[go: up one dir, main page]

JPH02156145A - Measurement of hydrogen in thin film - Google Patents

Measurement of hydrogen in thin film

Info

Publication number
JPH02156145A
JPH02156145A JP63310444A JP31044488A JPH02156145A JP H02156145 A JPH02156145 A JP H02156145A JP 63310444 A JP63310444 A JP 63310444A JP 31044488 A JP31044488 A JP 31044488A JP H02156145 A JPH02156145 A JP H02156145A
Authority
JP
Japan
Prior art keywords
energy
atom
thin film
angle
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63310444A
Other languages
Japanese (ja)
Inventor
Masako Tanaka
雅子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP63310444A priority Critical patent/JPH02156145A/en
Publication of JPH02156145A publication Critical patent/JPH02156145A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To achieve a higher measuring accuracy by specifying energy and an angle of incidence of charged particles incident on a thin film made of amorphous carbon or the like. CONSTITUTION:Charged particles radiated at a slit 1 are made incident on a thin film 2 at such a small angle that atom C and atom H bounce by an elastic scattering thereof. The atom C fails to reach a detector 3 losing energy with a Mylar filter 4 and hence, the atom H alone reaches the detector 3. So, energy of the atom H is analyzed with the detector 3 to measure an electric charge of the atom H in terms of energy. Then, an energy spectrum is determined as indicating a relationship between the energy of the atom H and an energy-wise number of the atom H to measure a depth-wise distribution of the atom H in the thin film 2 and an absolute amount of the atom H based thereon. Here, the energy of charged particles and the angle of incidence are set at 6-8 Mev and 6-10 deg. respectively. This is because a higher measuring accuracy is attained with small depth-wise resolutions at 6 MeV in energy while the atom H fails to bounce below the value. The atom H also fails to bounce below 6 deg. in angle of incidence.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、アモルファスカーボン膜等の薄膜中の水素原
子(H原子)の深さ方向分布及び絶対量を測定する方法
に関するしのである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for measuring the depth distribution and absolute amount of hydrogen atoms (H atoms) in a thin film such as an amorphous carbon film.

B1発明の概要 本発明は、核弾性散乱の一手段である水素反跳法を用い
て薄膜中の)−1原子を測定する方法において、 薄膜に入射する荷111i拉子のエネルギー及び入射角
を夫々6〜8 M e V、6〜10°とすることによ
って、 測定精度を向上させるようにしたらのである。
B1 Summary of the Invention The present invention is a method for measuring )-1 atoms in a thin film using the hydrogen recoil method, which is a method of nuclear elastic scattering. The measurement accuracy was improved by setting the angle to 6 to 8 M e V and 6 to 10 degrees, respectively.

C従来の技術 アモルファスカーホン(a−C:1−1)及びアモルフ
ァス炭化珪素(a−SiC:H)は、高い硬度、優れた
透光性、高い抵抗率等の性質を持ち、広い応用分野が期
待される物質である。
C. Conventional technology Amorphous carphone (a-C:1-1) and amorphous silicon carbide (a-SiC:H) have properties such as high hardness, excellent translucency, and high resistivity, and are applicable to a wide range of fields. is expected to be a substance.

これらのアモルファス薄膜は、膜の製造工程において多
量の水素を含み、これらの水素は光学的或は電気的性質
に大きな影響を与える。即ち、アモルファス構造中では
、原子間の結合が規則的でなく、ねじれ等が存在するた
めに未結合基ができてしまう。これらが浅いエネルギー
準位を形成すると、電気抵抗が下がったり或は光学ギャ
ップが狭くなって透光性が落ちたりするが、水素が未結
合基を補償することによって、これらの現象を防ぐこと
ができる。しかし、水素含有量が必要以上多くなると、
密度の低い疎な膜が形成されてしまう。またこれらの膜
を積層してデバイス化を図るときには、積層界面におけ
る原子の拡散等も水素の分布状啓によりある程度予測で
きる。従って膜中の水素絶対損を深さ方向の分布も含め
て測定することが重要となるが、水素の定量測定の手段
は非常に少なく、一般には核弾性散乱を用いた方法また
は核反応による方法が採用される。
These amorphous thin films contain a large amount of hydrogen during the film manufacturing process, and these hydrogen have a large effect on optical or electrical properties. That is, in an amorphous structure, the bonds between atoms are not regular and there are twists, etc., resulting in the formation of unbonded groups. When these form a shallow energy level, the electrical resistance decreases or the optical gap narrows and the transparency decreases, but these phenomena can be prevented by hydrogen compensating for the unbonded groups. can. However, if the hydrogen content increases more than necessary,
A sparse film with low density is formed. Furthermore, when these films are stacked to form a device, the diffusion of atoms at the stacked interface can be predicted to some extent based on the distribution of hydrogen. Therefore, it is important to measure the absolute hydrogen loss in the film, including the distribution in the depth direction, but there are very few methods for quantitatively measuring hydrogen, and generally methods using nuclear elastic scattering or nuclear reactions are used. will be adopted.

