heater comprising aluminum nitride as the radiation heat resistant insulating material.

[作 用] 本発明におけるダーク物質材料であるチッ化アルミニウ
ムは、熱輻射率が轟く、また絶縁抵抗が^いため、前記
問題点をすべて解消できる。
[Function] Aluminum nitride, which is the dark substance material in the present invention, has a high thermal emissivity and a high insulation resistance, so all of the above problems can be solved.

[実施例] 本発明の電子管用ヒータは、その形式にとくに限定はな
く、たとえばシングルヘリカル形であってもよく、ダブ
ルへリカル形であってもよく、これら以外の形式であっ
てもよい。
[Example] The type of the electron tube heater of the present invention is not particularly limited, and may be, for example, a single helical type, a double helical type, or other types.

本発明に用いられる芯線にとくに限定はなく、その具体
例としては、たとえば従来から電子管用ヒータに用いら
れている3%Re−W、純1t4 、Haなどの融点が
2500℃程度以上の高融点金属材料からなる芯線があ
げられ、その太さ、形状などにもとくに限定はない。
The core wire used in the present invention is not particularly limited, and specific examples include 3% Re-W, pure 1t4, and Ha, which have been conventionally used in electron tube heaters, and have high melting points of about 2500°C or higher. A core wire made of a metal material is mentioned, and there are no particular limitations on its thickness, shape, etc.

前記芯線の周囲に被覆形成される耐熱性絶縁物質層にと
くに限定はなく、その具体例としては、たとえば従来か
ら電子管用ヒータに形成されているアルミナなどからな
る厚さ60〜80虜の層があげられる。
There is no particular limitation on the heat-resistant insulating material layer formed around the core wire, and a specific example thereof is a layer with a thickness of 60 to 80 mm made of alumina, which has been conventionally formed in heaters for electron tubes. can give.

前記耐熱性絶縁物質層の表面に被覆形成された高輻射耐
熱性絶縁物質層はチッ化アルミニウムの層であり、その
厚さは1〜3虜であるのが好ましい。チッ化アルミニウ
ムは1013Ω・1の絶縁抵抗を有し、かつ茶褐色の色
を呈しているため熱輻射率が高い。したがって、たとえ
耐熱性絶縁物質層の一部にピンホールが存在し、その中
に高輻射耐熱性絶縁物質層であるチツ化アルミニウムが
浸透しても、電気絶縁性が損なわれることがない。
The high-radiation heat-resistant insulating material layer coated on the surface of the heat-resistant insulating material layer is an aluminum nitride layer, and preferably has a thickness of 1 to 3 mm. Aluminum nitride has an insulation resistance of 1013 Ω·1 and is brown in color, so it has a high thermal emissivity. Therefore, even if a pinhole exists in a part of the heat-resistant insulating material layer and aluminum nitride, which is a high-radiation heat-resistant insulating material layer, penetrates into the pinhole, the electrical insulation will not be impaired.

つぎに本発明の電子管用ヒータの製法を説明する。Next, a method for manufacturing the electron tube heater of the present invention will be explained.

まず芯線を任意の形状に成形したのち、その周囲に耐熱
性絶縁物質層を形成する。該層は、たとえばアルミナを
アルコールなどの有機液体に懸濁させた懸濁液を用いる
電気泳動法などにより形成しうる。
First, a core wire is formed into an arbitrary shape, and then a layer of heat-resistant insulating material is formed around it. The layer can be formed, for example, by electrophoresis using a suspension of alumina in an organic liquid such as alcohol.

ついでアセトンなどの有機液体でリンスしたのち、20
0℃の温風で乾燥させて有機液体を完全に除去する。
After rinsing with an organic liquid such as acetone,
Dry with warm air at 0°C to completely remove organic liquid.

