JPH0215302B2 - - Google Patents
Info
- Publication number
- JPH0215302B2 JPH0215302B2 JP57203517A JP20351782A JPH0215302B2 JP H0215302 B2 JPH0215302 B2 JP H0215302B2 JP 57203517 A JP57203517 A JP 57203517A JP 20351782 A JP20351782 A JP 20351782A JP H0215302 B2 JPH0215302 B2 JP H0215302B2
- Authority
- JP
- Japan
- Prior art keywords
- coolant
- polymer
- cooling
- ingot
- molecular weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002826 coolant Substances 0.000 claims abstract description 23
- 229920000642 polymer Polymers 0.000 claims abstract description 20
- 238000001816 cooling Methods 0.000 claims abstract description 12
- 238000005266 casting Methods 0.000 claims abstract description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 13
- 239000000110 cooling liquid Substances 0.000 claims description 10
- 239000000498 cooling water Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 238000009749 continuous casting Methods 0.000 claims description 4
- 229920002401 polyacrylamide Polymers 0.000 claims description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 2
- 125000000129 anionic group Chemical group 0.000 claims description 2
- 230000007062 hydrolysis Effects 0.000 claims 1
- 238000006460 hydrolysis reaction Methods 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 239000000654 additive Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/124—Accessories for subsequent treating or working cast stock in situ for cooling
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
- Thermotherapy And Cooling Therapy Devices (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Moulding By Coating Moulds (AREA)
- Lubricants (AREA)
Abstract
Description
本発明は、連続鋳造時鋳型からでてくる金属ス
トランドを冷却する方法で、冷却液をストランド
表面に直接作用させる方法に関する。
直接冷却を行なう連続鋳造は、鋳型から出てく
る金属ストランドの表面が、鋳型直下で該金属か
ら熱を取り去るため、冷却液で吹きつけられるよ
うにして行なわれる。鋳片鋳造(しばしばドロツ
プと呼ばれる)の始動段階の際、まずはじめに冷
却液はダミーベース上にのみぶつかる。これによ
つて生じるこの段階での間接的冷却により溶融金
属の穏やかな凝固が行なわれ、平坦な側面をもつ
た鋳片の脚部ができる。ダミーベースがさらに下
るにつれ、冷却液は鋳片表面に直接ぶつかること
になり、金属ストランドからの熱の除去が急激に
増大する。この熱衝撃の結果としてできる熱歪み
が鋳片の降伏点以上に大となれば、鋳片脚部で凸
状彎曲状の永久変形を生じる。また該材料の引張
り強さを越えると鋳片に割れを生じることにな
る。平坦な基部すなわち脚部をもつ連続鋳造鋳片
をつくるためには、従つてストランドの始動段階
に強力すぎる冷却をしてはならない。
少くとも始動段階で冷却強さを減じさせるため
冷却液を脈動的に供給するという方法は知られて
いる。
また、少くとも始動段階で冷却液が加圧下で導
入されたガスを含んでいるという方法も知られて
いる。冷却液が鋳片の表面にぶつかつた際、冷却
液中に溶解していたガスは絶縁膜を形成し熱の除
去を、従つて冷却効果を低減させるものである。
上記に鑑み本発明の目的は、簡単で上記したよ
うな欠点がなく、冷却強さが低減され得るような
手段でもつて、初めに述べた類の方法を開発する
ことにある。
この目的は、少くとも鋳造の始動段階で分子量
104〜105のポリマーが冷却液に添加されていると
いう本発明の方法によつて成し得られる。
冷却液へのこのポリマーの添加を行なうことに
よつて、冷却液が熱い鋳片表面にぶつかつた際蒸
気泡の生成と放出の動きが、冷却液の表面張力の
著しい減少の結果として急激に変り、そして鋳片
表面上に冷却液蒸気の絶縁膜が形成され、鋳片か
らの熱除去が妨げられるまでになるものである。
ポリマーは濃縮された形、たとえば冷却液1リ
ツトル当りポリマー10〜50gの溶液として貯蔵タ
ンクから冷却液供給管へ制御された供給ポンプ手
段によつて供給される。
冷却液として水が用いられる場合、分子量105
〜5×106の非イオン性溶解ポリエチレン酸化物
が特にこの目的に適したポリマーであることが見
出された。
冷却液として水を用いる場合の本発明のさらに
他の有利な表現では、添加物として分子量106〜
5×107の部分的に加水分解しているアニオン性
ポリアクリドアミドのポリマーが用い得る。この
場合推奨されるポリアクリルアミドは10〜20%の
加水度と分子量約1.5×107を示すものである。
本発明に従う方法は連続鋳造用として通常の鋳
型および電磁鋳型の双方で実施し得、特に軽金属
の鋳造用のとりわけアルミニウムおよびアルミニ
ウム合金用として好適である。冷却液媒体中の添
加物の濃度は冷却強さにおける必要な低減度に応
じて選ばれるものであるが、通常1〜100ミリグ
ラム/リツトル程度である。
始動段階が終つたあとは、冷却液へのポリマー
の添加は止めてもよい。本発明に従う方法の他の
表現として、冷却液におけるポリマーの濃度は始
動段階で連続的に減少されてもよい。しかしなが
らある場合は全鋳造期間を通して本発明に従う方
法を用いるのが有利なこともある。
本発明の更なる利点、特徴および細部は推奨す
る実施態様について下記叙述において示される。
合金3004が、電磁鋳型を組み合せた垂直D.C.鋳
造装置での通常の鋳造条件のもとで断面500mm×
1600mmの鋳片の形に鋳造された。冷却液の供給速
度は全鋳造時間の間、600リツトル/分で一定に
保持された。表にあげられたポリマーが鋳片が
100mm長さに鋳造されるまでの間冷却水に添加さ
れた。この終りまでに水1リツトル当り10〜50g
のポリマーを含む溶液が貯蔵タンクから直接主冷
却供給パイプにポンプで制御されながら供給され
た。冷却水中に構成されたポリマーの濃度ももま
た同じ表中に示した。そのあとのドロツプ(鋳片
鋳造)の間は冷却水に対するポリマーの添加が行
なわれなかつた。
