[go: up one dir, main page]

JPH02151270A - Pwm-pam control switching method for voltage type inverter - Google Patents

Pwm-pam control switching method for voltage type inverter

Info

Publication number
JPH02151270A
JPH02151270A JP63303623A JP30362388A JPH02151270A JP H02151270 A JPH02151270 A JP H02151270A JP 63303623 A JP63303623 A JP 63303623A JP 30362388 A JP30362388 A JP 30362388A JP H02151270 A JPH02151270 A JP H02151270A
Authority
JP
Japan
Prior art keywords
signal
control
circuit
voltage
modulation coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63303623A
Other languages
Japanese (ja)
Inventor
Yukio Kato
行夫 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63303623A priority Critical patent/JPH02151270A/en
Publication of JPH02151270A publication Critical patent/JPH02151270A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は直流中間電圧を制御するチョッパ回路を有す
る電圧形インバータ装置における正弦波PWM制御とP
AM制御との相互切換方法に関する。
Detailed Description of the Invention [Field of Industrial Application] This invention relates to sine wave PWM control and PWM control in a voltage source inverter device having a chopper circuit that controls a DC intermediate voltage.
This invention relates to a mutual switching method with AM control.

〔従来の技術〕[Conventional technology]

従来のこの種の制御方式切換方法としては、前記のイン
バータ回路とチョッパ回路とに対する諸指令データをP
WM制御用とPAM制御用との2種類用意し、該両指令
データを制御方式切換指令に従って動作するマルチプレ
クサにより選択切換えるものが知られている。
As a conventional control system switching method of this type, various command data for the inverter circuit and chopper circuit are
It is known that two types are prepared, one for WM control and one for PAM control, and the command data for both are selectively switched by a multiplexer that operates according to a control method switching command.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上記の如き従来方法においては、PWM制
御用指令とPAM制御用指令とがマルチプレクサにより
瞬時に切換えられ、該両指令に従うインバータ回路出力
電圧も新たな指令状態値に瞬時に移行し、これに伴って
インバータ回路出力電流の時間的変化率が極めて大とな
る可能性がある。またインバータ回路においてはその入
力電圧である直流中間電圧からその出力交流電圧への変
化率がPWM制御時とPAM制御時とでは異なり、従っ
て前記再制御方式間の切換えに伴なう前記出力交流電圧
の変動を避けるためには前記直流中間電圧すなわち前記
チョッパ回路出力電圧の適正値への瞬時切換えが必要と
なる。しかしながら前記チョッパ回路はその主回路時定
数と電圧制御系の時間特性とによる制御遅れを有し、そ
の出力電圧の瞬時変更制御はできずその瞬時変動は避け
られない。
However, in the conventional method as described above, the PWM control command and the PAM control command are instantaneously switched by the multiplexer, and the inverter circuit output voltage according to both commands also instantaneously shifts to the new command state value, and accordingly Therefore, the rate of change over time of the inverter circuit output current may become extremely large. Furthermore, in an inverter circuit, the rate of change from the DC intermediate voltage that is the input voltage to the output AC voltage is different between PWM control and PAM control. In order to avoid fluctuations in the voltage, it is necessary to instantaneously switch the DC intermediate voltage, that is, the output voltage of the chopper circuit, to an appropriate value. However, the chopper circuit has a control delay due to its main circuit time constant and the time characteristics of the voltage control system, and its output voltage cannot be controlled to change instantaneously, and its instantaneous fluctuation is unavoidable.

従って前記インバータ回路によりモータを駆動する場合
には、該インバータ回路における過電流状態の発生、或
いは前記モータのトルク変動に伴なうその駆動負荷への
過大なシせフクの伝達等により正常なインバータ運転の
継続が不能となることがある。
Therefore, when the motor is driven by the inverter circuit, the normal inverter may not function properly due to the occurrence of an overcurrent condition in the inverter circuit or the transmission of excessive shift to the driving load due to the torque fluctuation of the motor. It may become impossible to continue driving.