一方、粒径が数摩のチッ化アルミニウムを、硝化綿を溶
解した濃度20〜40重量%の酢酸ブチル溶液に、濃度
が30〜50重量%になるように加え、充分に(24〜
48時間程度)混合攪拌する。えられた懸濁液中に、前
記耐熱性絶縁物質層が被覆形成されたヒータを浸すこと
により、表面張力により高輻射耐熱性絶縁物質層が被覆
形成される。
On the other hand, aluminum nitride with a particle size of several microns was added to a butyl acetate solution containing nitrified cotton at a concentration of 20 to 40% by weight to a concentration of 30 to 50% by weight.
(about 48 hours) Mix and stir. By immersing the heater coated with the heat-resistant insulating material layer into the obtained suspension, a high-radiation heat-resistant insulating material layer is formed by surface tension.

ついで高輻射耐熱性絶縁物質層の最表面の付着強度の弱
い高輻射耐熱性絶縁物質層をイソプロピルアルコールな
どでリンスして除去する。
Next, the high radiation heat resistant insulating material layer on the outermost surface of the high radiation heat resistant insulating material layer, which has weak adhesion strength, is removed by rinsing with isopropyl alcohol or the like.

最後に耐熱性絶縁物質層および高輻射耐熱性絶縁物質層
の機械的強度を増すために水素雰囲気中、1600〜1
100℃で5〜10分間焼結させることにより、本発明
の電子管用ヒータが製造される。
Finally, in order to increase the mechanical strength of the heat-resistant insulating material layer and the high radiation heat-resistant insulating material layer, the
The electron tube heater of the present invention is manufactured by sintering at 100° C. for 5 to 10 minutes.

つぎに本発明を実施例に基づき、さらに具体的に説明す
るが、本発明はこれらの実施例のみに限定されるもので
はない。
EXAMPLES Next, the present invention will be explained in more detail based on Examples, but the present invention is not limited to these Examples.

実施例1および比較例1 3%Re−からなる直径79−の芯線(aを、第1図に
示すようなスパイラル状のコイル部(1,5amφ)と
直線状の脚部に成形した。つぎにアルミナ粉末1600
gと、エチルアルコール1300cc、水850cc 
Example 1 and Comparative Example 1 A core wire (a) made of 3% Re and having a diameter of 79 mm was formed into a spiral coil part (1.5 amφ) and a straight leg part as shown in FIG. alumina powder 1600
g, ethyl alcohol 1300cc, water 850cc
.

硝酸アルミニニウム40Qおよび硝酸マグネシウム40
Qとからなる懸濁液を調合した。この懸濁液に芯線の脚
部の一部を除く部分を浸し、電気泳動法によって芯線の
表面にアルミナからなる耐熱性絶縁物質層(3)を形成
した。ついで、耐熱性絶縁物質層をアセトンでリンスし
た。つぎに、上記の工程で使用したアルコールやアセト
ンなどの有機液体を200℃の熱風で乾燥して、完全に
除去した。耐熱性絶縁物質層の厚さは10ρであった。
Aluminum nitrate 40Q and magnesium nitrate 40
A suspension consisting of Q was prepared. The parts of the core wire except for some of the legs were immersed in this suspension, and a heat-resistant insulating material layer (3) made of alumina was formed on the surface of the core wire by electrophoresis. The layer of heat-resistant insulating material was then rinsed with acetone. Next, the organic liquid such as alcohol or acetone used in the above step was dried with hot air at 200° C. to completely remove it. The thickness of the heat-resistant insulating material layer was 10ρ.

一方、粒径約1虜のチッ化アルミニウムを、硝化綿を溶
解した濃度30重量%の酢酸ブチル溶液に、濃度が40
重量%になるように加え、24時間混合攪拌した。
On the other hand, aluminum nitride with a particle size of about 1 mm was added to a butyl acetate solution with a concentration of 30% by weight in which nitrified cotton was dissolved, and the concentration was 40% by weight.
The mixture was added in an amount of % by weight and mixed and stirred for 24 hours.

えられた懸濁液中に、前記耐熱性絶縁物質層が被覆形成
されたヒータを浸すことにより、表面張力により高輻射
耐熱性絶縁物質層(4)が被覆形成さた。ついでイソプ
ロピルアルコールでリンスした。
By immersing the heater coated with the heat-resistant insulating material layer into the resulting suspension, a high-radiation heat-resistant insulating material layer (4) was formed by surface tension. It was then rinsed with isopropyl alcohol.

