JPH021526A - Light dispersion measuring instrument - Google Patents
Light dispersion measuring instrumentInfo
- Publication number
- JPH021526A JPH021526A JP63274543A JP27454388A JPH021526A JP H021526 A JPH021526 A JP H021526A JP 63274543 A JP63274543 A JP 63274543A JP 27454388 A JP27454388 A JP 27454388A JP H021526 A JPH021526 A JP H021526A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- frequency
- pulse
- omega2
- variable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000006185 dispersion Substances 0.000 title claims abstract description 20
- 230000003287 optical effect Effects 0.000 claims abstract description 71
- 230000005540 biological transmission Effects 0.000 claims description 16
- 230000009022 nonlinear effect Effects 0.000 claims description 2
- 230000001360 synchronised effect Effects 0.000 claims description 2
- 239000013307 optical fiber Substances 0.000 abstract description 22
- 239000013078 crystal Substances 0.000 abstract description 14
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 description 13
- 239000000835 fiber Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 206010041662 Splinter Diseases 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/30—Testing of optical devices, constituted by fibre optics or optical waveguides
- G01M11/31—Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
- G01M11/3172—Reflectometers detecting the back-scattered light in the frequency-domain, e.g. OFDR, FMCW, heterodyne detection
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optical Communication System (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Light Guides In General And Applications Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
(1)発明の技術分野
本発明はピコ秒オーダの分解能を有する光分散測定装置
に関するものである。DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to an optical dispersion measuring device having a resolution on the order of picoseconds.
(2)従来技術とその問題点
光フアイバ通信に使用する光の波長や中継伝送する際の
中継距離は、光ファイバの伝送損失と帯域特性とによっ
て決定される。特に光ファイノ\のもつ分散特性は波形
歪を生起させ、ディジタル伝送する際の伝送速度に制限
を与える。従って、極低損失光ファイバを用いても光フ
ァイバのもつ分散特性によって中継距離が制限されるこ
ともあり、光ファイバの分散特性の測定は伝送損失の測
定と同様非常に重要なことである。これらの測定は普通
短尺のファイバを使用して行い、得られた結果を長さの
比に基づいて長尺のファイバに適用しているので、この
場合短尺のファイバにおける小さな測定誤差も長尺のフ
ァイバの分散特性には大きな誤差となって現れてしまう
。以上の理由から短尺のファイバの分散特性の測定にお
いては、充分精度の高い測定装置が要求される。(2) Prior art and its problems The wavelength of light used in optical fiber communication and the relay distance during relay transmission are determined by the transmission loss and band characteristics of the optical fiber. In particular, the dispersion characteristics of optical fibers cause waveform distortion, which limits the transmission speed during digital transmission. Therefore, even if an extremely low-loss optical fiber is used, the relay distance may be limited by the dispersion characteristics of the optical fiber, and measurement of the dispersion characteristics of the optical fiber is as important as measurement of transmission loss. These measurements are usually made using short lengths of fiber, and the results are applied to the long fibers based on their length ratios, so small measurement errors in the short lengths of fiber are also accounted for in the long lengths. This results in a large error in the dispersion characteristics of the fiber. For the above reasons, a measuring device with sufficiently high accuracy is required in measuring the dispersion characteristics of short fibers.
従来のこの種の測定装置は第1図に示すように構成され
ている。ピコ秒光パルス発生器lから発生する光パルス
はビームスプリッタ2により2分岐され、一方は光遅延
路8を通ってカーシャッタ9に、他方は測定しようとす
る光ファイバ3に入る。カーシャッタ9は互いに直交し
た偏光子4゜5と、光力−効果により複屈折を生じる物
質で満たされたカーセル6とよりなり、光遅延路8を通
った光パルスが、カーセル6に入射したときにのみカー
セル6中の物質は複屈折を生じ、カーシャッタ9は開き
受光器7で受光されることになる。A conventional measuring device of this type is constructed as shown in FIG. An optical pulse generated from a picosecond optical pulse generator 1 is split into two by a beam splitter 2, one of which passes through an optical delay path 8 and enters a Kerr shutter 9, and the other enters an optical fiber 3 to be measured. The Kerr shutter 9 consists of polarizers 4.5 that are perpendicular to each other and a Kerr cell 6 filled with a substance that causes birefringence due to the optical force effect.The optical pulse that has passed through the optical delay path 8 is incident on the Kerr cell 6. Only occasionally will the substance in the Kerr cell 6 exhibit birefringence, and the Kerr shutter 9 will open and the light will be received by the light receiver 7.