D9発明が解決しようとする課題 しかしこれら2つの方法においては、多量に水素を含む
試料では、測定中にイオンビームダメージにより水素が
抜ける場合もあり、エネルギーを徐々に変えながらビー
ムを照射し続ける核反応を用いる方法は不適である。一
方核弾性散乱を用いる方法は深さ分解能の面で劣る欠点
がある。
D9 Problems to be Solved by the Invention However, in these two methods, if the sample contains a large amount of hydrogen, hydrogen may escape due to ion beam damage during the measurement, so it is necessary to continue irradiating the nucleus with the beam while gradually changing the energy. Methods using reactions are unsuitable. On the other hand, the method using nuclear elastic scattering has the disadvantage of poor depth resolution.

本発明は、核弾性散乱を用いる方法でありながら、高い
深さ分解能を得ることができて測定精度を向上すること
のできる方法を提供することにある。
An object of the present invention is to provide a method that uses nuclear elastic scattering, but can obtain high depth resolution and improve measurement accuracy.

80課題を解決するための手段 本発明は、核弾性散乱の一手段である水素反跳法を用い
て薄膜中のH原子を測定する方法において、 薄膜に入射する荷電粒子のエネルギー及び入射角を夫々
6〜8 M e V、6〜10°とすることを特徴とす
る。
80 Means for Solving the Problems The present invention provides a method for measuring H atoms in a thin film using the hydrogen recoil method, which is a method of nuclear elastic scattering. It is characterized by being 6 to 8 M e V and 6 to 10°, respectively.

F 実施例 第1図は水素反跳法に用いる測定装置を示す図である。F Example FIG. 1 is a diagram showing a measuring device used in the hydrogen recoil method.

この方法においては、スリットIから放射された例えば
C″″″イオン膜2に小さな入射fQで入射させると、
C3゛イオンが薄膜中のC原子やH原子に衝突して弾性
散乱が起こり、C原子やH原子が反跳する。3は検出器
であり、この検出器3の前にはマイラーフィルタ4が設
置されている。反跳された原子はマイラーフィルタ4中
にてエネルギーを失い、検出器3には到達しない。従っ
て検出器3にはH原子のみが到達し、検出器3ではI−
1原子のエネルギーを分析し、エネルギー別にH原子の
電荷ff1(C)を測定する。ここでこの電荷量をQ、
■1原子のエネルギーをE、H原子の散乱断面積をVl
l、検出器の立体角をΩ、1−(原子の原子密度をNH
,薄膜の厚さをLとすると、エネルギーのイールドの積
分値Yは次の(1)式で表される。
In this method, if, for example, C″″″ ions emitted from the slit I are made to enter the film 2 at a small incidence fQ,
C3' ions collide with C atoms and H atoms in the thin film, causing elastic scattering, and the C atoms and H atoms recoil. 3 is a detector, and a mylar filter 4 is installed in front of this detector 3. The recoil atoms lose energy in the Mylar filter 4 and do not reach the detector 3. Therefore, only H atoms reach the detector 3, and the I-
The energy of one atom is analyzed and the charge ff1(C) of the H atom is measured for each energy. Here, this amount of charge is Q,
■Energy of one atom is E, scattering cross section of H atom is Vl
l, the solid angle of the detector is Ω, 1-(the atomic density of the atom is NH
, the thickness of the thin film is L, the integral value Y of energy yield is expressed by the following equation (1).

