JPH0215833B2 - - Google Patents
Info
- Publication number
- JPH0215833B2 JPH0215833B2 JP58158562A JP15856283A JPH0215833B2 JP H0215833 B2 JPH0215833 B2 JP H0215833B2 JP 58158562 A JP58158562 A JP 58158562A JP 15856283 A JP15856283 A JP 15856283A JP H0215833 B2 JPH0215833 B2 JP H0215833B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- coil
- main magnetic
- main
- detection coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/389—Field stabilisation, e.g. by field measurements and control means or indirectly by current stabilisation
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Description
【発明の詳細な説明】
本発明は、核磁気共鳴(nuclear magnetic
resonance:以下NMRと略す)イメージング装
置における磁界較正装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to nuclear magnetic resonance
The present invention relates to a magnetic field calibration device for resonance (hereinafter abbreviated as NMR) imaging equipment.
従来からNMRイメージング装置やESRは知ら
れている。ところで、一般的にはNMRイメージ
ング装置やESR等でもそうであるが、スペクト
ロスコピーの場合には主磁界H0のマグニチユー
ドの恒常化は本質的に大切なことである。しかし
ながら、NMRイメージング装置において主磁界
H0の安定度は、スペクトロスコピー程には厳し
くなく、イメージング中に10-6程度に維持されれ
ばよい。安定度が維持されればその絶対値はさほ
ど厳しく要求されない。なぜなら、主磁界H0の
絶対値は、FID(free induction decay)信号の
周期検波の後のフーリエ変換において一様な平行
移動の発生に係わるのみであり、特に問題とされ
る程のものではないからである。 NMR imaging devices and ESR have been known for a long time. By the way, in the case of spectroscopy, it is essentially important to keep the magnitude of the main magnetic field H 0 constant, as is generally the case with NMR imaging devices, ESR, etc. However, in NMR imaging equipment, the main magnetic field
The stability of H 0 is not as critical as in spectroscopy and only needs to be maintained at around 10 −6 during imaging. If stability is maintained, the absolute value is not so strictly required. This is because the absolute value of the main magnetic field H 0 is only related to the occurrence of uniform parallel movement in the Fourier transform after periodic detection of the FID (free induction decay) signal, and is not particularly problematic. It is from.
しかし、スタテイツク或いはダイナミツクの何
れにせよ、主磁界H0の空間的時間的一様性は優
れているに越したことはない。主磁界H0は、そ
の駆動電源、主磁界H0用コイルや磁気回路の材
料等の変化(温度変化等)の影響を受ける。 However, whether static or dynamic, the spatial and temporal uniformity of the main magnetic field H 0 is superior. The main magnetic field H 0 is affected by changes in the driving power source, the material of the main magnetic field H 0 coil, the magnetic circuit, etc. (temperature changes, etc.).
本発明は、このような点に鑑みてなされたもの
で、その目的は、主磁界H0を検出し、サーボに
より主磁界H0の自動安定化を行う磁界較正装置
を提供することにある。 The present invention has been made in view of these points, and its purpose is to provide a magnetic field calibration device that detects the main magnetic field H 0 and automatically stabilizes the main magnetic field H 0 using a servo.
このような目的を達成するための本発明は、イ
メージングのための主たるコイルであつて、主磁
界H0に該コイルの軸を直交して配置される検出
コイルを備えた核磁気共鳴イメージング装置にお
ける磁界較正装置において、水入りカプセルを囲
むコイルを、該コイルの軸を前記主磁界H0に直
交又は略直交させて前記検出コイルとは磁束を交
差しないようにして、前記検出コイルの巻線面上
に設置し、前記水のプロトンの共鳴を検出して主
磁界H0の絶対値の較正を行うようにしたことを
特徴とするものである。 To achieve such an object, the present invention provides a nuclear magnetic resonance imaging apparatus equipped with a detection coil, which is the main coil for imaging, and is arranged with the axis of the coil orthogonal to the main magnetic field H0 . In the magnetic field calibration device, a coil surrounding a water capsule is arranged so that the axis of the coil is perpendicular or substantially perpendicular to the main magnetic field H 0 so that the magnetic flux does not intersect with the detection coil, and the winding surface of the detection coil is It is characterized in that the absolute value of the main magnetic field H 0 is calibrated by detecting the resonance of the protons of the water.