光ファイバ3を通った後の光パルスがカーシャッタ9の
開口時と一致し、最大のパワーが受光されるように例え
ばプリズムからなる光遅延路8を動かし、この光遅延路
8が基準とした点からどれだけ動いたかにより、基準点
からのパルスの遅延量が各波長ごとに測定され、その結
果から分散特性が求められる。この従来技術による測定
装置には、カーシャツタ開口のための光パルスのパワー
が数百MW/cd以上なければ光ファイバからの出力光
を効率良く通すことができず、また1μm以上の長波長
帯において精度良くピコ秒パルスのパワーを測定する受
光器7がない。このため、測定波長帯としては1pTI
I以下に限られており、光フアイバ通信に有望視されて
いる1、3μm、 1.55pm帯の波長での測定には
使用できないという欠点があった。The optical delay path 8 made of, for example, a prism is moved so that the light pulse after passing through the optical fiber 3 coincides with the opening of the Kerr shutter 9 and the maximum power is received, and this optical delay path 8 is used as a reference. The amount of delay of the pulse from the reference point is measured for each wavelength depending on how much it has moved from the point, and the dispersion characteristics are determined from the results. This conventional measuring device cannot efficiently pass the output light from the optical fiber unless the power of the optical pulse for opening the carshaft shutter is several hundred MW/cd or more, and in the long wavelength band of 1 μm or more, There is no optical receiver 7 for measuring the power of picosecond pulses with high precision. Therefore, the measurement wavelength band is 1 pTI.
It has the disadvantage that it cannot be used for measurements at wavelengths in the 1, 3 μm, and 1.55 pm bands, which are considered promising for optical fiber communications.
(3)発明の目的
本発明は、これら従来技術の欠点を解決するために、カ
ーシャッタの代わりに非線形結晶を用い、被測定光伝送
媒体を通ってきた光を和周波光混合を用いて受光器の受
光可能な波長帯に変換させて測定する光分散測定装置を
提供するものである。(3) Purpose of the Invention In order to solve the drawbacks of these conventional techniques, the present invention uses a nonlinear crystal instead of a Kerr shutter, and receives the light that has passed through the optical transmission medium to be measured using sum frequency optical mixing. The present invention provides an optical dispersion measurement device that converts light into a wavelength band that can be received by a device.
(4)発明の構成と作用 以下図面により本発明の詳細な説明する。(4) Structure and operation of the invention The present invention will be explained in detail below with reference to the drawings.
第2図は本発明の詳細な説明するための図であって、光
源となるピコ秒光パルス発生器1aは、光周波数ωI(
波長λヨ=光速C/周波数ω1)が一定の参照光パルス
を発生する光パルス発生器1−1と、その参照光パルス
に同期する波長可変な可変光パルスを発生するパラメト
リック発振器1−2とよりなっている。光周波数(以下
、単に「周波数」という)ω、の光パルスは、参照用と
して用いられるもので光遅延路8を通った後ビームスプ
リッタ10を介して例えばKDPやLi1O3などの非
線形結晶11に導かれる。一方、周波数ω、の参照光パ
ルスから得られた可変周波数ω2(波長λ2=光速C/
周波数ω2)の可変光パルスは分散を測定しようとする
光ファイバ3に入り、その後、非線形結晶11に入る。FIG. 2 is a diagram for explaining the present invention in detail, in which a picosecond optical pulse generator 1a serving as a light source has an optical frequency ωI (
An optical pulse generator 1-1 that generates a reference optical pulse with a constant wavelength λ y = speed of light C/frequency ω1), and a parametric oscillator 1-2 that generates a variable wavelength optical pulse that is synchronized with the reference optical pulse. It's getting better. A light pulse with an optical frequency (hereinafter simply referred to as "frequency") ω is used as a reference, and after passing through an optical delay path 8, it is guided to a nonlinear crystal 11 such as KDP or Li1O3 via a beam splitter 10. It will be destroyed. On the other hand, the variable frequency ω2 (wavelength λ2 = speed of light C/
A variable light pulse of frequency ω2) enters the optical fiber 3 whose dispersion is to be measured and then enters the nonlinear crystal 11.