Y−V、(E、f(θ))×ΩXQXNHX t=−(
+)上記(1)式のV 11(E 、 r(θ))×Ω
は測定系に特何の定数であり、各々計算より求まるが、
さらに簡便な方法として標準サンプルを用いて■。×Ω
を決定する方法がある。今回は水素含有量が既知である
例えばマイラー(C+oHgo 4)やカプトン(C,
、H,。O,N、)等の有機フィルムを標準サンプルと
して測定し、それらの結果を(1)式に代入して、V+
+XΩを算出した。
Y-V, (E, f(θ))×ΩXQXNHX t=-(
+) V 11(E, r(θ))×Ω of the above formula (1)
are constants specific to the measurement system, and can be found through calculations, but
■An even simpler method is to use a standard sample. ×Ω
There is a way to determine. This time, we will focus on materials with known hydrogen content, such as Mylar (C+oHgo 4) and Kapton (C,
,H,. Measure organic films such as O, N, ) as standard samples and substitute the results into equation (1) to calculate V +
+XΩ was calculated.

前記イールドの積分値YはH原子の個数に対応するもの
であり、検出″?53で測定したH原子の電荷1から求
められる。従ってI]原子のエネルギー別にYが求まり
、エネルギーとYとの関係を示すエネルギースペクトル
が第2図のように得られる。
The integral value Y of the yield corresponds to the number of H atoms, and is obtained from the charge 1 of the H atoms measured in the detection "?53. Therefore, Y is determined for each energy of the atom, and the relationship between the energy and Y is An energy spectrum showing the relationship is obtained as shown in FIG.

このエネルギースペクトルにおいて、横軸方向のスペク
トル幅は薄膜の享さに対応し、縦軸のイールド値(積分
値)YはH原子の個数に対応するため、このスペクトル
はH原子の薄膜の深さ方向分布を示す。またスペクトル
の面積はH原子の絶対411に相当する値であり、この
面積を求めることによって薄膜中の11原子の密度が求
まる。ただし実際には、正確にその密度が判っている試
料について予めエネルギースペクトルを測定しておき、
スペクトル同士を対比させることによってト■原子の密
度を求めることが行われている。
In this energy spectrum, the spectrum width along the horizontal axis corresponds to the depth of the thin film, and the yield value (integral value) Y along the vertical axis corresponds to the number of H atoms, so this spectrum corresponds to the depth of the thin film of H atoms. Shows directional distribution. The area of the spectrum is a value corresponding to the absolute value of 411 H atoms, and by determining this area, the density of 11 atoms in the thin film can be determined. However, in reality, the energy spectrum of a sample whose density is known accurately is measured in advance.
The density of atoms is determined by comparing their spectra.

次に深さ分解能について述べると、深さ分解能Rは、次
の(2)式で表される。
Next, referring to the depth resolution, the depth resolution R is expressed by the following equation (2).

R=(δE/△E)×L   ・・・・・・(2)ただ
しδEはスペクトルの立上がりのエネルギー幅、△Eは
全スペクトル幅、tは薄膜の厚さである。この深さ分解
能は、深さ方向分布を測定するときの測定精度に対応し
ており、深さ分解能は小さい程、即ちδEが小さい程測
定精度が高い。
R=(δE/ΔE)×L (2) where δE is the energy width at the rise of the spectrum, ΔE is the total spectrum width, and t is the thickness of the thin film. This depth resolution corresponds to the measurement accuracy when measuring the depth direction distribution, and the smaller the depth resolution, that is, the smaller δE, the higher the measurement accuracy.

δEが生ずる原因としては主としての薄膜に入射したC
3゛イオンが生ずる誤差、O薄膜より出射するH原子が
生ずる誤差、θ検出器面におかれたスリットが有限幅を
持つために起こる幾可学的誤差、0マイラフイルター中
にて生ずる誤差の4点に代表される。
The main cause of δE is C incident on the thin film.
3. Errors caused by ions, errors caused by H atoms emitted from the O thin film, geometric errors caused by the finite width of the slit placed on the θ detector surface, and errors caused in the 0-mil filter. This is represented by four points.

そこでコンピュータによりこれら■〜0の要因を考慮し
て、薄膜に入射される荷電粒子のエネルギー別に荷?1
i粒子の入射角(第1図に示す01)と深さ分解能との
関係を求め、第3図に示すグラフを得た。第3図中実線
A、〜A3は、荷電粒子のエネルギーを8 M e V
とした結果であり、夫々表面、500人、1500人の
深さにおける値である。
Then, a computer takes into account these factors from ■ to 0, and determines the charge depending on the energy of the charged particles incident on the thin film. 1
The relationship between the incident angle of i particles (01 shown in FIG. 1) and the depth resolution was determined, and the graph shown in FIG. 3 was obtained. Solid lines A and ~A3 in Fig. 3 indicate the energy of charged particles at 8 M e V.
The results are the values at the surface, 500 people, and 1500 people, respectively.