以上に鑑み本発明は、可変出力電圧のチョッパ回路を直
流中間電圧回路とする電圧形インバータ装置におけるP
WM及びPAM両制御方式の切換えに関し、該切換えに
伴なう前記インバータ装置の出力電圧及び出力電流の変
動を抑制する円滑な切換方法の提供を目的とするもので
ある。
In view of the above, the present invention provides a voltage source inverter device in which a variable output voltage chopper circuit is a DC intermediate voltage circuit.
The object of the present invention is to provide a smooth switching method that suppresses fluctuations in the output voltage and output current of the inverter device caused by switching between WM and PAM control systems.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の電圧形インバータ
装置のpwM−pAMilJ?II相互切換方法は、可
変出力電圧の直流チョッパ回路とその出力電圧を入力と
するインバータ回路とを有し正弦波PWM*l?i1.
!:、PAM制御とを併用する電圧形インバータ装置に
おいて、該インバータ装置の所要出力電圧に比例した値
をもつ正弦波制御信号の振巾の三角波キャリア信号の振
巾に対する比である変調係数を連続的に変更出力する変
調係数発生回路と、前記変調係数の逆数に適当な定数を
乗ずる逆数演算回路とを設け、前記の正弦波信号と三角
波信号との大小比較結果により指定される前記インバー
タ回路の各スイッチング素子の導通角を前記変調係数の
適当な時間勾配に従った変更による前記正弦波信号の変
化に対応して連続的かつ大巾に変化させ、所定の導通角
の組合せにて運転するPWM制御状態と前記導通角が前
記正弦波信号の正負各区間毎に最大の連続的導通状態と
なるPAM制御制御部状態両制御状態間の連続的移行に
よる相互切換えを行なうと共に、前記変調係数の逆数演
算回路の出力信号により前記チョッパ回路に対する指令
信号を変調して該チョッパ回路のスイッチング素子の通
流率を変化させその出力電圧を制御するものである。
In order to achieve the above object, the voltage source inverter device of the present invention pwM-pAMilJ? The II mutual switching method includes a DC chopper circuit with a variable output voltage and an inverter circuit that receives the output voltage as input, and generates a sine wave PWM*l? i1.
! : In a voltage source inverter device that uses PAM control in combination, a modulation coefficient that is the ratio of the amplitude of a sine wave control signal with a value proportional to the required output voltage of the inverter device to the amplitude of a triangular wave carrier signal is continuously set. A modulation coefficient generation circuit that changes and outputs the modulation coefficient, and a reciprocal calculation circuit that multiplies the reciprocal of the modulation coefficient by an appropriate constant are provided. PWM control that continuously and widely changes the conduction angle of the switching element in response to changes in the sine wave signal by changing the modulation coefficient according to an appropriate time gradient, and operates at a predetermined combination of conduction angles. A PAM controller state in which the conduction angle is the maximum continuous conduction state for each positive and negative section of the sine wave signal, mutual switching by continuous transition between both control states, and reciprocal calculation of the modulation coefficient. The command signal for the chopper circuit is modulated by the output signal of the circuit to change the conduction rate of the switching element of the chopper circuit and control the output voltage thereof.

〔作用〕[Effect]

−aにインバータにおける正弦波PWM制御は、該イン
バータの所要出力周波数に等しい周波数を有しその振中
値が所要出力電圧の振中値に比例した正弦波制御信号と
キャリアとして用いられる波高値一定の三角波信号との
大小を比較し、前記正弦波信号が前記三角波信号より大
となる期間に発する種々の角度中を有するパルス列を以
って前記インバータの主回路スイッチング素子に対する
導通指令信号となして所要の交流電圧を得るものであり
、該出力交流電圧の振巾調整は前記三角波信号の振巾を
一定として前記正弦波制御信号の振巾を変更することに
より前記スイッチング素子の導通期間を変更して行なう
ものである。
-a, sine wave PWM control in an inverter consists of a sine wave control signal that has a frequency equal to the required output frequency of the inverter and whose midpoint value is proportional to the midpoint value of the required output voltage, and a constant peak value that is used as a carrier. and a triangular wave signal, and use a pulse train having various angles emitted during a period in which the sine wave signal is larger than the triangular wave signal as a conduction command signal to the main circuit switching element of the inverter. The amplitude of the output AC voltage is adjusted by changing the amplitude of the sine wave control signal while keeping the amplitude of the triangular wave signal constant, thereby changing the conduction period of the switching element. This is what we do.