この非線形結晶11は、入力となる周波数ω、と周波数
ω2の光パルスが非線形結晶11中で重ならない場合に
は、出力としてω1゜ω2,2ω1,2ω2の周波数の
光パルスが発生するだけであるが、両入力光パルスが非
線形結晶11中で重なった場合には、出力として上記周
波数の光パルス以外に周波数(ω1+ω2)の強い光パ
ルスが発生する光非線形効果素子である。従って周波数
ω、ω2は既知であるため、(ω1+ω2)の周波数の
みに注目して光遅延路8を動かし、2つのパルスの重な
る点を求めることができる。次に周波数ω2をΔωだけ
変化させ、(ω2+Δω)の周波数をもつ光パルスを光
ファイバ3に入射させると、光ファイバ3のもつ分散特
性により周波数ω、と周波数(ω2+Δω)の光パルス
の遅延量が異なり、両パルスは非線形結晶11中で重な
らなくなる。そこで光遅延路8を動かしくω1+ω2+
Δω)の周波数に注目して両パルスの重なる点を求める
。この光遅延路8の位置が前回の位置から例えばLだけ
ずれたとすれば、周波数ω2の光パルスと周波数(ω2
+Δω)の可変光パルスとの遅延差はL/C(C:光速
)より求められる。Lは数十ミクロンの精度で測定可能
であるため、遅延量はピコ秒以下の精度で測定できるこ
とになる。このように周波数ω2を変えることにより、
各周波数での遅延着が測定でき、その値から光分散特性
を求めることができる。This nonlinear crystal 11 only generates optical pulses with frequencies ω1゜ω2, 2ω1, 2ω2 as outputs when the input optical pulses of frequency ω and frequency ω2 do not overlap in the nonlinear crystal 11. However, when both input optical pulses overlap in the nonlinear crystal 11, it is an optical nonlinear effect element that generates a strong optical pulse at a frequency (ω1+ω2) in addition to the optical pulse at the above frequency as an output. Therefore, since the frequencies ω and ω2 are known, it is possible to move the optical delay path 8 focusing only on the frequency (ω1+ω2) and find the point where the two pulses overlap. Next, when the frequency ω2 is changed by Δω and an optical pulse with a frequency of (ω2 + Δω) is made to enter the optical fiber 3, the amount of delay between the optical pulses with the frequency ω and the frequency (ω2 + Δω) due to the dispersion characteristics of the optical fiber 3 are different, and the two pulses no longer overlap in the nonlinear crystal 11. Therefore, ω1+ω2+ moves the optical delay path 8.
Focusing on the frequency of Δω), find the point where both pulses overlap. If the position of this optical delay path 8 deviates from the previous position by, for example, L, then the optical pulse of frequency ω2 and the frequency (ω2
The delay difference with the variable optical pulse of +Δω) is obtained from L/C (C: speed of light). Since L can be measured with an accuracy of several tens of microns, the amount of delay can be measured with an accuracy of picoseconds or less. By changing the frequency ω2 in this way,
Delayed arrival at each frequency can be measured, and optical dispersion characteristics can be determined from the values.
第2図の系統に従う場合には、被測定光伝送媒体の光分
散特性を高精度に測定することが可能であるが、被測定
光伝送媒体の外に参照用の光伝送路が必要であり、かつ
、外部環境条件の変化により両光伝送路間を伝播する参
照光パルスと測定用光パルスにばらつきが生じて誤差と
なってしまう。When following the system shown in Figure 2, it is possible to measure the optical dispersion characteristics of the optical transmission medium to be measured with high precision, but a reference optical transmission path is required outside of the optical transmission medium to be measured. Moreover, due to changes in external environmental conditions, variations occur in the reference light pulse and measurement light pulse propagating between both optical transmission lines, resulting in errors.
本発明は、第2図の系統による測定装置のこの欠点を解
消することができるものであり、第3図はその実施例で
ある。この実施例では光源1aからの周波数ω2の可変
光パルスと、波長一定(周波数ω、)の参照光パルスが
入射されている光遅延路8からのその参照光パルスによ
る出力とが、ビームスプリッタ10により合成されて、
その合成出力が被測定光伝送路となる光ファイバ3に入
力されている。The present invention can overcome this drawback of the measuring device according to the system shown in FIG. 2, and FIG. 3 shows an embodiment thereof. In this embodiment, the variable optical pulse of frequency ω2 from the light source 1a and the output of the reference optical pulse from the optical delay path 8 into which the reference optical pulse of constant wavelength (frequency ω, ) is input are transmitted to the beam splitter 10. synthesized by
The combined output is input to the optical fiber 3 which becomes the optical transmission line to be measured.