また点線81〜r33は、荷電粒子のエネルギーを12
 M e Vとした結果であり、夫々表面、500人、
1500人の深さにおける値でる。第3図中○印で示し
た値は、実際にエネルギースペクトルを測定してそのス
ペクトルにもとすいて深さ分解能を求めたものである。
Moreover, dotted lines 81 to r33 indicate the energy of charged particles as 12
The results are M e V, and the surface, 500 people,
The value is at a depth of 1500 people. The values indicated by circles in FIG. 3 are the values obtained by actually measuring the energy spectrum and calculating the depth resolution based on that spectrum.

この結果から本発明では、水素反跳法を適用するにあた
って荷電粒子のエネルギー及び入射角を夫々6〜8Me
V16〜10” とし、これにより分解能の向上を図る
こととした。例えば6 M e Vの大きさでは、深さ
分解能が105人と非常に小さな値になっている。なお
、荷電粒子のエネルギーが6 M e V以下では、薄
膜からH原子が十分に反跳しない。また入射角が6°以
下では荷電粒子の入射方向が略薄膜と平行になってしま
い、やはりI」原子が十分に反跳しない。
Based on this result, in the present invention, when applying the hydrogen recoil method, the energy and incident angle of charged particles are adjusted to 6 to 8 Me, respectively.
V16~10", thereby improving the resolution. For example, at a size of 6 M e V, the depth resolution is a very small value of 105 people. Note that the energy of charged particles is Below 6 M e V, H atoms do not recoil sufficiently from the thin film. Also, when the incident angle is below 6°, the direction of incidence of charged particles becomes approximately parallel to the thin film, and I'' atoms do not recoil sufficiently. do not.

以上の実験では、散乱角(第1図のθ、)が20゜の条
件で測定したが、この散乱角θ、は18〜22°が好ま
しい。またフィルターとしては、厚さ6μ〜201tx
のマイラフィルター用いることが好ましい。
In the above experiment, the scattering angle (θ in FIG. 1) was measured at 20°, but it is preferable that the scattering angle θ is 18 to 22°. Also, as a filter, the thickness is 6μ~201tx
It is preferable to use a Mylar filter.

第4図は、本発明の測定条件により、C含<r Eft
の多い層を少ない2層で挾んだ積層膜について測定した
エネルギースペクトルを示し、スペクトルの立上がりが
良好であることが伺える。この図からC含有hlの多い
膜では水素の含汀量も多く、しから界面において拡散が
起こっていないことが観測された。
FIG. 4 shows that C content<r Eft
The figure shows an energy spectrum measured for a laminated film in which a layer with a large amount of carbon is sandwiched between two layers with a small number of layers, and it can be seen that the rise of the spectrum is good. From this figure, it was observed that the film with a large amount of C-containing hl contained a large amount of hydrogen, and no diffusion occurred at the interface.

G1発明の効果 本発明によれば、通常の分析手段では雅しい水素の定量
が可能であり、深さ分解能が小さいため水素の深さ方向
の分布を高い精度で測定することができる。
G1 Effects of the Invention According to the present invention, it is possible to elegantly quantify hydrogen using ordinary analysis means, and since the depth resolution is small, the distribution of hydrogen in the depth direction can be measured with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で用いる測定装置を示す構成図、第2図
及び第4図は各々エネルギースペクトル図、第3図は深
さ分解能と入射角との関係を示すグラフである。 1・・スリット、2・・・薄膜、3・・検圧器、4・・
・フィルタ。 外2名 第1図 唄1定*BJjのオ先成コ 第2図 エネル+:−スへ゛クトル図 第4図 オ(弔工守ルギー (MeV)
FIG. 1 is a configuration diagram showing a measuring device used in the present invention, FIGS. 2 and 4 are energy spectrum diagrams, and FIG. 3 is a graph showing the relationship between depth resolution and incident angle. 1...Slit, 2...Thin film, 3...Pressure detector, 4...
·filter. Other 2 people Figure 1 Song 1 constant * BJj O's first stage Figure 2 Energy +:-space vector Figure 4 O (Mourning guard Lugi (MeV)

Claims (1)

