[go: up one dir, main page]

JPH02149424A - White color conductive material and its production - Google Patents

White color conductive material and its production

Info

Publication number
JPH02149424A
JPH02149424A JP30476188A JP30476188A JPH02149424A JP H02149424 A JPH02149424 A JP H02149424A JP 30476188 A JP30476188 A JP 30476188A JP 30476188 A JP30476188 A JP 30476188A JP H02149424 A JPH02149424 A JP H02149424A
Authority
JP
Japan
Prior art keywords
white
base material
pseudo
antimony
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30476188A
Other languages
Japanese (ja)
Other versions
JP2781798B2 (en
Inventor
Kihachiro Nishiuchi
西内 紀八郎
Kazuto Kamimura
上村 和人
Yukiya Haruyama
幸哉 晴山
Masayoshi Suzue
鈴江 正義
Takuro Morimoto
琢郎 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP63304761A priority Critical patent/JP2781798B2/en
Publication of JPH02149424A publication Critical patent/JPH02149424A/en
Application granted granted Critical
Publication of JP2781798B2 publication Critical patent/JP2781798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

PURPOSE:To obtain the title white conductive material having high whiteness, excellent weatherability, and stabilized conductivity and heat resistance by coating the surface of a white or quasiwhite base material with the film of a tin-antimony-cobalt multicomponent oxide. CONSTITUTION:The surface of a white or quasi-white base material is coated with the film of a multicomponent oxide consisting of the oxides of tin, antimony, and cobalt. The multicomponent film contains about 90-85wt.% tin oxide and the balance antimony oxide and cobalt oxide. The content of the antimony oxide in the film is preferably controlled to about 10-15wt.%, and that of the cobalt oxide to about 0.05-1wt.% based on the total oxide. The white conductive material is obtained by the following method. Namely, the base material, stannous chloride, an antimony compd., and a cobalt compd. are allowed to react with one another in an alkaline soln. to form a multicomponent hydroxide film on the base material surface, and the obtained material is then aged in an acidic soln., filtered off, dried, further heated to a high temp. to convert the multicomponent hydroxide film to a multicomponent oxide film.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、白色度が高く且つ耐候性の優れた導電性物質
及びその製法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a conductive material with high whiteness and excellent weather resistance, and a method for producing the same.

従来の技術及びその問題点 科学技術の発達とニーズの多様化に伴ない、高性能、多
機能素材の開発が活発に行われ、エレクトロニクス産業
分野等にあっても、導電性高分子材料の開発についての
研究が種々試みられており、例えば、カーボン粒子若し
くは繊維又は銅、銀、金等の金属粉を導電性充填剤とし
て用いた高分子材料が提案されている。しかしながら、
カーボン粒子、カーボン繊維、銅、銀、金等の金属粉等
は、いずれも黒色又は金属独自の色調を有するものであ
り、例えばプラスチックス等に導電性充填剤として用い
て得られる導電性高分子は有色であり、白色調の導電性
高分子は得られず、用途が限定される。
Conventional technologies and their problems With the development of science and technology and the diversification of needs, the development of high-performance, multifunctional materials is actively being carried out, and even in the electronics industry etc., the development of conductive polymer materials. Various studies have been conducted regarding this, and for example, polymeric materials using carbon particles or fibers or metal powders such as copper, silver, and gold as conductive fillers have been proposed. however,
Carbon particles, carbon fibers, metal powders such as copper, silver, and gold are all black or have a color unique to the metal, and are conductive polymers that can be used as conductive fillers in plastics, etc. is colored, and a white conductive polymer cannot be obtained, so its uses are limited.

本発明者らは、先に特開昭59−6235号公報記載の
発明をなし、表面が酸化第二錫で覆われた繊維状チタン
酸カリウムを主成分とする白色導電性物質を、また特開
昭59−102820号公報記載の発明をして、チタン
酸アルカリ金属の水分散液に(a)錫、インジウム、ア
ンチモン、銅及びニッケルからなる金属群から選ばれた
金属化合物の一種又は複数種の溶液及び(b)水酸化ア
ルカリ又はハロゲン化アルカリの水溶液の両者を同時に
添加し、両溶液間の反応により生成する水不溶性金属酸
化物をチタン酸アルカリ金属塩の表面に沈着させること
等を要旨とする導電性チタン酸アルカリ金属塩の製造技
術を公開した。
The present inventors have previously made the invention described in JP-A-59-6235, and have developed a white conductive material whose main component is fibrous potassium titanate whose surface is covered with stannic oxide. The invention described in JP-A No. 59-102820 is made by adding (a) one or more metal compounds selected from the metal group consisting of tin, indium, antimony, copper, and nickel to an aqueous dispersion of alkali metal titanate; and (b) an aqueous solution of alkali hydroxide or alkali halide are added simultaneously, and the water-insoluble metal oxide produced by the reaction between both solutions is deposited on the surface of the alkali metal titanate. We have disclosed a manufacturing technology for conductive alkali metal titanate.

しかしながらいずれの発明に係る導電性物質も、導電性
、耐熱性は安定しているが、特に白色度や耐候性の点で
充分ではなかった。
However, although the conductive substances according to any of the inventions have stable conductivity and heat resistance, they are not particularly satisfactory in terms of whiteness and weather resistance.

本発明は白色度が高く、且つ耐候性が優れ、導電性、耐
熱性の安定した白色導電性物質を提供することにある。
The object of the present invention is to provide a white conductive material that has high whiteness, excellent weather resistance, and stable conductivity and heat resistance.

問題点を解決するための手段 本発明者は、前述の公知技術の欠点を改良すべく鋭意研
究を重ねた結果、白色若しくは疑似白色の基材の表面が
錫、アンチモン元素の酸化物からなる複合酸化物系被膜
で覆われ、且つ該複合酸化物系被膜中の酸化錫の比率が
約90〜約85重n%、残りの成分が酸化アンチモン及
び酸化コバルトである白色度が高く、且つ耐候性の優れ
た導電性、耐熱性の安定した白色導電性物質及びその製
法を開発するに至った。
Means for Solving the Problems As a result of intensive research to improve the shortcomings of the above-mentioned known techniques, the present inventor has discovered that the surface of a white or pseudo-white base material is a composite consisting of oxides of tin and antimony elements. Covered with an oxide film, and the ratio of tin oxide in the composite oxide film is about 90 to about 85% by weight, and the remaining components are antimony oxide and cobalt oxide.It has high whiteness and is weather resistant. We have developed a white conductive material with excellent conductivity and stable heat resistance, as well as a method for producing the same.

本発明において、原料として用いられる素材としては、
白色若しくは疑似白色なものが望ましい。
In the present invention, the materials used as raw materials include:
A white or pseudo-white color is desirable.

また基材の形状としては、リン片状、板状、針状、粉末
状、粒状、球状、繊維状等いずれの形状でもよい。
The shape of the base material may be any shape such as scale, plate, needle, powder, granule, sphere, or fiber.

リン片状又は板状基材は、別名フレーク状基材ともいわ
れ、マイカが一般的である。天然マイカを例にとって説
明すると、マイカはへき間外を有するケイ酸アルミニウ
ム系の鉱物で、含有成分の違いにより多くの種類がある
が、このうちマスコバイト(白雲母)が好ましい。また
、セリサイト、タルク等も挙げることができる。人工の
ものとしては、マイカの表面に酸化チタンをコーディン
グしたもの、ガラスフレーク、アルミナフレーク等を挙
げることができる。
The scale-like or plate-like base material is also called a flake-like base material, and mica is commonly used. Taking natural mica as an example, mica is an aluminum silicate mineral with interstices, and there are many types depending on the components contained, but among these, muscovite (muscovite) is preferable. Further, sericite, talc, etc. can also be mentioned. Examples of artificial materials include mica coated with titanium oxide, glass flakes, and alumina flakes.

