[go: up one dir, main page]

JPH02150686A - Manufacture of super-high purity oxygen - Google Patents

Manufacture of super-high purity oxygen

Info

Publication number
JPH02150686A
JPH02150686A JP63306274A JP30627488A JPH02150686A JP H02150686 A JPH02150686 A JP H02150686A JP 63306274 A JP63306274 A JP 63306274A JP 30627488 A JP30627488 A JP 30627488A JP H02150686 A JPH02150686 A JP H02150686A
Authority
JP
Japan
Prior art keywords
oxygen
high purity
column
tower
rectification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63306274A
Other languages
Japanese (ja)
Other versions
JP2680082B2 (en
Inventor
Takashi Nagamura
長村 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teisan KK
Original Assignee
Teisan KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teisan KK filed Critical Teisan KK
Priority to JP63306274A priority Critical patent/JP2680082B2/en
Priority to FR898915844A priority patent/FR2640032B1/en
Publication of JPH02150686A publication Critical patent/JPH02150686A/en
Application granted granted Critical
Publication of JP2680082B2 publication Critical patent/JP2680082B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/30Processes or apparatus using separation by rectification using a side column in a single pressure column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/50Oxygen or special cases, e.g. isotope-mixtures or low purity O2
    • F25J2215/56Ultra high purity oxygen, i.e. generally more than 99,9% O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/50Separating low boiling, i.e. more volatile components from oxygen, e.g. N2, Ar
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/52Separating high boiling, i.e. less volatile components from oxygen, e.g. Kr, Xe, Hydrocarbons, Nitrous oxides, O3
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/42Quasi-closed internal or closed external nitrogen refrigeration cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE:To obtain super-high purity oxygen effectively with a low cost by a method wherein liquid oxygen is fractionated in a first fractionating tower to produce high purity oxygen in liquid state from the side of a reboiler and, thereafter, the high purity oxygen is fractionated in a second fractionating tower. CONSTITUTION:Fractionating is effected in a first fractionating tower by a method wherein reboil gas generated from liquid oxygen, introduced into the fractionating tower, reserved in a reboiler 1a and containing the trace amount of impurities, is contacted with circulating liquid from a condenser 1b at the top of the tower while flowing opposingly to each other. High purity liquid oxygen, produced from the bottom of the first fractionating tower 1, is introduced into a low temperature adsorbing tower 5 through a pipeline P9 to adsorb and remove the impurities in the liquid oxygen and, then, is introduced into the fractionating unit of a second fractionating tower 6 through another pipeline P10. Reboil gas is generated from the liquid oxygen, introduced into the second fractionating tower 6 and reserved in the reboiler 6a at the bottom of the tower, and is brought into contact with circulating liquid from the condenser 6b at the top of the tower while flowing opposingly to each other whereby the reboil gas is fractionated and super-high purity oxygen in liquid state may be produced from the condenser 6b at the top of the tower.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、微量不純物を含む酸素を精製して超高純度の
酸素を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing ultra-high purity oxygen by purifying oxygen containing trace impurities.

〔従来の技術〕[Conventional technology]

高純度の酸素を精製する場合は、一般に、通常の空気分
離装置で得られる酸素を吸着塔等の精製装置によって処
理し、炭化水素、水分、二酸化炭素等の微量不純物を除
去する方法が用いられている。
In order to purify high-purity oxygen, a method is generally used in which the oxygen obtained with a normal air separation device is treated with a purification device such as an adsorption tower to remove trace impurities such as hydrocarbons, moisture, and carbon dioxide. ing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、最近の半導体工業等の分野においては、超高
純度の酸素、具体的には99.9999%程度の酸素の
需要が増大しているが、上述の一般的な酸素精製方法で
は、99.9%程度の酸素しか得られず、前記需要に応
じ得るような超高純度の酸素は得られない。なぜなら、
上述の一般的な酸素精製方法では、酸素中の微量不純物
の一部しか除去されず、十分に高純度な酸素が得られる
ものではないからである。
Incidentally, in recent fields such as the semiconductor industry, there has been an increasing demand for ultra-high purity oxygen, specifically about 99.9999% oxygen, but the above-mentioned general oxygen purification method can only produce 99.9999% oxygen. Only about 9% oxygen can be obtained, and ultra-high purity oxygen that can meet the above demand cannot be obtained. because,
This is because the above-mentioned general oxygen purification method only removes a portion of trace impurities in oxygen, and oxygen of sufficiently high purity cannot be obtained.