高輻射耐熱性絶縁物質層の厚さは約2虜であった。The thickness of the high radiation heat resistant insulating material layer was approximately 2 mm.

最後に、水素雰囲気中で1650℃で5分間加熱して焼
結した。
Finally, it was sintered by heating at 1650° C. for 5 minutes in a hydrogen atmosphere.

えられた電子管用ヒータ(1)を用いた電子銃15本を
組み立て、ヒータ電流を調べた。結果を第3図に示す。
Fifteen electron guns were assembled using the obtained electron tube heater (1), and the heater current was examined. The results are shown in Figure 3.

図中×はチッ化アルミニウムを高輻射耐熱性絶縁物質層
とした本発明のヒータの結果を示し、Oは比較のために
試験した従来のダーク物質層を有する15本のヒータ(
比較例1)の結果である。第3図かられかるように実施
例のヒータと比較例のヒータとはヒータ電流に差はなか
った。すなわちチッ化アルミニウムは、従来のダーク物
質層とほぼ同等の熱輻射率を有していることがわかる。
In the figure, × indicates the results of the heater of the present invention using aluminum nitride as a high radiation heat-resistant insulating material layer, and O indicates the results of 15 heaters with a conventional dark material layer tested for comparison (
These are the results of Comparative Example 1). As can be seen from FIG. 3, there was no difference in heater current between the heater of the example and the heater of the comparative example. That is, it can be seen that aluminum nitride has almost the same thermal emissivity as the conventional dark material layer.

参考例1 アルミナからなる耐熱性絶縁物質層を被覆形成する際、
汚染された芯線を用いピンホールを故意に形成させたほ
かは、実施例1と同様にしてヒータを作製した。
Reference Example 1 When forming a heat-resistant insulating material layer made of alumina,
A heater was produced in the same manner as in Example 1, except that a contaminated core wire was used and a pinhole was intentionally formed.

えられたヒータ15本を用いてヒータとカリード間のリ
ーク電流をE、 −7,OV、  EH−に−200V
(7)条件で測定した。結果を第4図に示す。
Using the 15 heaters obtained, reduce the leakage current between the heater and Kalid to -200V at E, -7,OV, and EH-.
Measured under the conditions (7). The results are shown in Figure 4.

参考例2 参考例1と同様のピンホールを有する耐熱性絶縁物質層
が被覆形成され、従来のダーク物質層が被覆形成された
ヒータ15本を用い、参考例1と同様にしてヒータとカ
リード間のリーク電流を測定した。結果を第4図に示す
Reference Example 2 Using 15 heaters coated with a heat-resistant insulating material layer having pinholes similar to those in Reference Example 1, and coated with a conventional dark material layer, the connection between the heater and the calid was carried out in the same manner as in Reference Example 1. The leakage current was measured. The results are shown in Figure 4.

参考例1および2の結果から明らかなように、本発明の
ヒータに被覆形成されるチッ化アルミニウムからなる高
輻射耐熱性絶縁物質層は、−リーク電流をほとんど生じ
させないことがわかる。
As is clear from the results of Reference Examples 1 and 2, the high radiation heat-resistant insulating material layer made of aluminum nitride and formed to cover the heater of the present invention generates almost no leakage current.

[発明の効果] 以上のように、本発明の電子管用ヒータは、高輻射耐熱
性材料として絶縁性を有するチッ化アルミニウムを使用
したため、耐熱性絶縁物質層の一部にピンホールなどの
欠陥があったとしても、リーク電流を生じさせない信頼
性が飛躍的に向上した電子管用ヒータである。
[Effects of the Invention] As described above, since the electron tube heater of the present invention uses insulating aluminum nitride as a high radiation heat-resistant material, there are no defects such as pinholes in a part of the heat-resistant insulating material layer. Even if there is, this is an electron tube heater that has dramatically improved reliability and does not generate leakage current.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のヒータを示す説明図、第2図は従来の
ヒータを示す説明図、第3図は実施例1および比較例1
において測定したヒータ電流を示すグラフ、第4図は参
考例1および2において測定したヒータとカソード間の
リーク電流を示すグラフである。 (図面の主要符号) (1):ヒータ (21:芯 線 (3):耐熱性絶縁物質層 (4):高輻射耐熱性絶縁物質層 代  理  人   大  岩  増  雄′A71 
回 才2回
Fig. 1 is an explanatory diagram showing a heater of the present invention, Fig. 2 is an explanatory diagram showing a conventional heater, and Fig. 3 is an explanatory diagram showing a conventional heater.
FIG. 4 is a graph showing the leakage current between the heater and the cathode measured in Reference Examples 1 and 2. (Main symbols in the drawing) (1): Heater (21: Core wire (3): Heat-resistant insulating material layer (4): High radiation heat-resistant insulating material layer Agent Masuo Oiwa 'A71
2 times

Claims (1)

【特許請求の範囲】[Claims] (1)高融点金属材料からなる芯線、この芯線の周囲に
被覆形成された耐熱性絶縁物質層およびこの耐熱性絶縁
物質層の表面に被覆形成された高輻射耐熱性絶縁物質層
からなる電子管用ヒータであって、前記高輻射耐熱性絶
縁物質としてチッ化アルミニウムを用いたことを特徴と
する電子管用ヒータ。
(1) For electron tubes consisting of a core wire made of a high-melting point metal material, a heat-resistant insulating material layer coated around the core wire, and a high-radiation heat-resistant insulating material layer coated on the surface of the heat-resistant insulating material layer. 1. A heater for an electron tube, characterized in that aluminum nitride is used as the high radiation heat-resistant insulating material.
JP63314227A 1988-12-12 1988-12-12 Heater for electron tube Pending JPH02160333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63314227A JPH02160333A (en) 1988-12-12 1988-12-12 Heater for electron tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63314227A JPH02160333A (en) 1988-12-12 1988-12-12 Heater for electron tube

Publications (1)

Publication Number Publication Date
JPH02160333A true JPH02160333A (en) 1990-06-20

Family

ID=18050814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63314227A Pending JPH02160333A (en) 1988-12-12 1988-12-12 Heater for electron tube

Country Status (1)

Country Link
JP (1) JPH02160333A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05275434A (en) * 1992-03-24 1993-10-22 Ngk Insulators Ltd Ceramic heater for heating semiconductor and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05275434A (en) * 1992-03-24 1993-10-22 Ngk Insulators Ltd Ceramic heater for heating semiconductor and its manufacture

Similar Documents

Publication Publication Date Title
JP2633917B2 (en) How to seal the condenser bush
KR850000706B1 (en) Method of providing a metal component with a thermally black surface
JPH02160333A (en) Heater for electron tube
JP3566901B2 (en) Solar cell manufacturing method
JPH01232711A (en) Manufacture of solid electrolytic capacitor
US3536526A (en) Method for preparing cathodes
US3808043A (en) Method of fabricating a dark heater
US5562972A (en) Conductive paste and semiconductor ceramic components using the same
US2831140A (en) Cataphoretically coated heater insulator assembly
JPH0337988A (en) Inorganic insulation heater and manufacture thereof and cathode-ray tube using same heater
JPH08124718A (en) Electronic part and its manufacture
JP2550630B2 (en) Copper paste for conductive film formation
US5411938A (en) Sealed glass coating of high temperature ceramic superconductors
JPH02160332A (en) Heater for electron tube
JPH10106349A (en) Silver-based conductive paste
JPH08161932A (en) Oxidation inhibitive coating
JP2747119B2 (en) Fluorescent display tube
JP3322465B2 (en) Cathode assembly and method of manufacturing the same
KR950001077B1 (en) Heater of electron gun for cathode ray tube
JPH0384827A (en) Manufacturing method of heater for cathode ray tube
JPS5899741A (en) Gas sensing element and manufacture thereof
KR19980036716A (en) Manufacturing method of negative electrode heater for brown tube
Moore et al. Emission of Oxide Cathodes Supported on a Ceramic
JPH06349316A (en) Conductive paste
RU1812572C (en) Gas absorber for vacuum instruments