またインバータにおけるPAM制御は、前記スイッチン
グ素子に対し前記正弦波制御信号の正負各半波区間毎に
最大角180度の連続した導通指令信号を交互に繰返し
与えると共に前記インバータの直流入力電圧を制御して
その出力交流電圧の振巾調整を行なうものである。
PAM control in the inverter involves alternately and repeatedly applying continuous conduction command signals of a maximum angle of 180 degrees to the switching elements for each positive and negative half-wave section of the sine wave control signal, and controlling the DC input voltage of the inverter. This is used to adjust the amplitude of the output AC voltage.

従って前記PAM制御は、前記pwMi41Bにおいて
前記正弦波制御信号をその正負各半波区間において前記
キャリア三角波信号の各波全てに対して大となした状態
すなわち該三角波信号の振巾に対する前記正弦波制御信
号の振巾の比である変調係数を極めて大となして制御す
る状態に対応する。
Therefore, the PAM control is performed in a state in which the sine wave control signal in the pwMi 41B is made larger than all waves of the carrier triangular wave signal in its positive and negative half wave sections, that is, the sine wave control for the amplitude of the triangular wave signal. This corresponds to a state where the modulation coefficient, which is the ratio of signal amplitudes, is controlled to be extremely large.

換言すれば前記PAM制御は前記変調係数を助変数とす
る前記pwMIJ!IIの一形態として得ることができ
る。従って前記変調係数の適当な時間勾配をもつ連続的
かつ大巾な変更により前記PWMとPAM両制御間の連
続的かつ円滑な相互移行が可能となる。
In other words, the PAM control is based on the pwMIJ! using the modulation coefficient as a parameter. It can be obtained as a form of II. Continuous and wide-ranging changes of the modulation coefficients with appropriate time gradients therefore enable a continuous and smooth transition between the PWM and PAM controls.

またインバータの人力直流電圧とその出力交流電圧半波
の絶対値との間の電圧変換率は断続波合成によるPWM
制御時に比し連続波切り出しによるPAM制御時の方が
大となる。従って該再制御相互切換時の前記出力交流電
圧の変動を避けるためには、前記PAM制御時に対応す
る前記インバータの入力直流電圧を前記電圧変換率に対
応した適当値に従って低下させる連動制御が必要となる
In addition, the voltage conversion rate between the human-powered DC voltage of the inverter and the absolute value of its output AC voltage half-wave is PWM by intermittent wave synthesis.
It is larger during PAM control using continuous wave extraction than during control. Therefore, in order to avoid fluctuations in the output AC voltage at the time of re-control mutual switching, interlock control is required to reduce the input DC voltage of the inverter corresponding to the PAM control according to an appropriate value corresponding to the voltage conversion rate. Become.

上記に従い本発明は、前記変調係数を連続的かつ大巾に
変更出力可能な変調係数発生回路を設けてインバータ回
路の導通制御を行なうと共に、前記変調係数の逆数に適
当な係数を乗じる該変調係数の逆数演算回路を設けて前
記インバータの入力直流電圧を与えるチョッパ回路の出
力電圧低減制御を行ない、前記PWMとPAM両制御間
の円滑な相互移行切換えを図るものであり、更にまた前
記PWM制御において、前記変調係数を適当な定価とな
して前記スイッチング素子の導通角分布を固定し更に前
記出力交流電圧の振巾を前記チョッパ回路の出力直流電
圧制御により調整することにより、所要出力交流電圧に
おける含有高調波成分分布の最適化を可能とするもので
ある。
In accordance with the above, the present invention provides a modulation coefficient generation circuit capable of continuously and widely changing and outputting the modulation coefficient, controls conduction of an inverter circuit, and multiplies the reciprocal of the modulation coefficient by an appropriate coefficient. A reciprocal calculation circuit is provided to perform output voltage reduction control of a chopper circuit that supplies the input DC voltage of the inverter, and to achieve smooth mutual transition switching between the PWM and PAM controls.Furthermore, in the PWM control, , by fixing the conduction angle distribution of the switching element by setting the modulation coefficient to an appropriate fixed value, and further adjusting the amplitude of the output AC voltage by controlling the output DC voltage of the chopper circuit, the content in the required output AC voltage is This makes it possible to optimize the harmonic component distribution.

〔実施例〕〔Example〕

以下この発明の実施例を図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の実施例を示すインバータシステムの
ブロック回路図、第2図と第3図とはそれぞれ第1回答
部の信号波形図である。
FIG. 1 is a block circuit diagram of an inverter system showing an embodiment of the present invention, and FIGS. 2 and 3 are signal waveform diagrams of the first response section, respectively.

第1図における主回路に関し、9は交流電源、10は整
流器と平滑コンデンサとから成るコンバータ回路、11
はスイッチングトランジスタと転流ダイオードと平滑用
のりアクドルとコンデンサ等とから成り可変直流電圧を
出力するチョッパ回路、12はスイッチングトランジス
タと転流ダイオード等から成るインバータ回路、13は
モータである。
Regarding the main circuit in FIG. 1, 9 is an AC power supply, 10 is a converter circuit consisting of a rectifier and a smoothing capacitor, 11
12 is an inverter circuit consisting of a switching transistor, a commutating diode, a smoothing diode, a capacitor, etc. and outputs a variable DC voltage; 13 is a motor.

次に第1図における制御回路に関し、1は基準正弦波制
御信号S、。を出力する正弦波発生器、3は前記信号S
、。に対する変調係数信号S、。を出力する変調係数発
生器、4は前記両信号S、。とS、。
Next, regarding the control circuit in FIG. 1, 1 is a reference sine wave control signal S. 3 is a sine wave generator that outputs the signal S
,. Modulation coefficient signal S, for. 4 is a modulation coefficient generator that outputs both signals S. and S.

とを乗算し変調された正弦波制御信号S srを出力す
る乗算器、2はキャリア三角波信号SLを出力するキャ
リア発生器、5は前記両信号S srとSLとを入力と
してその大小を比較する比較器であり前記の信号S2.
、がStより大となる期間毎にパルス信号S、を出力す
るものであり、該信号S、が前記インバータ回路12の
各スイッチングトランジスタに対する導通指令となる。
2 is a carrier generator that outputs a carrier triangular wave signal SL, and 5 receives both signals SSR and SL and compares their magnitude. It is a comparator and the signal S2.
, is larger than St, and this signal S serves as a conduction command for each switching transistor of the inverter circuit 12.

6は前記信号S、。の逆数に適当な係数を乗じた信号S
 srを出力する除算器、7は前記チョッパ回路11に
対する基準電圧指令信号S coを出力するチョッパ指
令発生器、8は前記両信号Sイ、とS coとを乗算し
変調された電圧指令信号S crを出力するものであり
、該信号S crが前記PWMとPAM両制御状態に対
応する前記チョッパ回路11の所要出力直流電圧の指令
信号となる。
6 is the signal S. The signal S obtained by multiplying the reciprocal of by an appropriate coefficient
7 is a chopper command generator that outputs a reference voltage command signal Sco for the chopper circuit 11; 8 is a voltage command signal S which is modulated by multiplying both the signals S and Sco; The signal S cr becomes a command signal for the required output DC voltage of the chopper circuit 11 corresponding to both the PWM and PAM control states.