第2図では参照光パルスは光ファイバ3を通らず直接に
非線形結晶11に導かれているが、可変光パルスと参照
光パルスの各波長が異なる場合には第3図のように参照
用光パルスを測定用光パルスと同様に光ファイバ3に通
して測定することも可能となり、これにより参照用光パ
ルスと測定用光パルスとのばらつきをなくすことができ
る。In FIG. 2, the reference light pulse is guided directly to the nonlinear crystal 11 without passing through the optical fiber 3, but if the wavelengths of the variable light pulse and the reference light pulse are different, the reference light pulse is guided as shown in FIG. It is also possible to measure the pulse by passing it through the optical fiber 3 in the same way as the measurement light pulse, and thereby it is possible to eliminate variations between the reference light pulse and the measurement light pulse.
他の測定原理は第2図により説明されたものと同様であ
る。The other measurement principles are similar to those explained with reference to FIG.
光ファイバのうちで伝搬可能なモードが1つしかないシ
ングルモードファイバでは、偏波面の方向によって伝搬
速度が異なることが知られているが、この速度差が理論
的には10〜20ピコ秒/kmと小さく、今まで短尺の
ファイバでは測定不可能とされていたが、これらもこの
装置を用いることにより測定可能となる。また、短尺の
ファイバを使用しての張力による光ファイバの伸び率も
この装置を用いることによって正確に測定することがで
きる。It is known that in a single mode fiber, which has only one propagable mode among optical fibers, the propagation speed differs depending on the direction of the polarization plane, but theoretically this speed difference is 10 to 20 picoseconds/ Although it was previously considered impossible to measure with short fibers, these can now be measured using this device. Furthermore, the elongation rate of an optical fiber due to tension when using a short fiber can also be accurately measured by using this device.
(5)発明の詳細
な説明したように、本発明によれば非線形結晶を波長変
換とピコ秒シャッタ用として用いているため、合宿ピコ
秒パルスを用いての分散測定が不可能とされていたIP
帯の分散が精度良く測定することができるほか、参照光
パルスと測定用光パルスとが同一光伝送路(光ファイバ
3)を伝搬するための外部環境変化に伴う誤差を防止す
ることができ、さらに使用するパルスのピークパワーが
数KW/c+fl程度でよいため扱いやすいという利点
がある。(5) As explained in detail, according to the present invention, a nonlinear crystal is used for wavelength conversion and picosecond shutter, so dispersion measurement using training picosecond pulses was considered impossible. IP
In addition to being able to measure band dispersion with high precision, it is possible to prevent errors due to changes in the external environment because the reference light pulse and measurement light pulse propagate through the same optical transmission path (optical fiber 3). Furthermore, since the peak power of the pulses used is only about several KW/c+fl, there is an advantage that it is easy to handle.
第1図は従来の光分散測定装置の1例を示す構成図、第
2図は本発明の詳細な説明するための系統図、第3図は
本発明の実施例を示す構成図である。
1.1a・・・光パルス発生器(光rX)、1−1・・
・光パルス発生器、 ■−2・・・パラメトリック発
振器(光波長変換器)、 ■−3・・・ビームスプリッ
タ、 ■−4・・・光波長変換器、2・・・ビームス
プリッタ、 3・・・光ファイバ(被測定光伝送媒体
)、 4,5・・・偏光子、6・・・カーセル、 7・
・・受光器、8・・・光遅延路、9・・・カーシャッタ
、
11・・・非線形結晶、
10・・・ビームスプリンタ、
12・・・受光器。FIG. 1 is a block diagram showing an example of a conventional optical dispersion measuring device, FIG. 2 is a system diagram for explaining the present invention in detail, and FIG. 3 is a block diagram showing an embodiment of the present invention. 1.1a... Optical pulse generator (optical rX), 1-1...
・Optical pulse generator, ■-2... Parametric oscillator (optical wavelength converter), ■-3... Beam splitter, ■-4... Optical wavelength converter, 2... Beam splitter, 3. ...Optical fiber (light transmission medium to be measured), 4,5...Polarizer, 6...Kersel, 7.
... Light receiver, 8... Optical delay path, 9... Kerr shutter, 11... Nonlinear crystal, 10... Beam splinter, 12... Light receiver.