そこで、前記超高純度の酸素が必要な場合は、コスト高
になるにも拘らず電解等を用いた不経済な方法を利用せ
ざるを得なかった。
Therefore, when the ultra-high purity oxygen is required, an uneconomical method using electrolysis or the like has to be used despite the high cost.

本発明は、かかる事情に鑑みてなされたものであり、そ
の目的は、超高純度の酸素を低コストにて有効に得る方
法を提供する点にある。
The present invention has been made in view of such circumstances, and its purpose is to provide a method for effectively obtaining ultra-high purity oxygen at low cost.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る超高純度酸素製造方法は、微量不純物を含
む液体酸素を第1精溜塔へ導き、該第1精溜塔にて精溜
を行って、該第1精溜塔における精溜部よりもリボイラ
側から高純度の酸素を液体状態で製出した後、該高純度
の酸素を第2精溜塔の精溜部へ導き、該第2精溜塔にて
精溜を行って、該第2精溜塔における精溜部頂部又はそ
れよりもコンデンサ側から超高純度の酸素を製出する点
に特徴を有している。
The method for producing ultra-high purity oxygen according to the present invention includes guiding liquid oxygen containing trace impurities to a first rectification column, performing rectification in the first rectification column, and performing rectification in the first rectification column. After producing high-purity oxygen in a liquid state from the reboiler side than the part, the high-purity oxygen is led to the rectification part of a second rectification column, and rectified in the second rectification column. , is characterized in that ultra-high purity oxygen is produced from the top of the rectification section in the second rectification column or from the side closer to the condenser.

なお、前記第1精溜塔のリボイラ側から液体状態で製出
した高純度の酸素は、前記第2精溜塔へ導く前に、低温
吸着塔を経由させるようにするのが好ましい。
Note that it is preferable that the high-purity oxygen produced in a liquid state from the reboiler side of the first rectification column be passed through a low-temperature adsorption tower before being led to the second rectification column.

〔作 用〕[For production]

かかる本発明方法による場合、微量不純物を含む液体酸
素を先ず前記第1精溜塔で精溜し、その精溜部よりもリ
ボイラ側から高純度の酸素を液体状態で製出するので、
そのコンデンサ側から、窒素、−酸化炭素、アルゴン等
の酸素に比して蒸発し易いml不純物が除去できる。そ
して前記高純度の酸素を前記第2精溜塔で精溜し、その
精溜部頂部又はそれよりもコンデンサ側から超高純度の
酸素を液体状態で製出するので、該第2精溜塔では、そ
のリポイラ側からクリプトン、キセノン等の酸素に比し
て凝縮し易い微量不純物が除去できる。
In the case of the method of the present invention, liquid oxygen containing trace impurities is first rectified in the first rectification column, and high-purity oxygen is produced in a liquid state from the reboiler side than the rectification section.
From the condenser side, impurities that evaporate more easily than oxygen, such as nitrogen, carbon oxide, and argon, can be removed. Then, the high-purity oxygen is rectified in the second rectification column, and ultra-high purity oxygen is produced in a liquid state from the top of the rectification section or from the side of the condenser, so the second rectification column Then, trace impurities such as krypton and xenon, which are more easily condensed than oxygen, can be removed from the lipoiler side.

なお、前記第1精溜塔のリボイラ側から液体状態で製出
した高純度の酸素を、前記第2精溜塔へ導く前に、低温
吸着塔を経由させるようにすれば、該低温吸着塔によっ
て炭化水素、水分。
Note that if the high-purity oxygen produced in a liquid state from the reboiler side of the first rectification column is passed through a low-temperature adsorption column before being led to the second rectification column, the low-temperature adsorption column By hydrocarbons, moisture.

二酸化炭素等が吸着除去され、もってこれらの不純物が
、第2精溜塔のコンデンサ側へ製出される超高純度の酸
素へ混入するのが回避される。
Carbon dioxide and the like are adsorbed and removed, thereby preventing these impurities from being mixed into the ultra-high purity oxygen produced to the condenser side of the second rectification column.

