[go: up one dir, main page]

JPH02154661A - Removal of dregs of heated soy sauce - Google Patents

Removal of dregs of heated soy sauce

Info

Publication number
JPH02154661A
JPH02154661A JP63307432A JP30743288A JPH02154661A JP H02154661 A JPH02154661 A JP H02154661A JP 63307432 A JP63307432 A JP 63307432A JP 30743288 A JP30743288 A JP 30743288A JP H02154661 A JPH02154661 A JP H02154661A
Authority
JP
Japan
Prior art keywords
soy sauce
membrane
pasteurized
heated
dregs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63307432A
Other languages
Japanese (ja)
Other versions
JP2764146B2 (en
Inventor
Atsuo Watanabe
敦夫 渡辺
Mitsutoshi Nakajima
光敏 中嶋
Hiroshi Nabeya
浩志 鍋谷
Toshiro Otani
敏郎 大谷
Yoshihiko Nawa
義彦 名和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Food Research Institute
Original Assignee
National Food Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Food Research Institute filed Critical National Food Research Institute
Priority to JP63307432A priority Critical patent/JP2764146B2/en
Publication of JPH02154661A publication Critical patent/JPH02154661A/en
Application granted granted Critical
Publication of JP2764146B2 publication Critical patent/JP2764146B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soy Sauces And Products Related Thereto (AREA)

Abstract

PURPOSE:To immediately remove dregs in high recovery ratio without settling dregs of heated soy sauce in a tank by removing dregs of heated soy sauce using a dynamic membrane comprising porous ceramic as a supporting material. CONSTITUTION:Unrefined soy sauce is squeezed to give raw soy sauce, which is heated to give heated soy sauce. The heated soy sauce in a high-temperature state after heating is filtered by using a self suppression type dynamic membrane comprising porous ceramic having <=1mum, preferably <=0.8mum average particle diameter under <=0.4MPa, preferably <=0.2MPa filter pressure.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は火入れ醤油から澱を除去して醤油を精製する澱
引き方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a lees removal method for removing lees from pasteurized soy sauce and refining soy sauce.

(従来の技術) 現在行なわれている醤油の一般的製造工程は第7図Aに
示すように、諸法を圧搾して得られる生揚醤油を加熱し
て火入れ醤油とし、この火入れ醤油をタンク内で静置し
、火入れによって失活・変性した酸素類やタンパク質を
凝集させ澱としてタンク底部に沈降せしめ、上澄の醤油
を珪藻土を用いて濾過することで製品とするようにして
いる。
(Prior art) As shown in Figure 7A, the current general manufacturing process for soy sauce is to heat raw soy sauce obtained by pressing various methods to make pasteurized soy sauce, and store this pasteurized soy sauce in a tank. The soy sauce is allowed to stand still, and the oxygen and proteins deactivated and denatured by pasteurization are allowed to aggregate and settle as lees at the bottom of the tank, and the supernatant soy sauce is filtered through diatomaceous earth to become a product.

斯る従来法による場合は、火入れ醤油の10%程度を澱
として除去しているが、この澱にはまだ多量の醤油分が
残っており、製品収率の面で不利がある。
In such a conventional method, about 10% of pasteurized soy sauce is removed as lees, but a large amount of soy sauce still remains in the lees, which is disadvantageous in terms of product yield.

そこで従来法の改良方法として第7図Bに示す方法が提
案されている。この方法はタンク底部に沈降した澱を高
分子膜を通して再び濾過し、澱中の醤油を回収してこの
回収分を上澄醤油に加えて珪藻土による濾過を行い、製
品収率を98%程度まで高める方法である。
Therefore, a method shown in FIG. 7B has been proposed as an improved method of the conventional method. In this method, the lees that have settled at the bottom of the tank are filtered again through a polymer membrane, the soy sauce in the lees is recovered, and this recovered amount is added to the supernatant soy sauce and filtered through diatomaceous earth, increasing the product yield to around 98%. This is a way to increase it.