主磁界H0のサーボ制御には、やはりプロトン
の吸収線(γ=4.2576MHz/KG)を用いるのが
好ましい。それはプロトンの吸収線が10-5の精度
をもち、10-6〜10-7の分解能をもつたプロトン磁
力計として既に確立された技術があるからに他な
らない。但し、だからといつて、イメージング中
の空間中にこのための水サンプル入りのプローブ
コイルを持込んで検出乃至較正を行うわけにはい
かない。主たるイメージングのための検出コイル
の近傍に配置される限りは検出用コイルと結合
し、影響を及ぼしてしまうからである。この影響
は、プローブコイルを非磁性導体でなるケースで
囲つてシールドすれば除去できるが、この場合は
イメージングの邪魔になるという問題がある。 For servo control of the main magnetic field H 0 , it is still preferable to use proton absorption lines (γ=4.2576MHz/KG). This is because there is already established technology for proton magnetometers, which have an accuracy of 10 -5 for proton absorption lines and a resolution of 10 -6 to 10 -7 . However, this does not mean that a probe coil containing a water sample for this purpose cannot be brought into the space being imaged for detection or calibration. This is because as long as it is placed near the detection coil for main imaging, it will combine with the detection coil and exert an influence. This effect can be removed by shielding the probe coil by surrounding it with a case made of a non-magnetic conductor, but in this case there is a problem that it interferes with imaging.
従つて、本発明ではそのような構成は避け、第
1図に示すような構成をとる。 Therefore, in the present invention, such a configuration is avoided and a configuration as shown in FIG. 1 is adopted.
この図において、1a,1bは主磁界H0を発
生するための電磁石の磁極(N極とS極)、2a,
2bは磁極1a,1b間に置かれイメージングに
際しての磁界摂動を得るための摂動用コイル、3
はFID信号を検出するための検出用コイルであ
る。これらは、主磁界H0をz軸方向とすると、
摂動用コイル2a,2bによる磁界がx軸方向に
かけられ、検出用コイル3がy軸方向に現われる
磁界変化を検出できるように配置される。被検体
は検出用コイル3の内側に載置される。一方、本
発明の特徴とするところの磁界較正用のプローブ
コイル10は検出用コイル3と磁気結合がないよ
うにして検出コイル3の巻線面に配置される。 In this figure, 1a and 1b are the magnetic poles (N pole and S pole) of the electromagnet for generating the main magnetic field H 0 , 2a,
2b is a perturbation coil placed between the magnetic poles 1a and 1b for obtaining magnetic field perturbation during imaging;
is a detection coil for detecting FID signals. These are as follows, assuming that the main magnetic field H 0 is in the z-axis direction.
A magnetic field is applied by the perturbation coils 2a and 2b in the x-axis direction, and a detection coil 3 is arranged so as to be able to detect changes in the magnetic field appearing in the y-axis direction. The subject is placed inside the detection coil 3. On the other hand, the probe coil 10 for magnetic field calibration, which is a feature of the present invention, is arranged on the winding surface of the detection coil 3 so that there is no magnetic coupling with the detection coil 3.