〔発明の効果〕〔Effect of the invention〕

従って、本発明方法によれば、最近の半導体工業等の分
野においても利用し得るような超高純度の酸素を、コス
ト高となる電解等を用いた方法によらずに有効に得るこ
とができるようになる。
Therefore, according to the method of the present invention, it is possible to effectively obtain ultra-high purity oxygen, which can be used in recent fields such as the semiconductor industry, without using expensive methods such as electrolysis. It becomes like this.

〔実施例〕〔Example〕

以下、本発明方法をその実施に使用する装置を示す図面
に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention will be described below with reference to the drawings showing an apparatus used for carrying out the method.

図中、(1)は塔底部にリボイラ(1a)を塔頂部にコ
ンデンサ(1b)を夫々備える第1精溜塔を示しており
、該第1精溜塔(1)には、その精溜部へ空気から分離
して得られた微量不純物を含む液体酸素(純度: 99
.6〜99.9%)がポンプ(2)で約0 、5 kg
 / c+a [Hの圧力に圧縮された上で配管(p+
)を通して導入されるようになっている。なお、該液体
酸素の圧力が元々0 、5 kg / cdl G以上
ある場合には、該液体酸素は前記ポンプ(2)を経由す
ることなく、直接的に前記第1精溜塔(1)へ導入され
るようになっている。
In the figure, (1) shows a first rectification column that is equipped with a reboiler (1a) at the bottom of the column and a condenser (1b) at the top of the column. Liquid oxygen containing trace impurities obtained by separating it from air (purity: 99%)
.. 6-99.9%) is approximately 0.5 kg at pump (2)
/ c+a [Piping (p+
). Note that if the pressure of the liquid oxygen is originally 0.5 kg/cdl G or more, the liquid oxygen is directly sent to the first rectification column (1) without passing through the pump (2). It is about to be introduced.

前記第1精溜塔(1)では、上述の如く導入され前記リ
ボイラ(1a)に貯留される微量不純物を含む液体酸素
からりボイルガスが発生し、該リボイルガスと塔頂部の
コンデンサ(1b)からの還流液とが向流接触すること
によって精溜が行われ、前記塔頂部から配管(P2)、
熱交換器(3)及び配管(P3)を通し、蒸気のまま廃
ガスとして排出される少量の酸素中に、酸素に比して凝
縮し難い窒素、−酸化炭素、アルゴン等の不純物を含有
させてこれを分離する一方、大部分の酸素は凝縮し、高
純度な状態となって前記塔底部から液体の状態で製出さ
れるようになっている。
In the first rectification column (1), a boil gas containing trace impurities is generated, which is introduced as described above and stored in the reboiler (1a), and the reboil gas and the condenser (1b) at the top of the column are Rectification is performed by countercurrent contact with the reflux liquid, and from the top of the column there are pipes (P2),
Impurities such as nitrogen, carbon oxide, and argon, which are difficult to condense compared to oxygen, are contained in a small amount of oxygen that is discharged as waste gas in the form of vapor through the heat exchanger (3) and piping (P3). Most of the oxygen is condensed and produced in a liquid state from the bottom of the column in a highly pure state.