針状基材としては、天然物と人工物があり、天然物とし
てはアスペクトとウオラストナイトが代表的なものであ
゛る。アスベストは、針状基材としては歴史も古く、補
強性能等も優れているが、石綿肺やガンの原因物質とし
て諸外国で使用禁止措置が採られている。ウオラストナ
イトは、無水珪酸カルシウムで多用されている。人工物
としては、チタン酸カリウムウィスカー、石膏繊維、ゾ
ノトライト、MO8繊維(M g S Oa ・5Mg
0・8H20)  、PMF  (Processed
  MinearalF 1bcr)等を挙げることが
できる。
Acicular base materials include natural and artificial materials, with aspect and wollastonite being representative natural materials. Asbestos has a long history as a needle-shaped base material and has excellent reinforcing properties, but its use has been banned in many countries as it is a causative agent of asbestosis and cancer. Wollastonite is an anhydrous calcium silicate that is widely used. Artifacts include potassium titanate whiskers, gypsum fibers, xonotrite, MO8 fibers (M g S Oa ・5 Mg
0・8H20), PMF (Processed
MineralF 1bcr) and the like.

粉末若しくは粉状基材としては、いろいろな種類のもの
が本発明の基材として使用することができ、具体例とし
ては二酸化チタン、シリカ粉末、亜鉛華、リトポン、硫
酸カルシウム、硫酸バリウム、炭酸カルシウム、水酸化
マグネシウム、ケイ酸カルシウム、カオリナイト、モン
モリオナイト等を挙げることができる。−白色若しくは
疑似白色の色相を示す粉末乃至粉状物質も、本発明の基
材として使用可能であるが、200〜800℃の温度範
囲で分解、溶融又は変質する基材は好ましいものではな
い。
Various types of powder or powder base material can be used as the base material of the present invention, and specific examples include titanium dioxide, silica powder, zinc white, lithopone, calcium sulfate, barium sulfate, and calcium carbonate. , magnesium hydroxide, calcium silicate, kaolinite, montmorionite and the like. - Powder or powdery substances exhibiting a white or pseudo-white hue can also be used as the substrate of the present invention, but substrates that decompose, melt, or change in quality in the temperature range of 200 to 800°C are not preferred.

球状基材としては、内部の詰まったビーズと内部が中空
であるバルーンとに分けられる。本発明における白色若
しくは疑似白色基材として使用できるものはバルーン状
のものが多い。バルーン状基材の具体例としてはシリカ
バルーン、ガラスバルーン、フライアッシュバルーン等
を挙げることができる。またビーズとしては、人工的に
制御されたもののうち、シリコンビーズ、ガラスピーズ
等が本発明の基材として使用可能である。
Spherical substrates can be divided into beads with a filled interior and balloons with a hollow interior. Many balloon-shaped materials can be used as the white or pseudo-white base material in the present invention. Specific examples of the balloon-shaped substrate include silica balloons, glass balloons, fly ash balloons, and the like. Among artificially controlled beads, silicon beads, glass beads, etc. can be used as the base material of the present invention.

繊維状基材としては、白色若しくは疑似白色である繊維
状基材、例えばガラス繊維、アルミナ繊維、セラミック
繊維、ロックウール繊維等が例示できる。
Examples of the fibrous base material include white or pseudo-white fibrous base materials such as glass fiber, alumina fiber, ceramic fiber, and rock wool fiber.

本発明の白色度が高く、且つ耐候性が高い白色導電性物
質は、前述した各種の白色若しくは疑似白色基材の表面
に錫、アンチモンの元素の酸化物からなる複合酸化物被
膜を設けた構成からなるが、当該複合酸化物被膜中の酸
化錫の比率が約90〜約85重量%、残りの成分として
は酸化アンチモン及び酸化コバルトである。
The white conductive material with high whiteness and high weather resistance of the present invention has a structure in which a composite oxide film made of oxides of tin and antimony elements is provided on the surface of the various white or pseudo-white base materials described above. However, the ratio of tin oxide in the composite oxide film is about 90 to about 85% by weight, and the remaining components are antimony oxide and cobalt oxide.

従来、前述した各種白色若しくは疑似白色の基材表面に
酸化錫又は酸化銀に酸化アンモチンをドープした被膜層
を設けた白色導電性物質は公知である。しかしながら、
導電性は付与されているものの、該白色導電性物質の白
色度は低く、所謂り値でいえば80未満であり、その色
相は灰白色であり、白色と言い難いものであった。また
耐候性についても充分でなく、白色導電性物質の用途は
一般的に人の目に触れる部位へ使用する場合が多く、特
に光による色相変化が大きな問題であり、公知の白色導
電性物質は自然光(太陽光)や螢光灯等で色差(以下「
ΔE」という)が4以上、数的には5〜12となり、実
用上大きな問題を抱えていた。
Conventionally, white conductive materials are known in which a coating layer of tin oxide or silver oxide doped with ammothine oxide is provided on the surface of the various white or pseudo-white substrates described above. however,
Although conductivity was imparted, the whiteness of the white conductive material was low, less than 80 in so-called value, and its hue was grayish-white, so it could hardly be called white. Weather resistance is also not sufficient, and white conductive materials are generally used in areas that are visible to the human eye, and hue change due to light is a major problem, so known white conductive materials Color difference (hereinafter referred to as “
ΔE'') is 4 or more, numerically 5 to 12, which poses a big problem in practice.

本発明者は、白色若しくは疑似白色の基材の表面に施す
導電性の複合酸化物被膜の構成が酸化錫として約90〜
約75重量%の範囲であり、残りの成分が酸化アンチモ
ン及び酸化コバルトとすることにより、L値で80以上
の白度を有し、且つΔE値が4以下の実用上極めて用途
範囲の広い白色導電性物質が得られることを見い出した
The present inventor has discovered that the composition of the conductive composite oxide film applied to the surface of a white or pseudo-white base material is approximately 90% to 90% as tin oxide.
By making the remaining components antimony oxide and cobalt oxide, the white color has an L value of 80 or more and a ΔE value of 4 or less, which has a wide range of practical uses. It has been discovered that a conductive material can be obtained.