【特許請求の範囲】[Claims] (1)薄膜に荷電粒子を小さな入射角で入射させ、弾性
散乱により反跳した水素原子を検出して、その水素原子
のエネルギーとエネルギー毎の、水素原子の個数との関
係を示すエネルギースペクトルを求め、これにもとずい
て薄膜中の水素原子の深さ方向分布と水素原子の絶対量
を測定する方法において、 荷電粒子のエネルギー及び入射角を夫々6〜8MeV、
6〜10°としたことを特徴とする薄膜中の水素測定法
(1) Charged particles are incident on a thin film at a small angle of incidence, hydrogen atoms recoil by elastic scattering are detected, and an energy spectrum showing the relationship between the energy of the hydrogen atoms and the number of hydrogen atoms for each energy is obtained. In the method of measuring the depth distribution of hydrogen atoms and the absolute amount of hydrogen atoms in a thin film based on this, the energy and incidence angle of charged particles are set to 6 to 8 MeV, respectively.
A method for measuring hydrogen in a thin film, characterized in that the angle is 6 to 10 degrees.
JP63310444A 1988-12-08 1988-12-08 Measurement of hydrogen in thin film Pending JPH02156145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63310444A JPH02156145A (en) 1988-12-08 1988-12-08 Measurement of hydrogen in thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63310444A JPH02156145A (en) 1988-12-08 1988-12-08 Measurement of hydrogen in thin film

Publications (1)

Publication Number Publication Date
JPH02156145A true JPH02156145A (en) 1990-06-15

Family

ID=18005321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63310444A Pending JPH02156145A (en) 1988-12-08 1988-12-08 Measurement of hydrogen in thin film

Country Status (1)

Country Link
JP (1) JPH02156145A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310961A (en) * 2001-04-19 2002-10-23 Fujitsu Ltd Depth element distribution measurement method
US8803087B2 (en) 2004-09-30 2014-08-12 Kobe Steel, Ltd. Spectrum analyzer and method of spectrum analysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310961A (en) * 2001-04-19 2002-10-23 Fujitsu Ltd Depth element distribution measurement method
US8803087B2 (en) 2004-09-30 2014-08-12 Kobe Steel, Ltd. Spectrum analyzer and method of spectrum analysis

Similar Documents

Publication Publication Date Title
Jaklevic et al. A. beta.-gage method applied to aerosol samples
Antoon et al. Least-squares curve-fitting of Fourier transform infrared spectra with applications to polymer systems
Wilson Precision quantameter for high energy X-rays
Voyvodic et al. Multiple scattering of fast particles in photographic emulsions
Stern et al. Amplitude of the extended-x-ray-absorption fine structure in bromine molecules
Doyle et al. The analysis of elastic recoil detection data
Chow et al. The 16O (p, γ) 17F direct capture cross section with an extrapolation to astrophysical energies
Tran et al. Measurement of the x-ray mass attenuation coefficient and the imaginary part of the form factor of silicon using synchrotron radiation
JPH02156145A (en) Measurement of hydrogen in thin film
Mikaelyan et al. Double Mott scattering of electrons
Batterman et al. Pendellösung Measurement of the Atomic Scattering Factor of Germanium
Beaglehole et al. Dielectric constant of gold, copper, and gold-copper alloys between 18 and 35 eV
Gurbich et al. Measurements and evaluation of the cross-section for helium elastic scattering from nitrogen
Krupp et al. He 4 (n→, n) He 4 analyzing power in the energy range from 15 to 50 MeV
Shin et al. Photoneutron angular distributions from the 2H (γ, n) H reaction
Ashibe et al. A three Ge (Li) Compton polarimeter for nuclear-reaction gamma-rays
Barradas et al. Simulated annealing analysis of nuclear reaction analysis measurements of polystyrene systems
Szilagyi et al. Cross section measurements of the 1H (4He, 4He) 1H elastic recoil reaction for ERD analysis
Cheng et al. Depth profiling of hydrogen in thin films with the elastic recoil detection technique
Adair Target thickness and uniformity measurements using charged particles
JPH06222019A (en) Nondestructive quantitative analysis method for multilayer thin films
Radović et al. Measurement and parametrization of proton elastic scattering cross sections for nitrogen
Apostolakis et al. The determination of linear distortion in nuclear emulsions
Kendelewicz et al. Large-angle bond-rotation relaxation for CdTe (110)
Rauhala et al. Backscattering of 7Li-ions from oxygen below 6.25 MeV