(発明が解決しようとする課題) 上述した従来法はいずれも珪藻土濾過を経て製品を得る
ようにしているが、珪藻土濾過では微細な澱や細菌の耐
熱性芽胞子を完全に除去できず、また使用後の醤油含有
珪藻土が産業廃棄物として問題となっている。
(Problems to be Solved by the Invention) In all of the conventional methods described above, products are obtained through diatomaceous earth filtration, but diatomaceous earth filtration cannot completely remove fine sludge and heat-resistant spores of bacteria. Diatomaceous earth containing soy sauce after use has become a problem as industrial waste.

また高分子膜を用いて製品収率を高める場合にあっても
、高分子膜は耐薬品性(洗浄性)耐熱性の点で不利があ
り、特に高分子膜として広く用いられているホローファ
イバータイプのものは、保持液の粘度上昇に伴って膜モ
ジュールの人口圧と出口圧の差が犬きくなり、膜が破壊
されるおそれがある。
Furthermore, even when using polymer membranes to increase product yield, polymer membranes have disadvantages in terms of chemical resistance (cleanability) and heat resistance, especially hollow fibers that are widely used as polymer membranes. With this type, as the viscosity of the retentate increases, the difference between the population pressure of the membrane module and the outlet pressure becomes large, and there is a risk that the membrane may be destroyed.

(課題を解決するための手段) 上記課題を解決すべく本発明は、火入れ醤油をタンク内
で沈降せしめることなく、直ちに多孔質セラミックを支
持体とする自己阻止型ダイナミック膜を用いて濾過する
ようにし、特に膜透過流束を向上すべく、?8!過温度
、多孔質セラミック支持体の孔径及び濾過圧力を所定範
囲に設定した。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a method for immediately filtering pasteurized soy sauce using a self-blocking dynamic membrane using porous ceramic as a support, without allowing the pasteurized soy sauce to settle in a tank. and especially to improve membrane permeation flux? 8! The temperature, the pore size of the porous ceramic support, and the filtration pressure were set within predetermined ranges.

(作用) 生揚醤油を火入れし、80m程度まで加熱された火入れ
醤油をそのまま多孔質セラミック支持体に通す。すると
、分離されるべき高分子成分、主としてタンパク質が多
孔膜セラミック面上にダイナミック膜を形成し容量で9
7〜98%程度の醤油と2〜3%の高粘度の澱に分離さ
れる。
(Function) Fresh fried soy sauce is pasteurized, and the pasteurized soy sauce heated to about 80 m is directly passed through a porous ceramic support. Then, the polymer components to be separated, mainly proteins, form a dynamic membrane on the ceramic surface of the porous membrane, and the capacitance increases by 9.
It is separated into about 7-98% soy sauce and 2-3% high viscosity lees.

(実施例) 以下に本発明の実施例を添付図面に基いて説明する。(Example) Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は澱引き装置の概略構成図であり、左側部分は本
発明方法の実施に用いる装置、右側部分は比較例に用い
る装置を示し、タンクは共用としている。
FIG. 1 is a schematic diagram of a racking device, in which the left side shows the device used for carrying out the method of the present invention, and the right side shows the device used in a comparative example, with the tank being shared.