当該複合酸化物被膜の構成において、酸化錫の比率が9
0重量%を越える場合には、白度はより高くなるが、導
電性を発現し得なくなる。また逆に酸化錫の比率が85
重量%以下であると、当該複合酸化物被膜が灰色から黒
色化し、本発明の目的物を得ることはできない。本発明
においては、従来からΔEの大きな導電材料である酸化
錫/酸化アンチモン系複合酸化物膜の構成に新たに微量
の酸化コバルトを添加したことにより、白色度の向上及
びΔEの低減化を図ることができた。酸化コバルトの添
加は極めて微量でその効果を発揮し得る。即ち、本発明
の複合酸化物の構成中、酸化アンチモンは約10〜約1
5重量%であり、酸化コバルトは当該複合酸化物被膜を
構成している酸化錫/酸化アンチモンの全重量に対し約
0.05〜約1重n%の割合で添加すればよい。
In the composition of the composite oxide film, the ratio of tin oxide is 9
If it exceeds 0% by weight, the whiteness will be higher, but it will not be possible to develop conductivity. Conversely, the ratio of tin oxide is 85
If it is less than % by weight, the composite oxide film will turn from gray to black, making it impossible to obtain the object of the present invention. In the present invention, a small amount of cobalt oxide is newly added to the composition of the tin oxide/antimony oxide composite oxide film, which has traditionally been a conductive material with a large ΔE, thereby improving whiteness and reducing ΔE. I was able to do that. Addition of cobalt oxide can exhibit its effect even in extremely small amounts. That is, in the composition of the composite oxide of the present invention, antimony oxide is about 10 to about 1
5% by weight, and cobalt oxide may be added in a proportion of about 0.05 to about 1% by weight based on the total weight of tin oxide/antimony oxide constituting the composite oxide film.

本発明の白色導電性物質の従来公知の白色導電性物質と
著しい性能の差は、その製法により安定したものとなる
The significant difference in performance between the white conductive material of the present invention and conventionally known white conductive materials is made more stable by the manufacturing method.

本発明の目的である白色度が高く、且つ耐候性が優れ、
導電性、耐熱性の安定した白色導電性物質の製法は次の
通りである。
The object of the present invention is to have high whiteness and excellent weather resistance,
The method for producing a white conductive substance with stable conductivity and heat resistance is as follows.

本発明の製法は、白色若しくは疑似白色の基材、塩化第
一錫、アンモチン系化合物及びコバルト系化合物をアル
カリ性水溶液中で反応させ、当該基材の表面に錫−アン
モチン−コバルトの複合水酸化物被膜を形成せしめ、次
いで酸性水溶液中で熟成した後、脱水乾燥し、更に高温
に加熱して当該複合水酸化物被膜を複合酸化物被膜とす
る方法である。
The manufacturing method of the present invention involves reacting a white or pseudo-white base material, stannous chloride, an ammothine-based compound, and a cobalt-based compound in an alkaline aqueous solution, and forming a tin-ammothine-cobalt composite hydroxide on the surface of the base material. This is a method in which a film is formed, then aged in an acidic aqueous solution, dehydrated and dried, and further heated to a high temperature to form the composite hydroxide film into a composite oxide film.

本発明に用いられる酸化錫の原料は塩化第一錫に特定さ
れる。本発明の目的である白色度が高く、且つ耐候性の
高い白色導電性物質の製法においては、他の錫化合物は
原料として使用することは適当でない。
The raw material for tin oxide used in the present invention is specified as stannous chloride. In the method of manufacturing a white conductive substance with high whiteness and high weather resistance, which is the object of the present invention, it is not appropriate to use other tin compounds as raw materials.

本発明に用いられるアンチモン化合物やコバルト化合物
としては、水又は水溶性有機溶媒に可溶なものであれば
よく、例えばハロゲン化塩、酸化物等でアルカリ性で水
に可溶なもの及び金属のアルコラード、金属アセチルア
セトナート等の水溶性有機溶媒に可溶なものを例示でき
る。具体的には5bC13,5bC15、CoC!!、
Co CZ 5 、酸化アンチモン、酸化コバルト等の
水可溶性化合物及びアンチモン、コバルトのメチレート
、エチレート、プロピオネート、ブチレート及びアセチ
ルアセトネート等の水溶性有機溶媒に可溶な化合物が挙
げられる。これ等の塩化第一錫やアンチモン化合物及び
コバルト化合物は労働安全性、省資源等の観点から水溶
液として使用することが望ましいが、水溶性有機溶媒、
例えば炭素数4以下のアルコール類、アセトン、エチレ
ングリコール、プロピレングリコール、ジオキサン、グ
リセリン、メチルセロソルブ、エチルセロソルブ、メチ
ルセロソルブアセテート、エチルセロソルブアセテート
、ジアセトンアルコール、アセチルアセテート等の1種
又は2種以上の混合溶媒、更にはこれ等の水溶液が挙げ
られる。
The antimony compounds and cobalt compounds used in the present invention may be those that are soluble in water or water-soluble organic solvents, such as halogenated salts, oxides, etc. that are alkaline and water-soluble, and metal alcoholides. Examples include those soluble in water-soluble organic solvents such as metal acetylacetonate. Specifically, 5bC13, 5bC15, CoC! ! ,
Examples include water-soluble compounds such as Co CZ 5 , antimony oxide, cobalt oxide, and compounds soluble in water-soluble organic solvents such as methylate, ethylate, propionate, butyrate, and acetylacetonate of antimony and cobalt. It is desirable to use these stannous chloride, antimony compounds, and cobalt compounds as an aqueous solution from the viewpoint of labor safety and resource conservation, but water-soluble organic solvents,
For example, one or more of alcohols having 4 or less carbon atoms, acetone, ethylene glycol, propylene glycol, dioxane, glycerin, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, diacetone alcohol, acetylacetate, etc. Examples include mixed solvents and aqueous solutions thereof.

尚、本発明では、塩化第一錫とアンモチン化合物及びコ
バルト化合物を別々に溶解した溶液、並びに塩化第一錫
とアンチモン化合物及びコバルト化合物を同時に溶解し
た溶液のいずれも使用できる。
In the present invention, both a solution in which stannous chloride, an ammothine compound, and a cobalt compound are dissolved separately, and a solution in which stannous chloride, an antimony compound, and a cobalt compound are dissolved simultaneously can be used.

白色若しくは疑似白色の基材の水分散液の調整に当って
は、見掛濃度が約0.01〜50重量%好ましくは約0
.1〜3重量%になるようにするのがよい。
When preparing an aqueous dispersion of a white or pseudo-white base material, the apparent concentration is about 0.01 to 50% by weight, preferably about 0.
.. It is preferable to adjust the amount to 1 to 3% by weight.

白色若しくは疑似白色基材の水分散液に添加される塩基
第一錫、アンチモン化合物及びコバルト化合物溶液の濃
度も自由に選定できるが、濃度が低すぎると液位が多(
なって取扱いに不便があり、生産性も低下するので、好
ましくない。また反対に溶解度以上の塩化第一錫、アン
チモン化合物及びコバルト化合物を添加した溶液を用い
た場合には、これ等化合物の加水分解物の白色若しくは
疑似白色基材への沈着が不均一となり、目的の白色導電
性物質の導電性、白度、耐候性にバラツキを生じる虞れ
があり、好ましくない。
The concentration of the stannous base, antimony compound, and cobalt compound solution added to the aqueous dispersion of the white or pseudo-white base material can be selected freely, but if the concentration is too low, the liquid level will be too high (
This is not preferable because it is inconvenient to handle and reduces productivity. On the other hand, when using a solution containing stannous chloride, antimony compounds, and cobalt compounds in a higher solubility, the hydrolyzate of these compounds will be deposited unevenly on the white or pseudo-white substrate, resulting in This is not preferable because there is a risk of variations in the conductivity, whiteness, and weather resistance of the white conductive material.