The present invention relates to a method for cooling a metal strand emerging from a mold during continuous casting, in which a cooling liquid is applied directly to the surface of the strand. Continuous casting with direct cooling is carried out in such a way that the surface of the metal strand exiting the mold is sprayed with a cooling liquid to remove heat from the metal directly below the mold. During the start-up phase of billet casting (often referred to as drop), the coolant initially impinges only on the dummy base. The resulting indirect cooling at this stage results in a gentle solidification of the molten metal, resulting in flat-sided slab legs. As the dummy base descends further, the coolant impinges directly on the slab surface and heat removal from the metal strands increases rapidly. If the thermal strain produced as a result of this thermal shock becomes greater than the yield point of the slab, permanent deformation in a convex curved shape will occur at the slab leg. Moreover, if the tensile strength of the material is exceeded, cracks will occur in the slab. In order to produce continuously cast slabs with flat bases or legs, the strand must therefore not be cooled too strongly during the start-up phase. It is known to supply coolant in a pulsating manner to reduce the cooling intensity at least during the start-up phase. It is also known that the cooling liquid, at least during the start-up phase, contains a gas introduced under pressure. When the coolant hits the surface of the slab, the gas dissolved in the coolant forms an insulating film that helps remove heat and thus reduces the cooling effect. In view of the above, the object of the present invention is to develop a method of the type mentioned at the outset, which is simple and does not suffer from the disadvantages mentioned above, and also in such a way that the cooling intensity can be reduced. The purpose is to reduce the molecular weight at least at the start-up stage of casting.
This is achieved by the method of the invention in which 10 4 to 10 5 polymers are added to the coolant. By adding this polymer to the coolant, the movement of vapor bubble formation and release when the coolant hits the hot slab surface is rapidly reduced as a result of a significant reduction in the surface tension of the coolant. This causes an insulating film of cooling liquid vapor to form on the surface of the slab, which impedes heat removal from the slab. The polymer is fed in concentrated form, for example as a solution of 10 to 50 g of polymer per liter of coolant, from the storage tank to the coolant supply line by means of a controlled feed pump. When water is used as the coolant, the molecular weight is 10 5
~5×10 6 nonionic dissolved polyethylene oxide has been found to be a particularly suitable polymer for this purpose. In a further advantageous embodiment of the invention, when water is used as the cooling liquid, the additive has a molecular weight of 10 6 to
A polymer of 5×10 7 partially hydrolyzed anionic polyacrylamide may be used. The polyacrylamides recommended in this case are those exhibiting a degree of hydration of 10-20% and a molecular weight of about 1.5×10 7 . The method according to the invention can be carried out both in conventional molds and in electromagnetic molds for continuous casting and is particularly suitable for casting light metals, especially aluminum and aluminum alloys. The concentration of additives in the coolant medium is selected depending on the required reduction in cooling strength, but is usually on the order of 1 to 100 milligrams per liter. After the start-up phase is over, the addition of polymer to the coolant may be stopped. As another expression of the method according to the invention, the concentration of polymer in the coolant may be continuously reduced during the start-up phase. However, in some cases it may be advantageous to use the method according to the invention throughout the entire casting period. Further advantages, features and details of the invention are set out in the following description of preferred embodiments. Alloy 3004 has a cross-section of 500mm x 500mm under normal casting conditions in a vertical DC casting machine combined with an electromagnetic mold.
It was cast in the form of a 1600mm slab. The coolant feed rate was kept constant at 600 l/min during the entire casting time. The polymers listed in the table are
It was added to the cooling water until it was cast to a length of 100mm. 10-50g per liter of water by the end of this
A solution containing the polymer was pumped directly from the storage tank into the main cooling supply pipe in a controlled manner. The concentration of polymer made up in the cooling water is also shown in the same table. During the subsequent drop (casting of the billet) no polymer was added to the cooling water.
【表】
始動段階の間、冷却水中の添加物の表示した濃
度を保持することにより、ほとんどき裂がなく割
れもない鋳片が冷却強さを低減した結果として得
られた。Table: By maintaining the indicated concentrations of additives in the cooling water during the start-up phase, nearly crack-free and crack-free slabs were obtained as a result of reduced cooling strength.
Claims (1)
が鋳型から出てくる際にそのストランドまたは鋳
片の表面に直接冷却液を作用させることによつて
冷却する方法において、104〜108の分子量を有す
るポリマーが少くとも鋳造の始期において冷却液
に添加されることを特徴とする金属の連続鋳造ス
トランドの鋳造時における冷却方法。 2 冷却水として水が用いられ、ポリマーとして
105〜5×106の分子量を有する非イオン性ポリエ
チレン酸化物が溶解状態で用いられることを特徴
とする、特許請求の範囲第1項に記載の方法。 3 冷却液として水を用い、ポリマーとして106
〜5×107の分子量を有し部分的に加水分解して
いるアニオン性ポリアクリルアミドを用いること
を特徴とする、特許請求の範囲第2項記載の方
法。 4 10〜20%の加水分解度をもち、かつ約1.5×
107の分子量をもつポリアクリルアミドを用いる
ことを特徴とする、特許請求の範囲第3項に記載
の方法。 5 ポリマーを冷却液に添加して1〜100ミリグ
ラム/リツトルの濃度とすることを特徴とする、
特許請求の範囲第1〜4項の何れかに記載の方
法。 6 ポリマーを冷却液に対し、該ポリマーを10〜
50ミリグラム/リツトル含む濃厚液の状態で必要
とする量で供給することを特徴とする、特許請求
の範囲第1〜5項の何れかに記載の方法。[Claims] 1. A method for cooling a continuously cast metal strand or slab by applying a cooling liquid directly to the surface of the strand or slab as it emerges from a mold, 10 4 A method for cooling continuous casting strands of metal during casting, characterized in that a polymer having a molecular weight of ~10 8 is added to the cooling liquid at least at the beginning of casting. 2 Water is used as cooling water, and as a polymer
2. Process according to claim 1, characterized in that a non-ionic polyethylene oxide having a molecular weight of from 10 <5> to 5*10 <6> is used in solution. 3 Using water as the coolant and 10 6 as the polymer
3. Process according to claim 2, characterized in that a partially hydrolysed anionic polyacrylamide having a molecular weight of ˜5×10 7 is used. 4 Has a degree of hydrolysis of 10 to 20% and approximately 1.5×
4. Process according to claim 3, characterized in that a polyacrylamide with a molecular weight of 10 7 is used. 5. characterized in that the polymer is added to the cooling liquid to a concentration of 1 to 100 milligrams per liter,
A method according to any one of claims 1 to 4. 6. Add the polymer to the cooling liquid and add the polymer to the cooling liquid.
6. A method according to claim 1, characterized in that it is supplied in the required amount in the form of a concentrated solution containing 50 mg/liter.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH7449/81-5 | 1981-11-20 | ||
CH744981 | 1981-11-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5893548A JPS5893548A (en) | 1983-06-03 |
JPH0215302B2 true JPH0215302B2 (en) | 1990-04-11 |
Family
ID=4325298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57203517A Granted JPS5893548A (en) | 1981-11-20 | 1982-11-19 | Cooling method in case of casting of continuous casting strand of metal |
Country Status (10)
Country | Link |
---|---|
US (1) | US4473106A (en) |
EP (1) | EP0080433B1 (en) |
JP (1) | JPS5893548A (en) |
AT (1) | ATE17451T1 (en) |
AU (1) | AU555976B2 (en) |
CA (1) | CA1201273A (en) |
DE (1) | DE3268600D1 (en) |
IS (1) | IS1379B6 (en) |
NO (1) | NO157888C (en) |
ZA (1) | ZA828266B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06297404A (en) * | 1993-04-13 | 1994-10-25 | Miyanaga:Kk | Guide plate for chain saw |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4582118A (en) * | 1983-11-10 | 1986-04-15 | Aluminum Company Of America | Direct chill casting under protective atmosphere |
US4610295A (en) * | 1983-11-10 | 1986-09-09 | Aluminum Company Of America | Direct chill casting of aluminum-lithium alloys |
US4593745A (en) * | 1983-11-10 | 1986-06-10 | Aluminum Company Of America | Fire retardant continuous casting process |
US6264767B1 (en) | 1995-06-07 | 2001-07-24 | Ipsco Enterprises Inc. | Method of producing martensite-or bainite-rich steel using steckel mill and controlled cooling |
WO2000003042A1 (en) | 1998-07-10 | 2000-01-20 | Ipsco Inc. | Method and apparatus for producing martensite- or bainite-rich steel using steckel mill and controlled cooling |
FI20001945L (en) * | 2000-09-05 | 2002-03-06 | Outokumpu Oy | Cooling method and apparatus in the case of upward continuous casting of metals |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3397734A (en) * | 1966-05-31 | 1968-08-20 | Standard Oil Co | Polybutene continuous metal casting lubrication process |
US4166495A (en) * | 1978-03-13 | 1979-09-04 | Aluminum Company Of America | Ingot casting method |
-
1982
- 1982-10-25 US US06/436,569 patent/US4473106A/en not_active Expired - Fee Related
- 1982-10-27 IS IS2762A patent/IS1379B6/en unknown
- 1982-11-11 ZA ZA828266A patent/ZA828266B/en unknown
- 1982-11-11 AU AU90383/82A patent/AU555976B2/en not_active Ceased
- 1982-11-12 EP EP82810487A patent/EP0080433B1/en not_active Expired
- 1982-11-12 AT AT82810487T patent/ATE17451T1/en not_active IP Right Cessation
- 1982-11-12 DE DE8282810487T patent/DE3268600D1/en not_active Expired
- 1982-11-18 NO NO823860A patent/NO157888C/en unknown
- 1982-11-19 JP JP57203517A patent/JPS5893548A/en active Granted
- 1982-11-19 CA CA000415970A patent/CA1201273A/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06297404A (en) * | 1993-04-13 | 1994-10-25 | Miyanaga:Kk | Guide plate for chain saw |
Also Published As
Publication number | Publication date |
---|---|
AU9038382A (en) | 1983-05-26 |
US4473106A (en) | 1984-09-25 |
ZA828266B (en) | 1983-09-28 |
CA1201273A (en) | 1986-03-04 |
AU555976B2 (en) | 1986-10-16 |
JPS5893548A (en) | 1983-06-03 |
NO157888C (en) | 1988-06-08 |
IS1379B6 (en) | 1989-08-28 |
DE3268600D1 (en) | 1986-02-27 |
EP0080433A1 (en) | 1983-06-01 |
EP0080433B1 (en) | 1986-01-15 |
NO823860L (en) | 1983-05-24 |
IS2762A7 (en) | 1983-05-21 |
ATE17451T1 (en) | 1986-02-15 |
NO157888B (en) | 1988-02-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050236135A1 (en) | Twin roll casting of magnesium and magnesium alloys | |
US6073679A (en) | Casting steel strip | |
JPH0215302B2 (en) | ||
US4073333A (en) | Method of continuous casting of ingots | |
JPH0215301B2 (en) | ||
CN105964967B (en) | A kind of control method in Casting Billet of Highcarbon Steel casting latter stage | |
CN111054895B (en) | Casting method of continuous casting machine | |
JP3262672B2 (en) | Starting method in twin roll casting of aluminum alloy | |
JP4026792B2 (en) | Billet continuous casting method | |
JP3000371B2 (en) | Continuous casting method | |
JP2008114291A (en) | Magnesium alloy material and method for producing the same | |
JP3020127B2 (en) | Adjustment of molten steel composition | |
JP3126237B2 (en) | Continuous casting of aluminum | |
RU2085328C1 (en) | Method of preparing metal for continuous pouring process | |
JPS58125342A (en) | Semi-continuous casting method of aluminum or aluminum alloy | |
JPH05269561A (en) | Continuous casting method for steel | |
JPH01313165A (en) | Continuous casting method partially containing semi-molten metal | |
JPS62107844A (en) | Mold for continuous casting billet | |
SU1507526A1 (en) | Method of continuous casting of ingots | |
JP2003290878A (en) | Horizontally continuous casting method | |
JP3237725B2 (en) | Continuous casting method | |
JP2001219256A (en) | Method for starting continuous casting | |
SU1161231A1 (en) | Method of horizontal semi-continuous metal-casting and machine for performing same | |
Yamauchi et al. | Continuous Casting of Commercial Pure Aluminum Pipes by Drawing Up Method | |
JPS63278653A (en) | Manufacturing method for large cross-section sound slabs |