澱引き装置はタンク1に火入れ醤油2を貯留するととも
に温度コントローラ3を付設し、またタンク1内の火入
れ醤油2はポンプ4によって膜モジュール5.6に供給
され、膜を透過しなかった保持液は再びタンク!内に戻
すようにし、膜モジュール5.6の入口部及び出口部に
は圧力計7を設け、また膜モジュール5.6の出口部よ
りも下流側には圧力調整バルブ8を設けている。ここで
本発明方法の実施に用いる膜モジュール5は直列二連と
し内部に多孔質セラミック支持体膜を収納し、比較例に
用いる膜モジユール6内には高分子膜を収納した。
The racking device stores pasteurized soy sauce 2 in a tank 1 and is equipped with a temperature controller 3, and the pasteurized soy sauce 2 in the tank 1 is supplied to a membrane module 5.6 by a pump 4, and the retained liquid that has not passed through the membrane is removed. Tank again! A pressure gauge 7 is provided at the inlet and outlet of the membrane module 5.6, and a pressure regulating valve 8 is provided downstream of the outlet of the membrane module 5.6. Here, the membrane modules 5 used for carrying out the method of the present invention were arranged in series and housed a porous ceramic support membrane therein, and the membrane module 6 used for the comparative example housed a polymer membrane.

以上の装置を用い第2図に示すように本発明にあっては
、火入れ醤油を濾A膜を用いて醤油と澱に分離するわけ
であるが、多孔質セラミック支持体を用いた自己阻止型
ダイナミック膜による場合と高分子膜を用いた場合、お
よびダイナミック膜を用いた場合の各種操作条件を比較
した実験結果を以下に述べる。
In the present invention, pasteurized soy sauce is separated into soy sauce and lees using the above-mentioned device as shown in Fig. 2, using a filter A membrane. The following describes experimental results comparing various operating conditions when using a dynamic membrane, when using a polymer membrane, and when using a dynamic membrane.

[セラミック膜と高分子膜の比較] セラミック膜と高分子膜との比較は、容量減少率RF、
膜透過流束及び粘性率ηとの関係について行い、その結
果を第3図に示す、尚、供試液の調整、膜の種類、操作
条件及び運転方法は以下の通りである。
[Comparison of ceramic membrane and polymer membrane] Comparison of ceramic membrane and polymer membrane is based on capacity reduction rate RF,
The relationship between the membrane permeation flux and the viscosity η was investigated, and the results are shown in FIG. 3. The preparation of the sample liquid, the type of membrane, the operating conditions, and the operating method are as follows.

倣uW二二」Ll 本醸造濃口生揚醤油を65℃で2時間、更に85℃で1
時間加熱した火入れ澱混濁醤油を使用。
Imitation uW 22'' Ll Honjozo Koikuchi Namaage Soy Sauce at 65℃ for 2 hours and then at 85℃ for 1 hour.
Uses pasteurized lees cloudy soy sauce that has been heated for a while.

膜の種類 本発明(自己阻止型ダイナミック膜) :アルミナ・シリカ製の多管モジュール支持体の孔径は
0,2μm及び05μm比較例(高分子膜) :ボリサルフォン製の中空糸膜 操作条件 本発明  濾過圧カニ 0.2MPa 膜面線速:2m−5− 温   度・ 30℃ 比較例  濾過圧カニ 0.1MPa 膜面線速:当初1 ts−5−’ RF4で0.75a−5−’ RF25で0.03m−5−’ 温   度= 30℃ ここで比較例の濾過圧力及び膜面線速を本発明方法より
も低くしたのは、高分子膜はRFが大きくなるにつれ、
モジュールの入口圧と出口圧の差が大きくなり破壊のお
それがあるためである。
Type of membrane Invention (self-blocking dynamic membrane): Pore diameter of multitubular module support made of alumina-silica is 0.2 μm and 0.5 μm Comparative example (polymer membrane): Hollow fiber membrane made of borisulfone Operating conditions Invention Filtration Pressure crab 0.2MPa Membrane surface linear velocity: 2m-5- Temperature/30℃ Comparative example Filtration pressure crab 0.1MPa Membrane surface linear velocity: Initially 1 ts-5-' RF4 0.75a-5-' RF25 0.03m-5-' Temperature = 30°C Here, the reason why the filtration pressure and membrane surface linear velocity of the comparative example were made lower than those of the method of the present invention is that as the RF increases, the polymer membrane
This is because the difference between the inlet pressure and outlet pressure of the module becomes large and there is a risk of destruction.