本発明において、白色若しくは疑似白色の基材の表面の
複合酸化物被膜の成分はアンチモン、コバルトからなる
金属酸化物の混合物を10〜15重量%程度含有し、残
りが実質的に酸化錫から構成される。酸化アンチモンが
当該複合酸化物被膜中での含有貴が10重母%未満では
、ドーピング効果に乏しく、高導電性が望めなくなる傾
向が生ずる。また上限においては従来は特に制限はなか
ったが、15重貴%を超えると灰色又は青味を帯びた有
彩色となり、白度が低下する傾向があり、白色導電性物
質としての利用価値が低下し、且つ一般的に高価になり
やす〈産業利用性が低下する。
In the present invention, the component of the composite oxide coating on the surface of the white or pseudo-white base material contains about 10 to 15% by weight of a mixture of metal oxides consisting of antimony and cobalt, and the remainder consists essentially of tin oxide. be done. If the amount of antimony oxide contained in the composite oxide film is less than 10% by weight, the doping effect will be poor and high conductivity will tend to become undesirable. In addition, there was no particular upper limit in the past, but if it exceeds 15%, the color becomes gray or bluish, and the whiteness tends to decrease, reducing its utility value as a white conductive material. However, they generally tend to be expensive (industrial applicability decreases).

白色若しくは疑似白色の基材の表面の複合酸化物被膜の
被膜量としては、被膜量が少な過ぎると均一に被膜がで
きず、導電性が発現されなくなったり、低導電性となり
、逆に多すぎても実質的に有効な被膜であればよいので
あって、−層の導電性が期待できない上、白度の低下を
招き、本発明の目的に合致しなくなる。本発明の複合酸
化物被膜としては、全体配合として約20〜40重量%
の範囲が好ましい。
Regarding the coating amount of the composite oxide coating on the surface of the white or pseudo-white base material, if the coating amount is too small, the coating will not be uniform and the conductivity will not be developed or the conductivity will be low, and conversely if it is too large. However, the conductivity of the -layer cannot be expected, and the whiteness will be reduced, which will not meet the purpose of the present invention. The composite oxide film of the present invention has a total composition of about 20 to 40% by weight.
A range of is preferred.

白色若しくは疑似白色の基拐の水分散液に塩化第一錫、
アンチモン化合物及びコバルト化合物溶液を添加する方
法としては加水分解を生じる条件に調整する必要がある
A white or pseudo-white aqueous dispersion of stannous chloride,
The method of adding the antimony compound and cobalt compound solutions requires adjusting the conditions to cause hydrolysis.

加水分解する第1の方法としては、塩化第−錫並びにア
ンチモン及びコバルトのアルコラード、アチセルアルコ
ラート等の有機金属化合物を用い、これ等を水溶性有機
溶媒に溶解したものを白色若しくは疑似白色の基材の水
分散液中に添加することにより、塩化第−錫及びアンチ
モン化合物やコバルト化合物が加水分解され、白色若し
くは疑似白色基材の表面に複合水酸化物の形で沈積させ
る。
The first method of hydrolysis uses organometallic compounds such as tin chloride and antimony and cobalt alcoholade and aticel alcoholate, and dissolves these in a water-soluble organic solvent to form a white or pseudo-white group. When added to an aqueous dispersion of the material, tin chloride, antimony compounds, and cobalt compounds are hydrolyzed and deposited in the form of composite hydroxides on the surface of the white or pseudo-white substrate.

尚、これらの加水分解反応は加熱下アルカリ性物質の存
在下で促進されるので、白色若しくは疑似白色の基材の
水分散液を50℃以上〜沸点以下に加熱して反応を行な
うのが好ましい。この際、アルカリ性物質としては、ア
ルカリ金属の水酸化物、炭酸塩、硝酸塩、アンモニア等
が使用できる。
Since these hydrolysis reactions are accelerated in the presence of an alkaline substance under heating, it is preferable to carry out the reaction by heating a white or pseudo-white aqueous dispersion of the base material to a temperature of 50° C. or above and below the boiling point. At this time, as the alkaline substance, alkali metal hydroxides, carbonates, nitrates, ammonia, etc. can be used.

加水分解の第2の方法は塩化第一錫とアンチモン化合物
やコバルト化合物としてはハロゲン化物を用い、これ等
のアルコール溶液を白色若しくは疑似白色の基材の水分
散液中に添加する方法であり、加熱及びアルカリ性物質
の存在下で加水分解反応が促進されるのは第1の方法と
同様である。
The second method of hydrolysis is to use stannous chloride and a halide as an antimony compound or a cobalt compound, and add an alcohol solution of these to an aqueous dispersion of a white or pseudo-white base material. Similar to the first method, the hydrolysis reaction is promoted by heating and in the presence of an alkaline substance.

加水分解の第3の方法は、塩化第一錫とアンチモン化合
物及びコバルト化合物の水溶液を白色若しくは疑似白色
の基材の水分散液中に添加する方法であり、有機溶媒を
用いない点で労働安全性、防災、更には経済性の観点か
ら産業利用性の高い方法である。但し、塩化第一錫やア
ンチモン化合物及びコバルト化合物は水分と接触すると
即加水分解したり変質するものが多く、安定な水溶液が
得られ難いことが多いが、酸性水溶液にすることにより
安定な水溶液が得られる。尚、このような酸性水溶液で
安定なものも、加水分解は加熱及びアルカリ性物質の存
在下に行われることは第1及び第2の方法と同様である
The third method of hydrolysis is to add an aqueous solution of stannous chloride, an antimony compound, and a cobalt compound to an aqueous dispersion of a white or pseudo-white base material, which is labor-safe because it does not use an organic solvent. This method has high industrial applicability from the viewpoints of safety, disaster prevention, and economic efficiency. However, many stannous chloride, antimony compounds, and cobalt compounds are immediately hydrolyzed or altered when they come into contact with water, and it is often difficult to obtain a stable aqueous solution. However, by making an acidic aqueous solution, a stable aqueous solution can be obtained can get. It should be noted that, as in the first and second methods, the hydrolysis of those which are stable in such an acidic aqueous solution is carried out under heating and in the presence of an alkaline substance.

本発明においては、塩化第一錫の溶液とアンモチン化合
物及びコバルト化合物の溶液の全種全量を混合して同時
に添加してもよいが、生成する複合水酸化物被膜層の組
成を調整すべく、各々の溶液を別々又は一部混合したも
のを添加する等、その添加法は特に制限されない。しか
し、コバルト化合物は反応の最終段階で添加するのが効
果的である。
In the present invention, all types and amounts of the stannous chloride solution and the ammothine compound and cobalt compound solutions may be mixed and added at the same time, but in order to adjust the composition of the composite hydroxide coating layer to be produced, The method of addition is not particularly limited, such as adding each solution separately or partially mixed. However, it is effective to add the cobalt compound at the final stage of the reaction.

上記の加水分解反応においては、溶液のpHは10〜1
4の範囲が好ましい。
In the above hydrolysis reaction, the pH of the solution is 10 to 1.
A range of 4 is preferred.

pH10〜14のアルカリ性溶液中で白色若しくは疑似
白色基材の表面に複合水酸化物被膜を形成せしめた後、
酸性溶液を添加し、系内をpH6以下となし充分な時間
をかけて熟成させる。本発明の目的の白色導電性物質を
得るためにはこの熟成反応が重要である。
After forming a composite hydroxide film on the surface of a white or pseudo-white base material in an alkaline solution with a pH of 10 to 14,
An acidic solution is added to bring the pH of the system to 6 or lower, and the mixture is aged for a sufficient amount of time. This aging reaction is important in order to obtain the white conductive material aimed at in the present invention.