第2図はこのプローブコイル10部分の詳細を
示す図である。第2図において、水入りカプセル
11の外周にコイル12を巻回する。このコイル
12の軸方向は検出用コイル3の巻線面と同方向
になるようにし、直交しないように配置する。即
ち、コイル12はコイルの軸を主磁界H0に直交
又は略直交させて検出コイル3とは磁束を交差し
ないようにして配置されている。 FIG. 2 is a diagram showing details of this probe coil 10 portion. In FIG. 2, a coil 12 is wound around the outer periphery of a water capsule 11. The axial direction of this coil 12 is made to be in the same direction as the winding surface of the detection coil 3, and arranged so as not to be orthogonal to each other. That is, the coil 12 is arranged so that its axis is perpendicular or substantially perpendicular to the main magnetic field H 0 so that the magnetic flux does not intersect with the detection coil 3 .
コイル12中に入れるカプセル11はガラスの
アンプル等とし、又封入する水は純水よりもむし
ろFe2Cl3等の常磁性塩を約0.1%溶かした水を用
いるのが好ましい。更に、コイル12の外側には
静電シールド用のケース13を設けるのが好まし
い。 The capsule 11 placed in the coil 12 is preferably a glass ampoule or the like, and the water to be sealed is preferably water in which approximately 0.1% of a paramagnetic salt such as Fe 2 Cl 3 is dissolved rather than pure water. Furthermore, it is preferable to provide a case 13 for electrostatic shielding on the outside of the coil 12.
一方、検出用コイル3の巻線は中空パイプ(銅
のパイプ等)とし、コイル12の引出線はこのパ
イプの内部を通つて外部に導かれるように構成し
てある。 On the other hand, the winding of the detection coil 3 is a hollow pipe (such as a copper pipe), and the lead wire of the coil 12 is configured to be guided to the outside through the inside of this pipe.
第3図はこのプローブコイル10を用いて主磁
界H0の連続測定を行いつつ安定化を行うシステ
ムの要部を示すものである。図において、マージ
ナルオシレータ31はプローブコイル10を相手
に発振を行うが、一般のプロトン磁力計の場合と
異なり、H0の方向にこの測定のためのスイーブ
をかけるわけにはゆかないので、可変容量ダイオ
ード等を用いてfoscの方にスイープをかける。マ
ージナルオシレータ31の出力は、検波器34に
て増幅検波され、その結果の直流分は積分器35
で積分され、発振レベルを最適化する如くマージ
ナルオシレータ31にフイードバツクされ、又、
マージナルオシレータ31の出力の交流成分は吸
収線の観測、分析のために微分回路36及び増幅
器37を経て、A/D変換器38にてデイジタル
化されマイクロプロセツシングユニツト(以下
μPUと称す)39に伝えられる。一方、同じ
μPU39はfoscの平均値(中心値)とスイープと
を制御すべくD/A変換器32とスイープオシレ
ータ33を制御する。 FIG. 3 shows the main parts of a system that uses this probe coil 10 to continuously measure and stabilize the main magnetic field H 0 . In the figure, the marginal oscillator 31 oscillates with the probe coil 10, but unlike in the case of a general proton magnetometer, it is not possible to apply a sweep in the direction of H 0 for this measurement, so the variable capacitance Apply a sweep to the fosc using a diode, etc. The output of the marginal oscillator 31 is amplified and detected by a detector 34, and the resulting DC component is sent to an integrator 35.
and is fed back to the marginal oscillator 31 to optimize the oscillation level, and
The alternating current component of the output of the marginal oscillator 31 passes through a differentiating circuit 36 and an amplifier 37 for observation and analysis of absorption lines, is digitized by an A/D converter 38, and is sent to a microprocessing unit (hereinafter referred to as μPU) 39. can be conveyed to. On the other hand, the same μPU 39 controls the D/A converter 32 and the sweep oscillator 33 to control the average value (center value) and sweep of fosc.
又、fosc自身は増幅器40経由でカウンタ41
の計測されμPU39に伝えられる。μPU39は
主磁界H0用電流源42をも制御する。μPU39
は、第4図に示すような吸収線のピークを中心に
もつてくるように主磁界H0用電流源42の出す
電流を制御している。主磁界H0の所望の値は
μPU39に対し外部指令により定められる。周
波数はこの主磁界H0をγの値で割算して求め、
foscのカウント値がこの周波数となるようにフイ
ードバツク制御する。この間、観測を維持する如
く吸収線を見失わぬようにfoscの値を制御する。 Also, the fosc itself is connected to the counter 41 via the amplifier 40.
is measured and transmitted to the μPU 39. The μPU 39 also controls the current source 42 for the main magnetic field H 0 . μPU39
The current source 42 for the main magnetic field H 0 is controlled so that the current source 42 for the main magnetic field H 0 is centered on the peak of the absorption line as shown in FIG. The desired value of the main magnetic field H 0 is determined by an external command to the μPU 39. The frequency is found by dividing this main magnetic field H 0 by the value of γ,
Feedback control is performed so that the fosc count value becomes this frequency. During this time, the fosc value is controlled so as to maintain observation and not lose sight of the absorption line.
プローブコイル10はイメージング作業として
のFID信号の受信作業とは干渉しないから、その
ところの主磁界H0と、場合によつてはH0+ΔH
(x、y)(ΔHは摂動磁界)を計ることが常時行
われる。 Since the probe coil 10 does not interfere with the FID signal reception work as an imaging work, the main magnetic field H 0 and in some cases H 0 +ΔH
(x, y) (ΔH is the perturbation magnetic field) is constantly measured.
次に、第5図及び第6図を用いてプローブコイ
ル10の他の配置例について説明する。他の配置
例として、第5図のA又はBに設置する例を示
す。プローブコイル10は、位置Aでは、第6図
のイに示すように設置され、位置Bでは、第6図
のロに示すように設置される。ここで、主検出コ
イル3は、コイル軸を主磁界H0の方向に直交さ
せており、主目的の検出用RF磁界HRFは矢印HRF
の方向となつている。又、プローブコイル10
は、銅又はアルミニユウムのパイプで形成される
FID信号検出用コイル3のパイプ内に、プローブ
コイル10全体を埋設させている。更に、第6図
のイの場合、プローブコイル10の軸を主磁界
H0に略直交させており、ロの場合、プローブコ
イル10は円筒な水入りカプセルに巻回した偏平
なコイルで構成され、コイルの軸を主磁界H0に
略直交させている。尚、マージナルオシレータ3
1等も含めてパイプ内に納めれば尚よい。検出用
コイル3はパイプに限らず帯状であつてもよい
(プローブコイル10はシールドされた形状とす
る)。プローブコイル10の引出線は検出用コイ
ル3のパイプ中を通つて、又は帯に沿つて、検出
用コイル3の接地側端末3bから取り出すように
する。 Next, another arrangement example of the probe coil 10 will be described using FIGS. 5 and 6. As another example of arrangement, an example of installing at A or B in FIG. 5 is shown. The probe coil 10 is installed at position A as shown in FIG. 6A, and at position B as shown in FIG. 6B. Here, the main detection coil 3 has its coil axis perpendicular to the direction of the main magnetic field H0 , and the main purpose detection RF magnetic field HRF is indicated by the arrow HRF.
It is in the direction of Also, the probe coil 10
is made of copper or aluminum pipe
The entire probe coil 10 is buried within the pipe of the FID signal detection coil 3. Furthermore, in case A of Fig. 6, the axis of the probe coil 10 is connected to the main magnetic field.
In the case of (b ) , the probe coil 10 is composed of a flat coil wound around a cylindrical water-filled capsule, and the axis of the coil is made substantially perpendicular to the main magnetic field H 0 . In addition, marginal oscillator 3
It would be better if it could be stored in the pipe including the 1st class. The detection coil 3 is not limited to a pipe, but may be a strip (the probe coil 10 is in a shielded shape). The lead wire of the probe coil 10 is taken out from the ground side terminal 3b of the detection coil 3 through the pipe of the detection coil 3 or along the band.
以上説明したように、本発明によれば、NMR
イメージング装置において、少なくとも主磁界
H0を検出し、サーボにより主磁界H0の自動安定
化を行う磁界較正装置を実現することができる。 As explained above, according to the present invention, NMR
In the imaging device, at least the main magnetic field
It is possible to realize a magnetic field calibration device that detects H 0 and automatically stabilizes the main magnetic field H 0 using a servo.
第1図は本発明の磁界較正装置の磁界検出部の
構成を示す説明図、第2図はその一部の詳細図、
第3図は本発明の磁界較正装置の一例を示すブロ
ツク図、第4図は吸収線の一例を示す説明図、第
5図はプローブコイルの他の設置位置を示す図、
第6図は第5図の各位置における設置方向を示す
図である。
1a,1b……主磁界磁極、2a,2b……摂
動用コイル、3……検出用コイル、10……プロ
ーブコイル、11……水入りカプセル、12……
コイル、31……マージナルオシレータ、39…
…マイクロプロセツシングユニツト、41……カ
ウンタ、42……主磁界H0用電流源。
FIG. 1 is an explanatory diagram showing the configuration of the magnetic field detection section of the magnetic field calibration device of the present invention, FIG. 2 is a detailed diagram of a part thereof,
FIG. 3 is a block diagram showing an example of the magnetic field calibration device of the present invention, FIG. 4 is an explanatory diagram showing an example of an absorption line, and FIG. 5 is a diagram showing another installation position of the probe coil.
FIG. 6 is a diagram showing the installation direction at each position in FIG. 5. 1a, 1b... Main magnetic field magnetic pole, 2a, 2b... Perturbation coil, 3... Detection coil, 10... Probe coil, 11... Water capsule, 12...
Coil, 31...Marginal oscillator, 39...
...Microprocessing unit, 41...Counter, 42...Current source for main magnetic field H0 .
Claims (1)
て、主磁界H0に該コイルの軸を直交して設置さ
れる検出コイルを備えた核磁気共鳴イメージング
装置における磁界較正装置において、水入りカプ
セルを囲むコイルを、該コイルの軸を前記主磁界
H0に直交又は略直交させて前記検出コイルとは
磁束を交差しないようにして、前記検出コイルの
巻線面上に設置し、前記水のプロトンの共鳴を検
出して主磁界H0の絶対値の較正を行うようにし
たことを特徴とする核磁気共鳴イメージング装置
における磁界較正装置。 2 前記水入りカプセルとコイルが、銅又はアル
ミニユウムのパイプで形成された前記検出コイル
のパイプの内部に、その磁気軸が主磁界H0と略
直交するように配置されたことを特徴とする特許
請求の範囲第1項記載の核磁気共鳴イメージング
装置における磁界較正装置。[Claims] 1. In a magnetic field calibration device in a nuclear magnetic resonance imaging apparatus including a detection coil that is a main coil for imaging and is installed perpendicular to the axis of the coil in the main magnetic field H 0 , a coil surrounding the capsule, the axis of the coil being aligned with the main magnetic field.
It is installed on the winding surface of the detection coil so as to be perpendicular or substantially perpendicular to H 0 so that the magnetic flux does not intersect with the detection coil, and detects the resonance of the protons of the water to increase the absolute value of the main magnetic field H 0 . A magnetic field calibration device for a nuclear magnetic resonance imaging apparatus, characterized in that it calibrates values. 2. A patent characterized in that the water capsule and the coil are arranged inside a pipe of the detection coil formed of a copper or aluminum pipe so that the magnetic axis thereof is substantially orthogonal to the main magnetic field H 0 A magnetic field calibration device for a nuclear magnetic resonance imaging apparatus according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58158562A JPS6050441A (en) | 1983-08-30 | 1983-08-30 | Magnetic-field calibrating device in nuclear-magnetic- resonance imaging apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58158562A JPS6050441A (en) | 1983-08-30 | 1983-08-30 | Magnetic-field calibrating device in nuclear-magnetic- resonance imaging apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6050441A JPS6050441A (en) | 1985-03-20 |
JPH0215833B2 true JPH0215833B2 (en) | 1990-04-13 |
Family
ID=15674410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58158562A Granted JPS6050441A (en) | 1983-08-30 | 1983-08-30 | Magnetic-field calibrating device in nuclear-magnetic- resonance imaging apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6050441A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6237753U (en) * | 1985-08-23 | 1987-03-06 | ||
JPS6263848A (en) * | 1985-08-30 | 1987-03-20 | Yokogawa Electric Corp | Nmr imaging device |
JPS6246361U (en) * | 1985-08-30 | 1987-03-20 | ||
JPS6267433A (en) * | 1985-09-20 | 1987-03-27 | Yokogawa Electric Corp | Nmr imaging apparatus |
KR20050084371A (en) * | 2002-12-20 | 2005-08-26 | 메디-피직스, 인크. | Calibration of a polarization measurement station |
CN101109720B (en) * | 2006-07-19 | 2011-02-16 | 西门子(中国)有限公司 | Method and apparatus for measuring change characteristic of magnetic material magnetic flux density according to temperature |
WO2015072301A1 (en) * | 2013-11-12 | 2015-05-21 | 株式会社 日立メディコ | Magnetic resonance imaging apparatus |
CN109738844B (en) * | 2019-03-07 | 2021-02-05 | 江苏苏威尔科技有限公司 | Magnetic induction sensor marks and test fixture |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4875289A (en) * | 1972-01-12 | 1973-10-11 |
-
1983
- 1983-08-30 JP JP58158562A patent/JPS6050441A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4875289A (en) * | 1972-01-12 | 1973-10-11 |
Also Published As
Publication number | Publication date |
---|---|
JPS6050441A (en) | 1985-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5731704A (en) | Method and arrangement for measuring and controlling the basic field of a magnet of a nuclear magnetic tomography apparatus | |
FI73320C (en) | NMR SPOLARRANGEMANG. | |
US4652824A (en) | System for generating images and spacially resolved spectra of an examination subject with nuclear magnetic resonance | |
JPS5977348A (en) | Nuclear magnetic resonance tomography device | |
US20050248350A1 (en) | Superconducting magnet device and magnetic resonance imaging system employing it | |
JPS61249458A (en) | Nuclear spin tomography device | |
US11064900B2 (en) | Ultra-low field nuclear magnetic resonance device | |
US5631561A (en) | Arrangement for measuring and controlling the basic field of an NMR tomography apparatus | |
JPH0215833B2 (en) | ||
JPS6145959A (en) | Magnetic resonance device | |
US4590947A (en) | High-frequency device containing a surface coil for nuclear spin resonance apparatus | |
JPS5991345A (en) | Nuclear magnetic resonance imaging assembly | |
US20190154777A1 (en) | Cryogenic field sensing for compensating magnetic field variations in magnetic resonance imaging magnets | |
US5214383A (en) | MRI apparatus with external magnetic field compensation | |
US3931572A (en) | Method and apparatus for measuring magnetic fields utilizing odd harmonics of an excitation signal | |
US5185575A (en) | Magnetic resonance imaging apparatus with artefact reduction | |
US4760337A (en) | Nuclear magnetic resonance methods and apparatus | |
GB2259986A (en) | Mobile MRI RF coil with extended sensing volume | |
JP3976479B2 (en) | Method and apparatus for reducing magnetic field fluctuations in magnetic resonance imaging apparatus | |
Borer et al. | Absolute calibration of the NMR magnetometers and of the magnetic field measuring system used in the CERN muon storage ring | |
JPH05300896A (en) | Magnetic resonance imaging apparatus | |
JP2000333932A (en) | Mri device | |
JP3213819B2 (en) | High frequency receiving coil for magnetic resonance imaging equipment | |
JPH0376134B2 (en) | ||
JPH0626542B2 (en) | Magnetic resonance imaging equipment |