運転方法 運転方法は本発明方法も比較例も同じで具体的には20
flの供試液を膜透過流束を測定しながらRF5まで処
理した保持液41と、90J2の供試液をRF5まで処
理した保持液18nとを加えて22Ilとし、この22
℃の保持液のRF5からRF50までの膜透過流束を測
定した。
Operating method The operating method is the same for both the method of the present invention and the comparative example, specifically 20
Retained liquid 41 obtained by treating fl test liquid to RF5 while measuring the membrane permeation flux, and retained liquid 18n obtained by processing 90J2 test liquid to RF5 to make 22Il.
The membrane permeation flux from RF5 to RF50 of the retentate at °C was measured.

第3図からも明らかなように、自己阻止型ダイナミック
膜を用いた本発明方法によれば、濾過処理初期から膜透
過流束の変化が小さく、特にRF1o以降に保持液の粘
性率が大巾に上昇しても膜透過流束には大きな変化がな
く安定している。
As is clear from FIG. 3, according to the method of the present invention using a self-blocking dynamic membrane, the change in the membrane permeation flux is small from the beginning of the filtration process, and the viscosity of the retentate is particularly large after RF1o. Even when the temperature increases, the membrane permeation flux does not change significantly and remains stable.

方高分子膜を用いた比較例にあっては、濾過処理当初の
膜透過流束は大きいが保持液の粘性率が大きくなると急
激に膜透過流束が低下する。
In the comparative example using a polymer membrane, the membrane permeation flux was large at the beginning of the filtration process, but as the viscosity of the retentate increased, the membrane permeation flux suddenly decreased.

このように本発明方法によれば、RFIOからRF45
まて膜透過流束は殆ど変化しないので、珪藻土濾過以上
の高い回収率で火入れ醤油を濾過でき、逆に高分子膜を
用いた場合には、回収率を高めるために珪藻土濾過を組
合せなければならない。したがって本発明方法によれば
工程が簡略化できる。尚、本発明方法によると、保持液
の混濁度は0,86から18.01 まで増加したが、
透過液の混濁度は保持液の2%以下を゛維持した。
As described above, according to the method of the present invention, from RFIO to RF45
Since the membrane permeation flux hardly changes, pasteurized soy sauce can be filtered with a higher recovery rate than diatomaceous earth filtration.On the other hand, when using a polymer membrane, diatomaceous earth filtration must be combined to increase the recovery rate. It won't happen. Therefore, according to the method of the present invention, the process can be simplified. According to the method of the present invention, the turbidity of the retentate increased from 0.86 to 18.01, but
The turbidity of the permeate was maintained at 2% or less of the retentate.

[火入れ醤油の濾過温度コ 以上によって自己阻止型ダイナミック膜が有利であるこ
とが判明したが、更に自己阻止型ダイナミック膜膜を用
いた場合の火入れ醤油の濾過温度と膜透過流束との関係
について行った実験結果を第4図に示す。尚、供試液の
調整、膜の種類及び温度を除く操作条件について、は前
記した本発明方法と同様とし、温度については20,4
0゜60.80℃の各温度で行った。
[It has been found that the self-blocking dynamic membrane is advantageous when the filtration temperature of pasteurized soy sauce is higher than 0. Furthermore, the relationship between the filtration temperature of pasteurized soy sauce and the membrane permeation flux when a self-blocking dynamic membrane is used is The results of the experiment conducted are shown in Figure 4. The operating conditions except for the preparation of the sample solution, the type of membrane, and the temperature were the same as those of the method of the present invention described above, and the temperature was set at 20.4%.
The tests were carried out at various temperatures of 0°C, 60.80°C.

第4図から明らかなように膜透過流束は温度上昇により
直線的に増加し、80℃では20℃の場合の約3倍の膜
透過流束を示す。特に自己阻止型ダイナミック膜を使用
する場合には高分子膜に比へて耐熱性において優れるた
め、火入れ直後の火入れ醤油(80〜85℃)をそのま
ま処理することができ、またこのようにすることで膜透
過流束が大きくなり、処理時間も短縮される。
As is clear from FIG. 4, the membrane permeation flux increases linearly as the temperature increases, and at 80°C, the membrane permeation flux is about three times that at 20°C. In particular, when using a self-blocking dynamic membrane, it has better heat resistance than a polymer membrane, so it is possible to process pasteurized soy sauce (80-85°C) immediately after pasteurization, and it is also possible to process it in this way. This increases the membrane permeation flux and reduces processing time.

[多孔質セラミック支持体の孔径と操作圧力]高分子物
質を含む溶液の濾過では、大きな孔径の膜を使用すると
目詰りが激しく膜透過流束を大きく低下させ、小さな孔
径の膜を使用すると膜自体の抵抗が大きくなり高い膜透
過流束が得られないため、孔径と操作圧力を種々変化さ
せて行った結果を第5図に示す。尚供試液の調整につい
ては面記と同様とし、膜の種類及び操作条件は以下の通
りとした。
[Pore size of porous ceramic support and operating pressure] When filtrating solutions containing polymeric substances, using a membrane with a large pore size will cause clogging, which will greatly reduce the membrane permeation flux, and using a membrane with a small pore size will cause the membrane to clog. Since the resistance of the membrane becomes large and a high membrane permeation flux cannot be obtained, the pore diameter and operating pressure were varied and the results are shown in FIG. The preparation of the sample solution was the same as described above, and the type of membrane and operating conditions were as follows.

膜の種類 アルミナ・シリカ製の各管モジュール、孔径は  0.
2μ m、  0.5μ m、  0.8μ rn、 
 1.0μ m。
Each tube module is made of membrane type alumina/silica, and the pore size is 0.
2μm, 0.5μm, 0.8μrn,
1.0μm.

1.5μm 操作条件 濾過圧カニ 0.IMPa、 0.2MPa、 OJM
Pa、 0.4MPa膜面線速: 2m−3−’ 温 度:30℃ 第5図から明らかなように孔径(平均孔径)が1.0μ
m及び1.5μmのセラミック支持体を用いた場合は、
O,1MPa程度で限界流束となり、その値は0.2μ
m、 0.5μm及び0.8μlのセラミック支持体を
用いたダイナミック膜の限界流束の60%にしかならな
い。これは澱の寸法が0.8〜1.2μm程度であるた
め、孔径が1.0μm以上のセラミック支持体では目詰
りを生じるからと考えられる。したがって、火入れ醤油
の澱引きに用いるセラミック支持体の孔径は0.8μm
以下のものが好ましい。
1.5μm Operating conditions Filtration pressure Crab 0. IMPa, 0.2MPa, OJM
Pa, 0.4 MPa Membrane surface linear velocity: 2 m-3-' Temperature: 30°C As is clear from Figure 5, the pore diameter (average pore diameter) is 1.0 μ
When using a ceramic support of m and 1.5 μm,
The critical flux is approximately 0.1 MPa, and its value is 0.2 μ.
m, only 60% of the critical flux of the dynamic membrane with 0.5 μm and 0.8 μl ceramic supports. This is thought to be because the size of the sludge is about 0.8 to 1.2 μm, which causes clogging in ceramic supports with pore diameters of 1.0 μm or more. Therefore, the pore diameter of the ceramic support used for racking pasteurized soy sauce is 0.8 μm.
The following are preferred.

また、操作圧力については、0.2MPa付近において
最高値となり、圧力が増加すると目詰りを生じやすい。
Further, the operating pressure reaches its maximum value around 0.2 MPa, and as the pressure increases, clogging tends to occur.

したがって操作圧力は0.4MPa以下、特に0.2M
Pa以下とするのが好ましい。
Therefore, the operating pressure is 0.4 MPa or less, especially 0.2 M
It is preferable to set it to Pa or less.

[膜面線速] 膜面線速が増加すると膜面での剪断力が高くなり膜面付
近の物質移動条件が向上し膜透過流束も大きくなると考
えられるため、その実験も行い、結果を第6図に示す。
[Membrane surface linear velocity] As the membrane surface linear velocity increases, the shear force at the membrane surface increases, the mass transfer conditions near the membrane surface improve, and the membrane permeation flux is thought to increase. It is shown in FIG.

第6図からも明らかなように膜面線速と膜透過速度とは
比例関係にある。
As is clear from FIG. 6, there is a proportional relationship between the membrane surface linear velocity and the membrane permeation rate.

(発明の効果) 以上説明した如く本発明によれば、火入れ醤油の澱引き
に多孔質セラミックを支持体としたダイナミック膜を用
いることで、従来行っていたタンク内での静置及び珪藻
土濾過が省略でき、且つ高分子膜を用いた場合と同等以
上の製品収率が期待できる。
(Effects of the Invention) As explained above, according to the present invention, by using a dynamic membrane with porous ceramic as a support to remove the lees from pasteurized soy sauce, the conventional method of standing still in a tank and diatomaceous earth filtration can be avoided. It can be omitted, and a product yield equivalent to or higher than that obtained when using a polymer membrane can be expected.

そして火入れ直後の火入れ醤油を濾過するとともに、セ
ラミック支持体膜の孔径及び操作圧力を適切なものとす
ることで、更なる収率向上を図ることができる。
By filtering the pasteurized soy sauce immediately after pasteurization and by adjusting the pore size and operating pressure of the ceramic support membrane to appropriate values, it is possible to further improve the yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は澱引き装置の概略構成図、第2図は本発明方法
の工程図、第3図は多孔質セラミックを支持体としたダ
イナミック膜と高分子膜とを容量減少率、膜透過流束及
び粘性率との関係で比較したグラフ、第4図は火入れ醤
油の濾過温度と膜透過流束との関係を示すグラフ、第5
図はセラミック支持体膜の孔径及び操作圧力と膜透過流
束との関係を示すグラフ、第6図は膜面線速と膜透過流
束との関係を示すグラフ、第7図A、Bは従来方法の工
程を示す図である。 尚、図面中1はタンク、2は火入れ醤油、4はポンプ、
5,6は膜モジュールである。 特 許 出 願 人  農林水産省食品総合研究所 代 理 人 弁理士 下 田 容−印 同
Fig. 1 is a schematic diagram of the racking equipment, Fig. 2 is a process diagram of the method of the present invention, and Fig. 3 is a diagram showing the capacity reduction rate and membrane permeation flow of a dynamic membrane using porous ceramic as a support and a polymer membrane. A graph comparing the relationship between flux and viscosity, Figure 4 is a graph showing the relationship between filtration temperature of pasteurized soy sauce and membrane permeation flux, and Figure 5 is a graph comparing the relationship between flux and viscosity.
The figure is a graph showing the relationship between the pore diameter and operating pressure of the ceramic support membrane and the membrane permeation flux. Figure 6 is a graph showing the relationship between the membrane surface linear velocity and the membrane permeation flux. Figure 7 A and B are graphs showing the relationship between the membrane surface linear velocity and the membrane permeation flux. It is a figure which shows the process of a conventional method. In addition, in the drawing, 1 is the tank, 2 is pasteurized soy sauce, 4 is the pump,
5 and 6 are membrane modules. Patent applicant: Ministry of Agriculture, Forestry and Fisheries Food Research Institute Agent: Patent attorney Yo Shimoda - Ind.