熟成反応の終了したスラリー液中の固形分を濾過、デカ
ンテーション又は遠心分離等の手段を用いて分離し、こ
れを水洗乾燥させる。
The solid content in the slurry liquid after the aging reaction is separated using means such as filtration, decantation, or centrifugation, and this is washed with water and dried.

次いで、本発明の目的である白色導電性物質を得るため
には、400〜800℃、好ましくは500〜700℃
の温度で焼成し、複合水酸化物被膜を複合酸化物被膜に
変換する。この熱処理に要する時間は、複合水酸化物被
膜の膜厚にもよるが、通常30分〜3時間、好ましくは
1〜2時間の範囲である。
Next, in order to obtain a white conductive material, which is the object of the present invention, the temperature is 400 to 800°C, preferably 500 to 700°C.
The composite hydroxide film is converted into a composite oxide film by firing at a temperature of . The time required for this heat treatment depends on the thickness of the composite hydroxide film, but is usually in the range of 30 minutes to 3 hours, preferably 1 to 2 hours.

この熱処理に際し、必要に応じて還元雰囲気を採用して
導電性を向上させることもできる。この還元性熱処理に
際しては、水素ガス、アンモニアガス、−酸化炭素、窒
素ガス等のガスを単用又は併用すればよい。
During this heat treatment, a reducing atmosphere can be used to improve the conductivity, if necessary. In this reducing heat treatment, gases such as hydrogen gas, ammonia gas, -carbon oxide, and nitrogen gas may be used alone or in combination.

本発明においては、白色若しくは疑似白色の基材の表面
に複合水酸化物被膜を形成せしめ、濾別乾燥した後、加
熱焼成前に分級・解繊すると、熱処理工程での品質のバ
ラツキを極めて小さ(することができる。また加熱焼成
せしめて本発明の目的である白色導電性物質を得た後、
その後工程として分級・解繊工程を入れると、利用時極
めて分散性の良好な白色導電性物質とすることができる
In the present invention, a composite hydroxide film is formed on the surface of a white or pseudo-white base material, and after being filtered and dried, it is classified and defibrated before heating and firing, thereby minimizing the variation in quality during the heat treatment process. (Also, after heating and baking to obtain the white conductive material which is the object of the present invention,
If a classification and defibration step is included as a subsequent step, a white conductive material with extremely good dispersibility during use can be obtained.

以下に実施例を挙げて本発明をより一層明らかにする。Examples are given below to further clarify the present invention.

尚、実施例において単に「%」とあるのは「重量%」で
あり、単に「部」とあるのは「重量部」である。
In the examples, "%" means "% by weight" and "parts" means "parts by weight."

実施例1 チタン酸カリウムウィスカー(大塚化学社製、T I 
5M0−N)を250g取り、3000cmのイオン水
中に分散させる。次いで、15%の苛性ソーダ水溶液2
55gを加え、pHを12に調整した。該アルカリ水溶
液を三ロフラスコ(51)に仕込む。三ロフラスコを加
温し液温を70℃に上げ、塩化第一錫の45%HCJ溶
液(日本化学産業社製、工業グレード)127g及び三
塩化アンチモン(日本化学産業社製、99.9%)のH
CI溶液222gの混合液を一方の口より、更に15%
苛性ソーダ溶液200gをもう一方の口より同時に約1
時間かけて滴下する。その後、上記塩化第一錫の45%
HCl溶液127gに、12.3%HC2溶液75gを
加えたものを一方の口より、更に15%苛性ソーダ溶液
160gをもう一方の口より、同時に約1時間かけて滴
下する。塩化コバルト(和光純薬社製、CoC/26H
20)の20%水溶液を2g添加する。以上の2段階の
反応終了後、液温を70℃に保持したまま、30%HC
l溶液を徐々に滴下させ、反応系全体のpHを4に調整
した後30分攪拌を続ける。その後生成物を濾別、脱水
し、イオン水にて洗浄後乾燥する。乾燥した生成物は、
粗砕した後、電気炉(マツフル炉)で酸化雰囲気中50
0℃、1時間焼成した。
Example 1 Potassium titanate whiskers (manufactured by Otsuka Chemical Co., Ltd., T I
Take 250g of 5M0-N) and disperse it in 3000cm of ionized water. Then, 15% caustic soda aqueous solution 2
55 g was added and the pH was adjusted to 12. The alkaline aqueous solution is charged into a three-ring flask (51). The three-lough flask was heated to raise the liquid temperature to 70°C, and 127 g of a 45% HCJ solution of stannous chloride (manufactured by Nihon Kagaku Sangyo Co., Ltd., industrial grade) and antimony trichloride (manufactured by Nippon Kagaku Sangyo Co., Ltd., 99.9%) were added. H of
Pour a mixture of 222g of CI solution into one mouth and add another 15%
200g of caustic soda solution from the other mouth at the same time
Drip over time. Then, 45% of the above stannous chloride
A mixture of 127 g of HCl solution and 75 g of 12.3% HC2 solution was added dropwise from one port, and 160 g of 15% caustic soda solution was simultaneously added from the other port over about 1 hour. Cobalt chloride (manufactured by Wako Pure Chemical Industries, Ltd., CoC/26H
Add 2 g of a 20% aqueous solution of 20). After the completion of the above two-step reaction, while maintaining the liquid temperature at 70°C, add 30% HC.
1 solution was gradually added dropwise to adjust the pH of the entire reaction system to 4, and stirring was continued for 30 minutes. Thereafter, the product is filtered, dehydrated, washed with ionized water, and then dried. The dried product is
After coarsely crushing, it is heated in an oxidizing atmosphere in an electric furnace (Matsufuru furnace) for 50 minutes.
It was baked at 0°C for 1 hour.

このようにして得られた白色導電性物質の八Eは2.8
であり、L値は85、及び導電値は100Ω/ c m
であった。ここで、ΔEとは耐候性を表わす目安の数値
であり、−数的にはJIS2 8730色素表示方法に
記載され、定義されている。また、同様にL値とは明度
を表わす数値であり、JIS  Z  8728色の表
示方法に記載され、定義されたものである。また、導電
値の測定は、JIS  K  6911法に準拠し、測
定した(以下、実施例2以降も同様の測定法を採用した
)。
The 8E of the white conductive material thus obtained is 2.8
, the L value is 85, and the conductivity value is 100Ω/cm
Met. Here, ΔE is a numerical value representing weather resistance, and is numerically described and defined in JIS2 8730 dye display method. Similarly, the L value is a numerical value representing lightness, and is described and defined in JIS Z 8728 color display method. Further, the conductivity value was measured in accordance with the JIS K 6911 method (hereinafter, the same measurement method was adopted in Example 2 and subsequent examples).

実施例2 アナターゼ型二酸化チタン(帝国化工社製、JA−1)
を100g取り、1000cnfのイオン水中に分散さ
せる。次いで、15%の苛性ソーダ水溶液76gを加え
、pHを12に調整した。該アルカリ水溶液を三ロフラ
スコ(21)に仕込む。
Example 2 Anatase type titanium dioxide (manufactured by Teikoku Kako Co., Ltd., JA-1)
Take 100g and disperse it in ionized water of 1000cnf. Then, 76 g of 15% aqueous caustic soda solution was added to adjust the pH to 12. The alkaline aqueous solution is charged into a three-loaf flask (21).