Claims (1)
パルスに同期しかつ異なる波長で短い時間幅の波長可変
の可変光パルスとを発生するための光源と、前記参照光
パルスが一端側に入射される遅延量可変の可変光遅延路
と、該可変光遅延路の他端側の出力と前記可変パルスと
が一端側に入射される被測定光伝送媒体と、前記被測定
光伝送媒体の他端側における各光出力パルスを受けとり
それらの各光パルスが重なったときに該各光パルスの該
波長に対応する各周波数の和の成分が最大出力となるよ
うに前記被測定光伝送媒体の他端側に配置された光非線
形効果素子と、該和の成分を検知するための受光器とを
備え、前記可変光パルスの波長を順次変化させたときの
前記波長に対応する各周波数に対して前記和の成分が最
大出力になるように調整される前記可変光遅延路の遅延
量から、前記被測定伝送媒体の光分散を測定するように
構成された光分散測定装置。(1) A light source for generating a reference light pulse with a constant wavelength and a short time width; and a variable wavelength light pulse with a short time width and a different wavelength that is synchronized with the reference light pulse; a variable optical delay path whose delay amount is variable and which is incident on one end thereof; an optical transmission medium to be measured in which the output of the other end of the variable optical delay path and the variable pulse are incident on one end; and the optical transmission medium to be measured. The light to be measured is transmitted so that when each optical output pulse on the other end side of the medium is received and the optical pulses overlap, the component of the sum of each frequency corresponding to the wavelength of each optical pulse becomes the maximum output. an optical nonlinear effect element disposed on the other end side of the medium and a light receiver for detecting the components of the sum, each frequency corresponding to the wavelength when the wavelength of the variable optical pulse is sequentially changed; An optical dispersion measuring device configured to measure optical dispersion of the transmission medium to be measured based on a delay amount of the variable optical delay path that is adjusted so that the sum component has a maximum output.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63274543A JPH021526A (en) | 1988-11-01 | 1988-11-01 | Light dispersion measuring instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63274543A JPH021526A (en) | 1988-11-01 | 1988-11-01 | Light dispersion measuring instrument |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP287280A Division JPS56100324A (en) | 1980-01-14 | 1980-01-14 | Measuring device for light dispersion |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH021526A true JPH021526A (en) | 1990-01-05 |
JPH0260972B2 JPH0260972B2 (en) | 1990-12-18 |
Family
ID=17543179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63274543A Granted JPH021526A (en) | 1988-11-01 | 1988-11-01 | Light dispersion measuring instrument |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH021526A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0215259A (en) * | 1988-07-04 | 1990-01-18 | Toyo Ink Mfg Co Ltd | Method and device for forming image |
-
1988
- 1988-11-01 JP JP63274543A patent/JPH021526A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0215259A (en) * | 1988-07-04 | 1990-01-18 | Toyo Ink Mfg Co Ltd | Method and device for forming image |
Also Published As
Publication number | Publication date |
---|---|
JPH0260972B2 (en) | 1990-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1610108B1 (en) | Polarization beam splitter | |
JPH06194611A (en) | Multistage optical car-gate device | |
WO2013127370A1 (en) | Method and system for measuring optical asynchronous sampled signal | |
CN101216350B (en) | High-power ultra-short laser pulse contrast measurement device and measurement method | |
JPS6410767B2 (en) | ||
CN100410637C (en) | Method and device for measuring terahertz pulse sequence using chirped pulse spectrum | |
JPH021526A (en) | Light dispersion measuring instrument | |
JPH05248996A (en) | Wavelength dispersion measuring device for optical fiber | |
CN100535596C (en) | Optical peg-top based on slow light effects | |
US3437399A (en) | Solid-state crystal optical modulator | |
US6266145B1 (en) | Apparatus for measurement of an optical pulse shape | |
JP2000329618A (en) | Method and apparatus for measuring time waveform of light signal field | |
JP3291466B2 (en) | Optical signal waveform measurement method | |
JPH0663869B2 (en) | Optical sampling waveform measuring device | |
JP2004340690A (en) | Optical frequency measuring apparatus and measuring method using multicolor mode-locked laser | |
US6744508B2 (en) | Simplified polarization independent optical sampling using a spatially split waveplate | |
JPH11288011A (en) | Tunable quasi-phase matching element | |
JPH037062B2 (en) | ||
JPH0620987Y2 (en) | Optical spectrum measuring device | |
JPH0622189Y2 (en) | Optical spectrum measuring device | |
JPH01147334A (en) | Double refractive index measuring instrument for polarization maintaining optical fiber | |
RU2057304C1 (en) | Autocorrelator of light pulses | |
RU2057357C1 (en) | Autocorrelator of light pulses | |
JPH01277767A (en) | Spectrum analyzer | |
CA2066260A1 (en) | Quantum non-demolition optical tapping |