次に第2図の信号波形図において、図(イ)は前記キャ
リア三角波信号S1と前記変調係数信号S1゜により変
調された2種類の正弦波制御信号S srl とS t
rzとの相対関係を位相角θに対して表現したものであ
り、図(ロ)は前記の信号S1□がSLよりも大となっ
た角度期間の導通パルス巾をもつパルス列信号S(lを
示し、図(ハ)は同様に前記の信号S1□が31よりも
大とな労た場合のパルス列信号S1を示す。前記両信号
SitとStZとは何れも前記インバータ回路12のス
イッチングトランジスタに対するPWM導通指令信号で
あり、その導通角度中は図示の如く前記変調係数の変更
に応じて変化している。
Next, in the signal waveform diagram of FIG. 2, diagram (a) shows two types of sine wave control signals S srl and S t modulated by the carrier triangular wave signal S1 and the modulation coefficient signal S1°.
The relative relationship with rz is expressed with respect to the phase angle θ, and Figure (b) shows the pulse train signal S (l) having the conduction pulse width of the angular period in which the signal S1□ is larger than SL. Similarly, Figure (C) shows the pulse train signal S1 when the signal S1□ is larger than 31. Both the signals Sit and StZ are PWM signals for the switching transistor of the inverter circuit 12. This is a conduction command signal, and its conduction angle changes according to the change in the modulation coefficient as shown in the figure.

次に第3図の信号波形図は、前記のPWMとPAMの再
制御域と該両制御域間の移行域とにおける前記各信号S
 CO+  Sll。+  5llrl  scrそれ
ぞれのインバータ出力周波数fに対する変化模様を示す
ものである。今、図(イ)に示す如く、前記電圧指令信
号S coを前記周波数fに対して直線的に増大させる
ものとし、更に図示PWM制御域においては前記変調係
数信号S、。を定値とすれば、該信号S、。の逆数対応
信号S srは図(ハ)の如く定植となり従って該信号
S1により前記信号S C6を変調して得られた前記電
圧指令信号S crも図(ニ)の如く直線的に増大する
。従って前記PWM制御域において前記インバータの出
力電圧は、第2回答図に示す導通角指定に基き、その電
圧振巾に無関係に一定の導通角分布をもつ電圧片の合成
値として与えられその含有高調波分布は一定となり、更
に前記出力電圧の振巾は第3図(ニ)の特性に従って前
記周波数fに対し比例的に変化する。
Next, the signal waveform diagram in FIG.
CO+Sll. + 5llrl scr each shows a change pattern with respect to the inverter output frequency f. Now, as shown in Figure (A), it is assumed that the voltage command signal Sco is increased linearly with respect to the frequency f, and furthermore, in the PWM control region shown, the modulation coefficient signal S. If S is a constant value, then the signal S,. The reciprocal corresponding signal S sr becomes fixed as shown in Figure (C), and therefore the voltage command signal S cr obtained by modulating the signal S C6 by the signal S1 also increases linearly as shown in Figure (D). Therefore, in the PWM control region, the output voltage of the inverter is given as a composite value of voltage pieces having a constant conduction angle distribution regardless of the voltage amplitude, based on the conduction angle designation shown in the second answer diagram, and its content harmonic The wave distribution is constant, and the amplitude of the output voltage changes proportionally to the frequency f according to the characteristics shown in FIG. 3(d).

また第3図のPWM及びPAM両制御域間の移行域にお
いては、図(ロ)に示す如く前記信号S1゜の直線的増
大を行なうために前記信号S工とScrとはそれぞれ図
(ハ)と図(ニ)に示す如く減少して前記インバータ入
力直流電圧の低下が図られる。従って前記信号S、。が
十分大となると共に前記インバータ12の制御は前記P
WM′MJ′4BからPAM制御に移行し、該インバー
タの出力電圧の振巾は図(ニ)の特性に従って変化し、
更に前記信号S、、、の特性の適当な選択により前記移
行域における前記インバータ出力電圧の変動を回避する
ことができる。
In addition, in the transition region between the PWM and PAM control regions in FIG. 3, the signal S and Scr are respectively set as shown in FIG. As shown in Figure (d), the input DC voltage of the inverter is reduced. Therefore said signal S,. When P becomes sufficiently large, the control of the inverter 12 becomes
Transitioning from WM'MJ'4B to PAM control, the amplitude of the output voltage of the inverter changes according to the characteristics shown in Figure (d),
Furthermore, by appropriate selection of the characteristics of the signals S, it is possible to avoid fluctuations in the inverter output voltage in the transition region.

C発明の効果〕 この発明によれば、正弦波PWMII御とPAM制御と
を切換併用するインバータ装置において、キャリア三角
波信号の振巾に対する正弦波制御信号の振巾の比である
変調係数を適当な時間勾配に従い連続的かつ大巾に変化
させると共に前記変調係数の逆数に対応する適当値に従
ってインバータ入力直流電圧の低減制御を行なうことに
より、前記PWMとPAM両制御間の円滑な相互移行切
換えが可能となり、またもし前記インバータによりモー
タ駆動を行なう場合には、前記制御方式切換へに伴なう
トルク脈動或いは回路過電流等の防止が可能となる。
C Effects of the Invention] According to the present invention, in an inverter device that switches between sine wave PWMII control and PAM control, the modulation coefficient, which is the ratio of the amplitude of the sine wave control signal to the amplitude of the carrier triangular wave signal, is set appropriately. Smooth mutual transition switching between the PWM and PAM control is possible by changing the inverter input DC voltage continuously and widely according to the time gradient and by controlling the inverter input DC voltage to reduce according to an appropriate value corresponding to the reciprocal of the modulation coefficient. Therefore, if the motor is driven by the inverter, it is possible to prevent torque pulsation or circuit overcurrent caused by switching the control method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示すインバータシステムの
ブロック回路図、第2図と第3図とはそれぞれ第1回答
部の信号波形図である。 1・・・正弦波発生器、2・・・キャリア発生器、3・
・・変調係数発生器、4・・・乗算器、5・・・比較器
、6・・・除算器、7・・・チョッパ指令発生器、8・
・・乗算器、9・・・交流電源、10・・・コンバータ
回路、11・・・チョッパ回路、12・・・インバータ
回路、13・・・モー第1図
FIG. 1 is a block circuit diagram of an inverter system showing an embodiment of the present invention, and FIGS. 2 and 3 are signal waveform diagrams of the first response section, respectively. 1... Sine wave generator, 2... Carrier generator, 3...
... Modulation coefficient generator, 4... Multiplier, 5... Comparator, 6... Divider, 7... Chopper command generator, 8...
... Multiplier, 9 ... AC power supply, 10 ... Converter circuit, 11 ... Chopper circuit, 12 ... Inverter circuit, 13 ... Motor Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1)可変出力電圧の直流チョッパ回路とその出力電圧を
入力とするインバータ回路とを有し正弦波PWM制御と
PAM制御とを併用する電圧形インバータ装置において
、該インバータ装置の所要出力電圧に比例した値をもつ
正弦波制御信号の振巾の三角波キャリア信号の振巾に対
する比である変調係数を連続的に変更出力する変調係数
発生回路と、前記変調係数の逆数に適当な定数を乗ずる
逆数演算回路とを設け、前記の正弦波信号と三角波信号
との大小比較結果により指定される前記インバータ回路
の各スイッチング素子の導通角を前記変調係数の適当な
時間勾配に従った変更による前記正弦波信号の変化に対
応して連続的かつ大巾に変化させ、所定の導通角の組合
せにて運転するPWM制御状態と前記導通角が前記正弦
波信号の正負各区間毎に最大の連続的導通状態となるP
AM制御状態との両制御状態間の連続的移行による相互
切換えを行なうと共に、前記変調係数の逆数演算回路の
出力信号により前記チョッパ回路に対する指令信号を変
調して該チョッパ回路のスイッチング素子の通流率を変
化させその出力電圧を制御することを特徴とする電圧形
インバータ装置のPWM−PAM制御切換方法。
1) In a voltage source inverter device that has a DC chopper circuit with a variable output voltage and an inverter circuit that receives the output voltage as input, and uses both sine wave PWM control and PAM control, a modulation coefficient generation circuit that continuously changes and outputs a modulation coefficient that is the ratio of the amplitude of a sine wave control signal having a value to the amplitude of a triangular wave carrier signal; and a reciprocal calculation circuit that multiplies the reciprocal of the modulation coefficient by an appropriate constant. and changing the conduction angle of each switching element of the inverter circuit according to an appropriate time gradient of the modulation coefficient, which is specified by the magnitude comparison result of the sine wave signal and the triangular wave signal. A PWM control state in which the conduction angle is changed continuously and widely in response to the change, and the conduction angle is operated at a predetermined combination of conduction angles, and the conduction angle becomes the maximum continuous conduction state for each positive and negative section of the sine wave signal. P
The AM control state and the AM control state are mutually switched by continuous transition between both control states, and the command signal for the chopper circuit is modulated by the output signal of the reciprocal calculation circuit of the modulation coefficient to conduct the switching elements of the chopper circuit. 1. A PWM-PAM control switching method for a voltage source inverter device, characterized in that the output voltage is controlled by changing the ratio.
JP63303623A 1988-11-30 1988-11-30 Pwm-pam control switching method for voltage type inverter Pending JPH02151270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63303623A JPH02151270A (en) 1988-11-30 1988-11-30 Pwm-pam control switching method for voltage type inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63303623A JPH02151270A (en) 1988-11-30 1988-11-30 Pwm-pam control switching method for voltage type inverter

Publications (1)

Publication Number Publication Date
JPH02151270A true JPH02151270A (en) 1990-06-11

Family

ID=17923214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63303623A Pending JPH02151270A (en) 1988-11-30 1988-11-30 Pwm-pam control switching method for voltage type inverter

Country Status (1)

Country Link
JP (1) JPH02151270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314095A (en) * 2001-03-23 2001-11-09 Hitachi Ltd Electric motor driving device and air conditioner using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001314095A (en) * 2001-03-23 2001-11-09 Hitachi Ltd Electric motor driving device and air conditioner using the same

Similar Documents

Publication Publication Date Title
Wu et al. Analysis of a PWM ac to dc voltage source converter under the predicted current control with a fixed switching frequency
US5757636A (en) Multi-phase inverters utilizing discontinuous PWM with dead bands
US4847743A (en) PWM inverter system
US5471125A (en) AC/DC unity power-factor DC power supply for operating an electric motor
CN108123653A (en) The adaptive pulsewidth modulation of motor control system
US8552672B2 (en) Method and apparatus to drive two-phase motors from a three-phase bridge
JPH11511639A (en) Counter current power converter
CN102396142A (en) Method of controlling power conversion device
JP3455788B2 (en) Power converter
JP2624793B2 (en) Control device for PWM boost converter
JPH02151270A (en) Pwm-pam control switching method for voltage type inverter
KR101966318B1 (en) Sinlge phase pwm converter for high-speed railway propulsion system using discontinuous modulation and method of controlling the same
KR100902940B1 (en) Switching Control System for Uninterruptible Power Supply with Single-Phase Double Conversion
Kanaan et al. A comparative study of hysteresis and PWM control techniques applied to an injection-current-based three-phase rectifier
JPH0744834B2 (en) Pulse width control power converter
JPH01114368A (en) Control method of DC/DC converter device
US20020121875A1 (en) Method and apparatus for pulse width modulation
JP6868927B1 (en) 3-pulse PWM control method for three-phase inverter
US9036370B2 (en) AC/DC power converter with improved power factor and improved THDi
US5953220A (en) System and method for zero phase error tracking of reference in PWM inverters
JPH0389867A (en) Controlling method for inverter
JPH08251933A (en) Controller and control method for inverter
JP2681883B2 (en) Inverter device
KR20040040530A (en) Parallel control system of single-phase inverter
JP2734070B2 (en) Method for reducing audible electromagnetic noise of inverter-driven motor