三ロフラスコを加温し液温を70℃に上げ、塩化第一錫
の45%HC!!溶液(日本化学産業社製、工業グレー
ド)38g及び三塩化アンチモン(日本化学産業社製、
99.9%)のHCl溶液67gの混合液を一方の口よ
り、更に15%苛性ソーダ溶液60gをもう一方の口よ
り同時に約1時間かけて滴下する。その後、上記塩化第
一錫の45%HCf溶液38gに、12 、 396 
HCl溶液22.5gを加えたものを一方の口より、更
に15%苛性ソーダ溶液48gをもう一方の口より、同
時に約1時間かけて滴下する。その後、塩化コバルト(
和光紬薬社製、CoC/!2 ・6H20)の10%水
溶液を1.2g添加する。上記の反応終了後、液温を7
0℃に保持したまま、30%HCJ溶V1kを徐々に滴
下させ、反応系全体のpHを4に調整した後60分攪拌
を続ける。生成物は濾別、脱水し、イオン水にて洗浄後
乾燥する。乾燥した生成物は、粗粉砕した後、電気炉(
マツフル炉)で酸化雰囲気中600℃11時間焼成した
Heat the three-lough flask and raise the liquid temperature to 70℃, and 45% HC of stannous chloride! ! 38 g of solution (manufactured by Nihon Kagaku Sangyo Co., Ltd., industrial grade) and antimony trichloride (manufactured by Nippon Kagaku Sangyo Co., Ltd.)
A mixed solution of 67 g of a 99.9% (99.9%) HCl solution was added dropwise from one port, and 60 g of a 15% caustic soda solution was simultaneously added dropwise from the other port over a period of about 1 hour. Then, 12,396 g of the above 45% HCf solution of stannous chloride was added.
22.5 g of HCl solution was added thereto from one port, and 48 g of 15% caustic soda solution was simultaneously added dropwise from the other port over a period of about 1 hour. Then cobalt chloride (
Manufactured by Wako Tsumugi Co., Ltd., CoC/! Add 1.2 g of a 10% aqueous solution of 2.6H20). After the above reaction is completed, lower the liquid temperature to 7
While maintaining the temperature at 0°C, 30% HCJ solution V1k was gradually added dropwise to adjust the pH of the entire reaction system to 4, and stirring was continued for 60 minutes. The product is filtered, dehydrated, washed with ionized water, and then dried. The dried product is coarsely ground and then heated in an electric furnace (
It was fired in an oxidizing atmosphere at 600°C for 11 hours in a Matsufuru furnace.

このようにして得られた白色導電性物質の八Eは2.6
であり、L値は84、及び導電値は80Ω/ c mで
あった。
The 8E of the white conductive material thus obtained is 2.6
The L value was 84, and the conductivity value was 80Ω/cm.

実施例3 マスコバイト粉末(白雲母、60〜200メッシ通過、
80%)を230g取り、3000 cmのイオン水中
に分散させる。次いで、15%の苛性ソーダ水溶液25
0gを加え、pHを12にFA整した。このようにして
調整した当該アルカリ性水分散液を80℃に加温し、三
ロフラスコに仕込んだ。次いで三ロフラスコを80℃に
加温し続けて、塩化第一錫の45%塩酸酸性水溶液(日
本化学産業社製)120g及び三塩化アンチモン(日本
化学産業社製、純度99.9%)の塩酸水溶液220g
の混合液を三ロフラスコの一方の口から、同時に15%
苛性ソーダ溶液200gをもう一方の口から約1.5時
間かけて滴下した。その後続いて上記塩化第一錫の45
%塩酸酸性水溶液120gに、12.5%塩酸水溶液7
5gを加えたものを一方の口より、更に1596苛性ソ
一ダ水溶液160gをもう一方の口から同時に約1時間
かけて滴下した。更に塩化コバルト(和光紬薬社製、C
oCl2・6H20、試薬1級)の20%水溶液を30
g添加した後、液温を80℃に保持したまま、30%塩
酸水溶液を徐々に滴下させ、反応系全体のpHを4に調
整した後30分攪拌を続ける。その後、生成物(スラリ
ー)を?戸別、脱水し、イオン水で洗浄後105℃にて
乾燥する。
Example 3 Muscovite powder (muscovite, passing 60-200 mesh,
80%) was taken and dispersed in 3000 cm of ionized water. Then, a 15% aqueous solution of caustic soda 25%
0g was added and the pH was adjusted to 12. The alkaline aqueous dispersion thus prepared was heated to 80° C. and charged into a three-ring flask. Next, the three-lough flask was heated to 80°C, and 120 g of a 45% hydrochloric acid acidic aqueous solution of stannous chloride (manufactured by Nippon Kagaku Sangyo Co., Ltd.) and antimony trichloride (manufactured by Nippon Kagaku Sangyo Co., Ltd., purity 99.9%) were added to the hydrochloric acid solution. 220g of aqueous solution
At the same time, add 15% of the mixture of
200 g of caustic soda solution was dripped from the other opening over about 1.5 hours. Thereafter, 45% of the above stannous chloride
% Hydrochloric acid acidic aqueous solution 120g, 12.5% Hydrochloric acid aqueous solution 7
5 g of the solution was added through one port, and 160 g of 1596 caustic soda aqueous solution was simultaneously added dropwise from the other port over a period of about 1 hour. Furthermore, cobalt chloride (manufactured by Wako Tsumugi Co., Ltd., C
30% aqueous solution of oCl2.6H20, reagent 1st class)
After adding g, a 30% aqueous hydrochloric acid solution was gradually added dropwise while maintaining the liquid temperature at 80°C, and after adjusting the pH of the entire reaction system to 4, stirring was continued for 30 minutes. Then the product (slurry)? Each house is dehydrated, washed with ionized water, and dried at 105°C.

乾燥した生成物は、粗砕・分級後、電気炉(マツフル炉
)で酸化雰囲気中600℃にて約2時間焼成して白色導
電性物質を得た。
The dried product was crushed and classified, and then calcined in an electric furnace (Matsufuru furnace) at 600° C. for about 2 hours in an oxidizing atmosphere to obtain a white conductive material.

このようにして得られた白色導電性物質のΔEは2.3
であり、L値は80、及び導電値は15Ω/ c mで
あった。
The ΔE of the white conductive material thus obtained is 2.3
The L value was 80, and the conductivity value was 15Ω/cm.