Claims (3)

【特許請求の範囲】[Claims] (1)諸味を圧搾して得られる生揚醤油を加熱して火入
れ醤油とし、この火入れ醤油を多孔質セラミックを支持
体とする自己阻止型ダイナミック膜を利用して濾過する
ことで醤油と澱とを分離するようにしたことを特徴とす
る火入れ醤油の澱引き方法。
(1) Raw soy sauce obtained by pressing moromi is heated to make pasteurized soy sauce, and this pasteurized soy sauce is filtered using a self-blocking dynamic membrane with porous ceramic as a support to separate soy sauce and lees. A method for straining pasteurized soy sauce, which is characterized by separating the soy sauce.
(2)前記火入れ醤油の濾過は火入れ後の高温状態のと
きに行うようにしたことを特徴とする請求項1に記載の
火入れ醤油の澱引き方法。
(2) The method for straining the pasteurized soy sauce according to claim 1, wherein the filtration of the pasteurized soy sauce is carried out when the pasteurized soy sauce is in a high temperature state after pasteurization.
(3)前記セラミック支持体は平均孔径が1μm以下の
ものを用い、また濾過圧力は0.4MPa(メガパスカ
ル)以下としたことを特徴とする請求項1に記載の火入
れ醤油の澱引き方法。
(3) The method for straining pasteurized soy sauce according to claim 1, wherein the ceramic support has an average pore diameter of 1 μm or less, and the filtration pressure is 0.4 MPa (megapascal) or less.
JP63307432A 1988-12-05 1988-12-05 How to set hot soy sauce Expired - Lifetime JP2764146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63307432A JP2764146B2 (en) 1988-12-05 1988-12-05 How to set hot soy sauce

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63307432A JP2764146B2 (en) 1988-12-05 1988-12-05 How to set hot soy sauce

Publications (2)

Publication Number Publication Date
JPH02154661A true JPH02154661A (en) 1990-06-14
JP2764146B2 JP2764146B2 (en) 1998-06-11

Family

ID=17968998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63307432A Expired - Lifetime JP2764146B2 (en) 1988-12-05 1988-12-05 How to set hot soy sauce

Country Status (1)

Country Link
JP (1) JP2764146B2 (en)

Also Published As

Publication number Publication date
JP2764146B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
CA1330050C (en) Enrichment and concentration of proteins by ultrafiltration
JP2003519005A (en) Cross flow filtration device
US5221479A (en) Filtration system
EP1206961B1 (en) Filter membranes for physiologically active substances
JP3447741B2 (en) Liquid filtration method and microfiltration device using MF module
WO1989011899A1 (en) Tandem hollow fiber cell culture product harvest system
JPS623782A (en) Method and apparatus for filtering beer
DE69419296D1 (en) Microfiltration process for removing turbid compounds from a liquid
Russotti et al. Pilot-scale harvest of recombinant yeast employing microfiltration: a case study
Burrell et al. Crossflow microfiltration of beer: Laboratory-scale studies on the effect of pore size
JPH02154661A (en) Removal of dregs of heated soy sauce
Caridis et al. Pressure effects in cross-flow microfiltration of suspensions of whole bacterial cells
WO2022250036A1 (en) Method and apparatus for separating and purifying minute useful substance
JP2607604B2 (en) How to make clear honey
Zeman Ultrafiltration
Devereux et al. Membrane separation of protein precipitates: unstirred batch studies
EP3117719B1 (en) Filtration method for heterogeneous food mixtures
JPH10263374A (en) Filter for filtering fermented drink
Mai Membrane Filtration Technology and Its Application in Gac (Momordica cochinchinensis Spreng.) Oil Concentration
JPH05329339A (en) Filtration system
Bhave et al. Inorganic membranes in food and biotechnology applications
Negrel et al. Newly-designed proteinic membrane for low ultrafiltration
JPH08502923A (en) Cross-flow microfiltration method
CA1079269A (en) Process of separating precipitated proteins from albumin - containing suspensions
JPS6397207A (en) Filtration separator

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term