なお、図中の(4)は窒素ガスのリサイクル圧縮機であ
り、該リサイクル圧縮機(4)に・て約6.5kg /
 all Gに圧縮された窒素ガスは、配管(P4)を
通して熱交換器(3)へ導かれてそこで熱交換された上
で配管(P5)を通して前記塔底部のリボイラ(1a)
へ導かれ、該リボイラ(1a)にて前記リボイルガスを
発生させる一方、自らは液化して液体窒素となった後、
配管(P6)を通して前記塔頂部のコンデンサ(1b)
へ導かれる。そして該液体窒素は、前記コンデンサ(1
b)にて約2 、5 kg / ci Gの圧力で蒸発
すると共に第1精溜塔(1)内を下降する還流液を製出
するようになっている。そして上述の如く蒸発した窒素
は、前記塔頂部のコンデンサ(1b)から第1精溜塔(
1)外へ排出されるが、該窒素ガスは、配管(P7)、
熱交換器(3)及び配管(pa)を通して前記リサイク
ル圧縮機(4)へ返戻されるようになっている。
In addition, (4) in the figure is a nitrogen gas recycling compressor, and the recycling compressor (4) is approximately 6.5 kg /
The nitrogen gas compressed to all G is led to the heat exchanger (3) through the pipe (P4), where it undergoes heat exchange, and then passes through the pipe (P5) to the reboiler (1a) at the bottom of the tower.
and generates the reboiling gas in the reboiler (1a), while liquefying itself to become liquid nitrogen,
The condenser (1b) at the top of the tower through the pipe (P6)
be led to. Then, the liquid nitrogen is supplied to the condenser (1).
In b), the reflux liquid is evaporated at a pressure of about 2.5 kg/ci G and descends in the first rectification column (1). The nitrogen vaporized as described above is then transferred from the condenser (1b) at the top of the column to the first rectification column (
1) The nitrogen gas is discharged to the outside through the pipe (P7),
It is returned to the recycling compressor (4) through a heat exchanger (3) and piping (pa).

前記第1精溜塔(1)の塔底部から製出される高純度の
液体酸素は、配管(P、)を通して低温吸着塔(5)へ
導かれ、該吸着塔(5)内にて不純物としての炭化水素
、水分、炭酸ガス等が吸着除去され、然る後に配管(p
ro)を通して第2精溜塔(6)の精溜部へ導入される
ようになっている。
High-purity liquid oxygen produced from the bottom of the first rectification column (1) is led to a low-temperature adsorption column (5) through a pipe (P,), and is removed as impurities in the adsorption column (5). Hydrocarbons, water, carbon dioxide, etc. are adsorbed and removed, and then the pipes (p
ro) to the rectification section of the second rectification column (6).

前記第2精溜塔(6)は、前記第1精溜塔(1)と同様
、塔頂部にコンデンサ(6b)を塔底部にリボイラ(6
a)を夫々備えてなっている。そして該第2精溜塔(6
)では、上述の如く導入され塔底部のリボイラ(6a)
に貯留される液体からりボイルガスが発生し、該リボイ
ルガスと塔頂部のコンデンサ(6b)からの還流液とが
向流接触することによって精溜が行われ、前記塔底部か
らクリプトン、キセノン等の酸素に比して凝縮し易い不
純物を含有する少量の液体酸素を、配管(p++)、蒸
発器(7)及び配管(p、□)を通して排出する一方、
前記塔頂部のコンデンサ(6b)からは超高純度の酸素
を液体状態で製出し、該超高純度の酸素を、配管(PI
3)を通して液体状態のまま取り出すか、或いはポンプ
(9)及び蒸発器(8)を通して蒸発させた上で取り出
すようになっている。
The second rectification column (6), like the first rectification column (1), has a condenser (6b) at the top of the column and a reboiler (6b) at the bottom of the column.
a). And the second rectification column (6
), the reboiler (6a) at the bottom of the column was introduced as described above.
Boil gas is generated from the liquid stored in the column, and rectification is performed by countercurrent contact between the reboil gas and the reflux liquid from the condenser (6b) at the top of the column, and oxygen such as krypton and xenon is released from the bottom of the column. While discharging a small amount of liquid oxygen containing impurities that are easily condensed compared to the pipe (p++), the evaporator (7) and the pipe (p, □),
Ultra-high purity oxygen is produced in a liquid state from the condenser (6b) at the top of the column, and the ultra-high purity oxygen is transferred to a pipe (PI
3), it can be taken out in a liquid state, or it can be taken out after being evaporated through a pump (9) and an evaporator (8).

また、前記リサイクル圧縮機(4)にて約6 、5 k
g /c+IIGに圧縮された窒素ガスは、配管(P+
4)を通して蒸発器(7)へ導かれてそこで熱交換され
た上で配管(P + s)を通して前記塔底部のボイラ
(6a)へ導かれ、該リボイラ(6a)にて前記リボイ
ルガスを発生させる一方、自らは液化した液体窒素とな
った後、配管(P+6)を通して前記塔頂部のコンデン
サ(6b)へ導かれる。そして該液体窒素は、前記コン
デンサ(6b)にて約2.5kg/c艷Gの圧力で蒸発
すると共に第2精溜塔(6)内を下降する還流液を製出
するようになっている。そして上述の如く蒸発した窒素
は、前記塔頂部から排出されるが、該窒素ガスは、配管
(P、)、熱交換器(3)及び配管(P8)を通して前
記リサイクル圧縮器(4)へ返戻されるようになってい
る。
In addition, the recycling compressor (4) generates approximately 6.5 k
Nitrogen gas compressed to g/c+IIG is transferred to the pipe (P+
4) to the evaporator (7), where it undergoes heat exchange, and is then led to the boiler (6a) at the bottom of the tower through the piping (P + s), where the reboiler (6a) generates the reboil gas. On the other hand, after it becomes liquid nitrogen, it is led to the condenser (6b) at the top of the column through the pipe (P+6). The liquid nitrogen is evaporated in the condenser (6b) at a pressure of about 2.5 kg/cmG and produces a reflux liquid that descends in the second rectification column (6). . The nitrogen vaporized as described above is discharged from the top of the column, but the nitrogen gas is returned to the recycle compressor (4) through the pipe (P,), the heat exchanger (3), and the pipe (P8). It is now possible to do so.

なお、図中の(11)はコールドボックスであり、該コ
ールドボックス(11)内には、前記第1精溜塔(1)
、第2精溜塔(6)、熱交換器(3)、低温吸着塔(5
)等、上述の装置の主要部分が一括して収められている
Note that (11) in the figure is a cold box, and inside the cold box (11) is the first rectification column (1).
, second rectification column (6), heat exchanger (3), low temperature adsorption column (5
), etc., the main parts of the above-mentioned devices are all housed together.

かかる装置を用いて本発明方法を実施する場合、微量不
純物を含む液体酸素を先ず第1精溜塔(1)で精溜して
高純度の酸素を塔底部から製出した後、更に該高純度の
酸素を第2精溜塔(6)で精溜することにより、不純物
を塔底部から分離して超高純度の酸素を塔頂部から製出
することができる。なお、第1精溜塔(1)の塔底部か
ら製出した高純度の酸素は、第2精溜塔(6)へ導かれ
る前に低温吸着塔(5)を経由せしめられるので、そこ
で炭化水素、水分、二酸化炭素等の微量不純物が有効に
吸着除去され、もってこれらの不純物が、第2精溜塔(
6)の塔頂部にて液体状体として製出される超高純度の
酸素へ混入するのが回避される。
When carrying out the method of the present invention using such an apparatus, liquid oxygen containing trace impurities is first rectified in the first rectification column (1) to produce high-purity oxygen from the bottom of the column, and then the high-purity oxygen is further purified. By rectifying pure oxygen in the second rectification column (6), impurities can be separated from the bottom of the column and ultra-high purity oxygen can be produced from the top of the column. Note that the high-purity oxygen produced from the bottom of the first rectifying column (1) is passed through a low-temperature adsorption column (5) before being led to the second rectifying column (6), where it is carbonized. Trace impurities such as hydrogen, moisture, and carbon dioxide are effectively adsorbed and removed, and these impurities are then transferred to the second rectification column (
6) Contamination with the ultra-high purity oxygen produced as a liquid at the top of the column is avoided.

なお、図中の配管(P+、)は、前記第2精溜塔(6)
のコンデンサ(6b)内の蒸気分を排出するためのもの
であるが、これを用いることにより、酸素に比して凝縮
し難くて蒸気のまま存在する確率の高い極微量の不純物
は除去されることとなる。
In addition, the pipe (P+,) in the figure is the second rectification column (6).
This is to exhaust the vapor in the condenser (6b), but by using this, extremely small amounts of impurities that are difficult to condense compared to oxygen and have a high probability of existing as vapor can be removed. It happens.

〔別実施例〕[Another example]

上記実施例は、超高純度の酸素を、前記第2精溜塔(6
)の精溜部よりも上方のコンデンサ(6b)において製
出するものであったが、超高純度の酸素は、前記精溜部
の頂部においても製出できる。
In the above embodiment, ultra-high purity oxygen is transferred to the second rectification column (6
), but ultra-high purity oxygen can also be produced at the top of the rectification section.

また、上述の実施例においては、超高純度の酸素を、前
記コンデンサ(6b)から液体状態で取り出−すもので
あったが、超高純度の酸素は、前記コンデンサ(6b)
から気体状態で取り出すこともできる。具体的には、前
記コンデンサ(6b)における前記配管(PI3)連結
位置よりも上方に連結した配管(P+e)より気体状態
で超高純度の酸素を取り出し、該酸素を前記熱交換器(
3)を経由させて寒冷を回収した後、製品ガスとするこ
とができる。なお、図においては、前記配管(pus)
の熱交換器(3)以後の下流域配管系は省略しである。
Further, in the above-described embodiment, ultra-high purity oxygen was extracted from the capacitor (6b) in a liquid state, but the ultra-high purity oxygen was extracted from the capacitor (6b).
It can also be extracted in gaseous form. Specifically, ultra-high purity oxygen is taken out in a gaseous state from a pipe (P+e) connected above the connection position of the pipe (PI3) in the condenser (6b), and the oxygen is transferred to the heat exchanger (
After recovering the cold through 3), it can be used as a product gas. In addition, in the figure, the piping (pus)
The downstream piping system after the heat exchanger (3) is omitted.

また、上述した装置を用いて精製する原料中に、炭化水
素、水分、二酸化炭素等が実質的に含まれていない場合
は、上述の装置の中から低温吸着塔(5)を除いても差
支えがないこともあり得る。
In addition, if the raw material to be purified using the above-mentioned equipment does not substantially contain hydrocarbons, moisture, carbon dioxide, etc., the low-temperature adsorption tower (5) may be omitted from the above-mentioned equipment. It is possible that there is no.

尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すが、該記入により本発明は添付図面の方法
に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the method shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る超高純度酸素製造方法の実施に使用
する装置の配管系統図である。 (1)・・・・・・第1精溜塔、(1a)・・・・・・
リボイラ、(1b)・・・・・・コンデンサ、(5)・
・・・・・低温吸着塔、(6)・・・・・・第2精溜塔
、 (6b)・・・・・・コンデンサ。
The drawing is a piping system diagram of an apparatus used to carry out the method for producing ultra-high purity oxygen according to the present invention. (1)...First rectification column, (1a)...
Reboiler, (1b)... Capacitor, (5).
...low temperature adsorption tower, (6) ... second rectification tower, (6b) ... condenser.

Claims (1)

【特許請求の範囲】 1、微量不純物を含む液体酸素を第1精溜塔(1)へ導
き、該第1精溜塔(1)にて精溜を行って、該第1精溜
塔(1)における精溜部よりもリボイラ(1a)側から
高純度の酸素を液体状態で製出した後、該高純度の酸素
を第2精溜塔(6)の精溜部へ導き、該第2精溜塔(6
)にて精溜を行って、該第2精溜塔(6)における精溜
部頂部又はそれよりもコンデンサ(6b)側から超高純
度の酸素を製出することを特徴とする超高純度酸素製造
方法。 2、前記第1精溜塔(1)のリボイラ(1a)側から液
体状態で製出した高純度の酸素を、低温吸着塔(5)経
由で第2精溜塔(6)の精溜部へ導く請求項1記載の超
高純度酸素製造方法。
[Claims] 1. Liquid oxygen containing trace impurities is led to the first rectification column (1), and rectified in the first rectification column (1). After producing high-purity oxygen in a liquid state from the reboiler (1a) side rather than the rectification part in 1), the high-purity oxygen is led to the rectification part of the second rectification column (6), and then 2 rectification towers (6
) to produce ultra-high purity oxygen from the top of the rectification section in the second rectification column (6) or from the condenser (6b) side thereof. Oxygen production method. 2. High purity oxygen produced in a liquid state from the reboiler (1a) side of the first rectification column (1) is sent to the rectification section of the second rectification column (6) via the low temperature adsorption column (5). The method for producing ultra-high purity oxygen according to claim 1, which leads to.
JP63306274A 1988-12-02 1988-12-02 Ultra high purity oxygen production method Expired - Lifetime JP2680082B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63306274A JP2680082B2 (en) 1988-12-02 1988-12-02 Ultra high purity oxygen production method
FR898915844A FR2640032B1 (en) 1988-12-02 1989-12-01 METHOD FOR PRODUCING ULTRA-PUR OXYGEN

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63306274A JP2680082B2 (en) 1988-12-02 1988-12-02 Ultra high purity oxygen production method

Publications (2)

Publication Number Publication Date
JPH02150686A true JPH02150686A (en) 1990-06-08
JP2680082B2 JP2680082B2 (en) 1997-11-19

Family

ID=17955111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63306274A Expired - Lifetime JP2680082B2 (en) 1988-12-02 1988-12-02 Ultra high purity oxygen production method

Country Status (2)

Country Link
JP (1) JP2680082B2 (en)
FR (1) FR2640032B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155083A (en) * 2014-02-20 2015-08-27 オルガノ株式会社 Method and apparatus for supply of ozone water

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2966999B2 (en) * 1992-04-13 1999-10-25 日本エア・リキード株式会社 Ultra high purity nitrogen / oxygen production equipment
US5682763A (en) * 1996-10-25 1997-11-04 Air Products And Chemicals, Inc. Ultra high purity oxygen distillation unit integrated with ultra high purity nitrogen purifier
US6178776B1 (en) * 1999-10-29 2001-01-30 Praxair Technology, Inc. Cryogenic indirect oxygen compression system
WO2023132876A1 (en) * 2022-01-04 2023-07-13 Praxair Technology, Inc. System and method for co-producing ultra-high purity oxygen and ultra-high purity hydrogen
EP4477980A1 (en) * 2023-06-15 2024-12-18 Linde GmbH Method and apparatus for producing air products from an oxygen fraction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105088A (en) * 1984-08-16 1986-05-23 ユニオン・カ−バイド・コ−ポレ−シヨン Manufacture of ultra-high purity oxygen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3322473A1 (en) * 1983-06-22 1985-01-03 Linde Ag, 6200 Wiesbaden Method and device for avoiding enrichment of undesired components in a liquid medium
US4869741A (en) * 1988-05-13 1989-09-26 Air Products And Chemicals, Inc. Ultra pure liquid oxygen cycle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61105088A (en) * 1984-08-16 1986-05-23 ユニオン・カ−バイド・コ−ポレ−シヨン Manufacture of ultra-high purity oxygen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155083A (en) * 2014-02-20 2015-08-27 オルガノ株式会社 Method and apparatus for supply of ozone water

Also Published As

Publication number Publication date
FR2640032B1 (en) 1992-07-31
FR2640032A1 (en) 1990-06-08
JP2680082B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
JP3294390B2 (en) Ultra high purity nitrous oxide production method and apparatus
CS145292A3 (en) Process for preparing extremely pure argon
EP0593703B1 (en) Ultra-high purity nitrogen and oxygen generator and process
US4384876A (en) Process for producing krypton and Xenon
JPH02272289A (en) Method for separating air
JP2579261B2 (en) Method and apparatus for producing crude neon
JP3842526B2 (en) PFC recovery using condensation
JP2000088455A (en) Method and apparatus for recovering and purifying argon
JPH02282684A (en) Very low temperature rectifying method for superhigh purity nitrogen
JPH02150686A (en) Manufacture of super-high purity oxygen
JPH11228116A (en) Method and apparatus for recovering and purifying argon
JPH05212203A (en) Distillation separation method
KR100319440B1 (en) Device and method for producing low purity oxygen and high purity nitrogen
US5787730A (en) Thermal swing helium purifier and process
JPH10153384A (en) Method of producing ultrapure liquid oxygen
JP3082092B2 (en) Oxygen purification method and apparatus
JP2917031B2 (en) Oxygen production method
CN102278867A (en) Rare gases recovery process for triple column oxygen plant
JP3256811B2 (en) Method for purifying krypton and xenon
JP2955864B2 (en) Method for producing high-purity oxygen
JP3259101B2 (en) Method for enriching krypton and xenon
JP2693220B2 (en) Ultra high purity oxygen production method
WO1991019142A1 (en) Method of and device for producing nitrogen of high purity
JP3072563B2 (en) Method and apparatus for collecting high-purity liquefied nitrogen
JP2001033155A (en) Air separator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12