実施例4 シリコンバルーン(東芝シリコーン社製、トスパール)
を400℃で1時間焼成したシリカバルーン150gを
、2000cn?のイオン水中に分散させる。次いで1
5%の苛性ソーダ水溶液を125g加え、pHを12に
調整した。該アルカリ性分散液を三ロフラスコ(31)
に仕込む。この容器を加温し、液温を70℃に上げ、塩
化第一錫の45%HC!溶液(日本化学産業社製)62
g及び三塩化アンチモン(日本化学産業社製、99.9
%)のHCl溶液110gの混合液を一方の口より、更
に15%苛性ソーダ溶液100gをもう一方の口より、
同時に約1時間かけて滴下する。その後、上記塩化第一
錫の45%HCJ溶液62gに12.3%HCl溶液3
5gを加えたものを一方の口より、更に15%苛性ソー
ダ溶液80gをもう一方の口より同時に約1時間かけて
滴下する。その後、塩化コバルト(和光紬薬社製、Co
 C12・6H20’)の30%水溶液を0.7g添加
する。上記反応終了後、液温70℃を保持したまま30
%HCf溶液を徐々に滴下し、反応系全体のpHを4に
調整した後、60分間攪拌を続ける。その後生成物を濾
別、脱水し、イオン水で洗浄後乾燥する。乾燥した生成
物は、粗粉砕した後、電気炉(マツフル炉)で酸化雰囲
気中500℃11時間焼成した。
Example 4 Silicon balloon (Toshiba Silicone Co., Ltd., Tospearl)
150g of silica balloon baked at 400℃ for 1 hour, 2000cn? Disperse in ionized water. then 1
125 g of 5% aqueous caustic soda solution was added to adjust the pH to 12. The alkaline dispersion was poured into a three-ring flask (31).
Prepare it. This container was heated, the liquid temperature was raised to 70°C, and 45% HC of stannous chloride was added. Solution (manufactured by Nihon Kagaku Sangyo Co., Ltd.) 62
g and antimony trichloride (manufactured by Nihon Kagaku Sangyo Co., Ltd., 99.9
%) of HCl solution from one port, and 100 g of 15% caustic soda solution from the other port.
At the same time, drip for about 1 hour. Then, 3 g of the 12.3% HCl solution was added to 62 g of the 45% HCJ solution of the stannous chloride.
Add 5 g of the solution and dropwise add 80 g of 15% caustic soda solution from the other port at the same time over about 1 hour. After that, cobalt chloride (manufactured by Wako Tsumugi Co., Ltd., Co
Add 0.7 g of a 30% aqueous solution of C12.6H20'). After the completion of the above reaction, while maintaining the liquid temperature at 70°C,
%HCf solution was gradually added dropwise to adjust the pH of the entire reaction system to 4, and stirring was continued for 60 minutes. The product is then filtered off, dehydrated, washed with ionized water and dried. The dried product was coarsely pulverized and then calcined in an oxidizing atmosphere at 500° C. for 11 hours in an electric furnace (Matsufuru furnace).

このようにして得られた白色導電性物質のΔEは1.7
であり、L値は86、及び導電値は95Ω/ c mで
あった。
The ΔE of the white conductive material thus obtained is 1.7
The L value was 86, and the conductivity value was 95Ω/cm.

実施例5 アルミナ繊維(英ICI社製、サフィルRF)を長さ1
〜3mmにカットシたD&E(K (比表面積3〜4m
3/g)を100g取り、2000cn?のイオン水中
に分散させる。次いで、15%の苛性ソーダ水溶液10
0 g加え、p Hを12に調整した。
Example 5 Alumina fiber (Safil RF, manufactured by ICI, UK) was made with a length of 1
D&E(K) cut to ~3mm (specific surface area 3~4m
Take 100g of 3/g) and give 2000cn? Disperse in ionized water. Then, 15% caustic soda aqueous solution 10
0 g was added and the pH was adjusted to 12.

該アルカリ性分散液を70℃に上げ、塩化第一錫の45
%HCl溶液50g及び三塩化アンチモンのHCf溶液
87gの混合液を一方の口より、更に15%苛性ソーダ
溶液80gをもう一方の口より、同時に約1時間かけて
滴下する。その後、上記塩化第一錫の45%HCf溶液
50gに12.3%HCl溶液30gを加えたものを一
方の口より、更に15%苛性ソーダ溶液60gをもう一
方の口より、同時に約1時間かけて滴下する。
The alkaline dispersion was heated to 70°C and 45% of stannous chloride was added.
% HCl solution and 87 g of an antimony trichloride HCf solution was simultaneously added dropwise from one port and 80 g of a 15% caustic soda solution from the other port over a period of about 1 hour. Then, 30 g of 12.3% HCl solution was added to 50 g of the 45% HCl solution of stannous chloride mentioned above from one mouth, and then 60 g of 15% caustic soda solution was added from the other mouth at the same time for about 1 hour. Drip.

その後塩化コバルトの20%水溶液1gを添加する。上
記反応終了後、液温を70℃を保持したまま30%IC
l溶液を徐々に滴下させ、反応系全体のpHを4に調整
した後60分間攪拌を続ける。
Then 1 g of a 20% aqueous solution of cobalt chloride is added. After the completion of the above reaction, 30% IC was added while maintaining the liquid temperature at 70°C.
1 solution was gradually added dropwise to adjust the pH of the entire reaction system to 4, and stirring was continued for 60 minutes.

その後は実施例4に従い白色導電性物質を得た。Thereafter, according to Example 4, a white conductive material was obtained.

このようにして得られた白色導電性物質のΔEは1゜9
であり、L値は87、及び導電値は20Ω/ c mで
あった。
The ΔE of the white conductive material thus obtained is 1°9
The L value was 87, and the conductivity value was 20Ω/cm.

発明の効果 本発明によれば、導電性塗料、インキ、複合材料等に適
用できる白度が高く、且つ耐候性に優れた白色導電性物
質を得ることができる。
Effects of the Invention According to the present invention, a white conductive substance with high whiteness and excellent weather resistance that can be applied to conductive paints, inks, composite materials, etc. can be obtained.

(以 上)(that's all)

Claims (1)

【特許請求の範囲】 (1)白色若しくは疑似白色の基材の表面が錫、アンチ
モンの元素の酸化物からなる複合酸化物被膜で覆われ、
且つ該複合酸化物被膜中の酸化錫の比率が約90〜約8
5重量%、残りの成分が酸化アンチモン及び酸化コバル
トである白度、耐光性の優れた白色導電性物質。 (2)複合酸化物被膜中の酸化アンチモンの比率が約1
0〜約15重量%、酸化コバルトの比率が複合酸化物被
膜を構成する全酸化物に対し 約0.05〜約1重量%である請求項(1)記載の白色
導電性物質。 (3)耐光性(ΔE)が4以下である請求項(1)記載
の白色導電性物質。 (4)白度(L値)が80〜90である請求項1記載の
白色導電性物質。 (5)白色若しくは疑似白色の基材がリン片状若しくは
板状物質である請求項1記載の白色導電性物質。 (6)白色若しくは疑似白色の基材が針状物質である請
求項(1)記載の白色導電性物質。 (7)白色若しくは疑似白色の基材が粉末状若しくは粒
状物質である請求項(1)記載の白色導電性物質。 (8)白色若しくは疑似白色の基材がバルーン状物質で
ある請求項(1)記載の白色導電性物質。 (9)白色若しくは疑似白色の基材が繊維状物質である
請求項1記載の白色導電性物質。(10)白色若しくは
疑似白色の基材、塩化第一錫、アンチモン化合物及びコ
バルト化合物をアルカリ性溶液中で反応させ、当該基材
の表面に錫−アンチモン−コバルトの複合水酸化物被膜
を形成せしめ、次いで酸性溶液中で熟成した後、濾別乾
燥し、更に高温に加熱して当該複合水酸化物被膜を複合
酸化物被膜とすることを特徴とする白色導電性物質の製
法。 (11)アンチモン化合物が三塩化アンチモンである請
求項(10)記載の製法。 (12)アルカリ性溶液のpHが10〜14であり、且
つ酸性溶液のpHが6以下である請求項(10)記載の
製法。 (13)加熱温度が400〜800℃である請求項(1
0)記載の製法。 (14)白色若しくは疑似白色の基材がリン片状若しく
は板状物質である請求項(10)記載の製法。 (15)白色若しくは疑似白色の基材が針状物質である
請求項(10)記載の製法。 (16)白色若しくは疑似白色の基材が針状物質である
請求項(10)記載の製法。 (17)白色若しくは疑似白色の基材がバルーン状物質
である請求項(10)記載の製法。 (18)白色若しくは疑似白色の基材が繊維状物質であ
る請求項(10)記載の製法。
[Claims] (1) The surface of a white or pseudo-white base material is covered with a composite oxide film made of oxides of tin and antimony elements,
and the ratio of tin oxide in the composite oxide film is about 90 to about 8.
5% by weight, the remaining components being antimony oxide and cobalt oxide.A white conductive material with excellent whiteness and light resistance. (2) The ratio of antimony oxide in the composite oxide film is approximately 1
The white conductive material according to claim 1, wherein the proportion of cobalt oxide is about 0.05 to about 1% by weight based on the total oxides constituting the composite oxide film. (3) The white conductive material according to claim (1), which has a light resistance (ΔE) of 4 or less. (4) The white conductive material according to claim 1, which has a whiteness (L value) of 80 to 90. (5) The white conductive material according to claim 1, wherein the white or pseudo-white base material is a scale-like or plate-like material. (6) The white conductive material according to claim (1), wherein the white or pseudo-white base material is a needle-like material. (7) The white conductive material according to claim (1), wherein the white or pseudo-white base material is a powdery or granular material. (8) The white conductive material according to claim (1), wherein the white or pseudo-white base material is a balloon-like material. (9) The white conductive material according to claim 1, wherein the white or pseudo-white base material is a fibrous material. (10) reacting a white or pseudo-white base material, stannous chloride, an antimony compound, and a cobalt compound in an alkaline solution to form a tin-antimony-cobalt composite hydroxide film on the surface of the base material; A method for producing a white conductive substance, which comprises aging the composite hydroxide film in an acidic solution, filtering it, drying it, and heating the composite hydroxide film to a high temperature to form a composite oxide film. (11) The method according to claim (10), wherein the antimony compound is antimony trichloride. (12) The method according to claim (10), wherein the alkaline solution has a pH of 10 to 14, and the acidic solution has a pH of 6 or less. (13) Claim (1) wherein the heating temperature is 400 to 800°C.
0) Manufacturing method described. (14) The method according to claim (10), wherein the white or pseudo-white base material is a scale-like or plate-like substance. (15) The method according to claim (10), wherein the white or pseudo-white base material is a needle-like substance. (16) The method according to claim (10), wherein the white or pseudo-white base material is a needle-like substance. (17) The method according to claim (10), wherein the white or pseudo-white base material is a balloon-like substance. (18) The method according to claim (10), wherein the white or pseudo-white base material is a fibrous material.
JP63304761A 1988-11-30 1988-11-30 White conductive substance and method for producing the same Expired - Fee Related JP2781798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63304761A JP2781798B2 (en) 1988-11-30 1988-11-30 White conductive substance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63304761A JP2781798B2 (en) 1988-11-30 1988-11-30 White conductive substance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02149424A true JPH02149424A (en) 1990-06-08
JP2781798B2 JP2781798B2 (en) 1998-07-30

Family

ID=17936915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63304761A Expired - Fee Related JP2781798B2 (en) 1988-11-30 1988-11-30 White conductive substance and method for producing the same

Country Status (1)

Country Link
JP (1) JP2781798B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2252551A (en) * 1991-01-19 1992-08-12 Tioxide Group Services Ltd Particulate titanium dioxide coated with silica followed by a tin oxide coat containing antimony oxide
EP0641845A1 (en) * 1993-09-03 1995-03-08 Les Peintures Techniques Renaudin Fluid or pasty conductive material
WO1996026984A1 (en) * 1995-03-02 1996-09-06 Renaudin Electrically conductive pasty or fluid material
JP2010180112A (en) * 2009-02-06 2010-08-19 Nissan Motor Co Ltd Method for producing conductive oxide carrier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56140028A (en) * 1980-04-02 1981-11-02 Mitsubishi Metal Corp Manufacture of white electrically-conductive composite powder
JPS63285118A (en) * 1987-05-15 1988-11-22 Teikoku Kako Kk Powder of complex electroconductors and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56140028A (en) * 1980-04-02 1981-11-02 Mitsubishi Metal Corp Manufacture of white electrically-conductive composite powder
JPS63285118A (en) * 1987-05-15 1988-11-22 Teikoku Kako Kk Powder of complex electroconductors and its production

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2252551A (en) * 1991-01-19 1992-08-12 Tioxide Group Services Ltd Particulate titanium dioxide coated with silica followed by a tin oxide coat containing antimony oxide
GB2252551B (en) * 1991-01-19 1994-12-21 Tioxide Group Services Ltd Coated particulate titanium dioxide
EP0641845A1 (en) * 1993-09-03 1995-03-08 Les Peintures Techniques Renaudin Fluid or pasty conductive material
FR2709589A1 (en) * 1993-09-03 1995-03-10 Renaudin Peintures Tech Fluid or pasty material electrically conductive.
WO1996026984A1 (en) * 1995-03-02 1996-09-06 Renaudin Electrically conductive pasty or fluid material
US5968420A (en) * 1995-03-02 1999-10-19 Renaudin Electrically conductive fluid or semifluid material
JP2010180112A (en) * 2009-02-06 2010-08-19 Nissan Motor Co Ltd Method for producing conductive oxide carrier

Also Published As

Publication number Publication date
JP2781798B2 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
KR0136789B1 (en) Conductive Lamination Pigment
CN102046522A (en) Method for producing core-shell particle, core-shell particle, method for producing hollow particle, paint composition and article
CN107177217A (en) A kind of sapphirine metal ion mixing cobalt blue/quartz sand hybrid pigment and preparation method thereof
JP5541285B2 (en) Fluororesin film and method for producing the same
CN114468433B (en) Photochromic artificial plant and processing technology thereof
JPH0323220A (en) Preparation of white electrically- conductive zinc oxide
JPH02149424A (en) White color conductive material and its production
JPS6320342A (en) Production of electroconductive mica microparticle
KR20020033431A (en) Process for preparing electrically conductive pigments
JP2003034523A (en) Method for manufacturing coated magnesium oxide powder
JP4078660B2 (en) Conductive titanium oxide, process for producing the same, and plastic composition containing the same
JPH06183708A (en) Electric conductive white powder
CN108715695A (en) A kind of preparation method of the special pearl powder of aqueous automobile grade coating of high durable
JPH06116508A (en) Production of flaky material coated with titania or zirconia
JP3601759B2 (en) Composite oxide green pigment and method for producing the same
JP2704524B2 (en) Heat-resistant tabular tan pigment powder and method for producing the same
CN1624048B (en) Thermally stable zinc ferrite pigment and its preparation method and application
CN115011142B (en) Method for preparing aluminum oxide-based pearlescent pigment through hydrothermal method
JP5486752B2 (en) Heat ray shielding composition containing rod-shaped indium tin oxide powder and method for producing the same
CN115140766B (en) Low-energy-consumption production process of rutile titanium dioxide
JPS61205625A (en) Manufacturing method of tin oxide-based conductive fine powder
CN108822874B (en) Magnesium hydroxide-calcium alginate composite flame retardant and preparation method thereof
KR102000828B1 (en) Core/multishell particles and method for manufacturing the same
JP3260404B2 (en) Heat resistant fibrous chromatic pigment
KR101485012B1 (en) Infrared ray blocking pigment using black, blue, green color inoranic pigment and method of manufacturing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees