[go: up one dir, main page]

JPH02146517A - Azimuth rotator - Google Patents

Azimuth rotator

Info

Publication number
JPH02146517A
JPH02146517A JP30135888A JP30135888A JPH02146517A JP H02146517 A JPH02146517 A JP H02146517A JP 30135888 A JP30135888 A JP 30135888A JP 30135888 A JP30135888 A JP 30135888A JP H02146517 A JPH02146517 A JP H02146517A
Authority
JP
Japan
Prior art keywords
phase plate
polarized light
temperature
rotation
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30135888A
Other languages
Japanese (ja)
Other versions
JP2782071B2 (en
Inventor
Nobuhisa Asanuma
浅沼 信久
Yasutaka Igarashi
五十嵐 康恭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP63301358A priority Critical patent/JP2782071B2/en
Publication of JPH02146517A publication Critical patent/JPH02146517A/en
Application granted granted Critical
Publication of JP2782071B2 publication Critical patent/JP2782071B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a detected value from being affected by temperature variation by combining a 1st phase plate which makes incident linear polarized light into elliptic polarized light with a desired azimuth and ellipticity with a 2nd phase plate which makes light transmitted through the 1st phase plate into linear polarized light. CONSTITUTION:The linear polarized light which is incident on the 1st phase plate 11 generates a phase plate theta and then comes to linear polarized light again by striking on the 2nd phase plate as a 2nd stage. Namely, the two phase plates 11 and 12 are combined together to constitute the azimuth rotator, which is provided with temperature characteristics for correction. Consequently, the quantity of variation in angle of rotation around an S2 axis with temperature is set to a desired value and rotation is performed around an S1 axis to constitute the azimuth rotator which has desired temperature characteristics. Consequently, a small-sized current transformer which is not affected by temperature variation is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は旋光子に関し、殊にファラデー回転素子の温度
変動によるファラデー回転角変動を補正することの出来
る旋光子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical rotator, and more particularly to an optical rotator that can correct Faraday rotation angle fluctuations due to temperature fluctuations of a Faraday rotation element.

(従来技術) ファラデー回転素子はそれに印加される磁場の強弱によ
り旋光能が変化する特性を有し、この特性を利用して近
年は電力計用の計器用室11i!i!器、所謂光CT等
に用いられている。
(Prior Art) A Faraday rotary element has the characteristic that its optical rotation power changes depending on the strength of the magnetic field applied to it.Using this characteristic, in recent years, instrument chambers 11i for wattmeters have been used! i! It is used in so-called optical CT.

第6因はファラデー回転素子を用いた九〇Tの概略構1
1i!を示した図であって、光源1より出射した光は偏
光子2に入射し直線偏光を得ろ。ここで例えばX軸に平
行な方位角を有す直線偏光を次段の7アラデ一回転素子
に照射すると該ファラデー回転素子を出射する直線偏光
の振動方向はそれに加わる磁界に応じて変動する次め、
該出射光を偏光ビームスプリッタに入射させX軸方向成
分、Y軸方向成分に分離し、各々を受光器5.6にて受
光しその受光量からと1の程度直線偏光が回転したか、
即ちどの程度ファラデー回転素子に磁場が印加されたか
を求めることが出来る。
The sixth factor is the schematic structure 1 of 90T using Faraday rotation element.
1i! In this figure, light emitted from a light source 1 enters a polarizer 2 to obtain linearly polarized light. For example, if linearly polarized light having an azimuth parallel to the X-axis is irradiated onto the next stage 7-Araday rotation element, the vibration direction of the linearly polarized light emitted from the Faraday rotation element will vary depending on the magnetic field applied to it. ,
The emitted light is input to a polarizing beam splitter and separated into an X-axis direction component and a Y-axis direction component, each of which is received by a light receiver 5.6, and the linearly polarized light is rotated by about 1 based on the amount of received light.
That is, it is possible to determine how much of the magnetic field is applied to the Faraday rotation element.

しかしながら、7アラデ一回転素子の旋光能は温度依存
性を有すため同じ強さの磁場中にあっても周囲温度の変
化にともカつて旋光角が変動し測定誤差を生じ、該測定
誤差を少なくするために温度変化による旋光角の変化量
が小さい材質のものをファラデー回転素子として選定す
る必要がある。
However, the optical rotation power of the 7-Alade single-rotation element is temperature dependent, so even if it is in a magnetic field of the same strength, the optical rotation angle changes with changes in ambient temperature, causing measurement errors. In order to reduce the amount of rotation, it is necessary to select a material for the Faraday rotation element that has a small amount of change in the angle of optical rotation due to temperature changes.

しかし一般にそのような材質を用いたファラデー回転素
子はペルデ常数が小さく所望の旋光能を得るには該ファ
ラデー回転素子を大型化しなくてはならないという欠点
があった。
However, a Faraday rotator using such a material generally has a small Perdet constant and has the disadvantage that the Faraday rotator must be made large in order to obtain the desired optical rotation power.

(発明の目的) 本発明は上述した欠点に鑑みなされたものであって、ベ
ルブ常数の高い小型のファラデー回転素子を用い、例え
ば小型の変成器等を構成するJK温度変化にその検出値
が影響されることのないようにするために旋光角の温度
による変化量を任意に設定することが出来る旋光子を提
供することを目的とする。
(Object of the Invention) The present invention has been made in view of the above-mentioned drawbacks, and uses a small Faraday rotary element with a high Bellb constant, and its detected value is affected by JK temperature changes that constitute, for example, a small transformer. An object of the present invention is to provide an optical rotator in which the amount of change in the angle of optical rotation due to temperature can be arbitrarily set in order to prevent the optical rotation from occurring.

(発明の概要) この目的を達成するために本発明の旋光子は、入射直線
偏光を所望の方位及び楕円率の楕円偏光とする第1の位
相板と該第1の位相板を透過した光を直線偏光にする第
2の位相板とを組み合わると共に、該第1の位相板の温
度変化に対する回転角変化量を所望の旋光角補正量の2
倍となるように前記第1位相板の板厚を設定し、旋光角
の温度に対する変化量を任意に設定するよう構成する。
(Summary of the Invention) In order to achieve this object, the optical rotator of the present invention includes a first phase plate that converts incident linearly polarized light into elliptically polarized light with a desired orientation and ellipticity, and a light beam transmitted through the first phase plate. and a second phase plate that linearly polarizes the polarized light, and the amount of rotation angle change with respect to temperature change of the first phase plate is set to 2 of the desired optical rotation angle correction amount.
The thickness of the first phase plate is set so as to double the thickness of the first phase plate, and the amount of change in the angle of optical rotation with respect to temperature is set arbitrarily.

(実施例) 以下、図面に示し九実施例に基づいて本発明の詳細な説
明する。
(Examples) Hereinafter, the present invention will be described in detail based on nine embodiments shown in the drawings.

先ず、本発明の理解を助けろため本発明の説明に先立っ
てファラデー回転素子の各fi!性について少しく説明
する。
First, in order to facilitate understanding of the present invention, each fi! of the Faraday rotation element will be explained before explaining the present invention. Let me explain a little bit about gender.

例えば第7図に示すごとき状態のファラデー回転素子の
旋光角θは θ=V@N、I で表すことが出来る。
For example, the optical rotation angle θ of the Faraday rotation element in the state shown in FIG. 7 can be expressed as θ=V@N,I.

即ち、ベルデ定数、等価鎖交数及び導体に流れる電流が
大きいほど旋光角0は大きくなシ高度の検出能を得るこ
とが出来る。従って、ファラデー回転素子を電流変成器
として小電流検出用且つ小型化して用いる場合ベルデ定
数■は大きいものが安来される。該ベルデ定数は希土類
を含む強磁性体が特に大きいが、これは温度特性を有し
ているため温度によって旋光角が変動し正しい検出を行
うことは困難であるという欠点のあったこと前述の通シ
である。
That is, the larger the Verdet constant, the equivalent linkage number, and the current flowing through the conductor, the larger the optical rotation angle 0, and the ability to detect the height can be obtained. Therefore, when a Faraday rotary element is used as a current transformer for small current detection and is miniaturized, a large Verdet constant (2) is preferred. The Verdet constant is particularly large for ferromagnetic materials containing rare earth elements, but this has the disadvantage that the angle of rotation varies with temperature, making accurate detection difficult. It is shi.

第8図はファラデー回転素子の温度−旋光度の変化の一
例を示す図であって同図に示すごとく25℃で磁界を加
えない時の旋光角は45degであり70℃の温度に対
して1.5degの旋光角の変化があるとすれば該ファ
ラデー回転素子の温度−旋光度特性Δ0/ΔTは Δ5 F/ΔT = (45deg−46,5de )
g/(25℃−90℃)= −1,5deg/ −70
℃ = 0.0214 d e g/ ”C−・・■となる
。従って該ファラデー回転素子の温度特性補正用に ΔaC/ΔT=−0,0214deg/ ’C・=・・
=  ■の特性!有す光学部品を前記ファラデー回転素
子の前段若しくは後段に配置すればよい。
Figure 8 is a diagram showing an example of the change in temperature-optical rotation of a Faraday rotation element. As shown in the figure, the angle of optical rotation when no magnetic field is applied at 25°C is 45deg, which is 1 for a temperature of 70°C. If there is a change in the optical rotation angle of .5 deg, the temperature-optical rotation characteristic Δ0/ΔT of the Faraday rotation element is Δ5 F/ΔT = (45 deg−46,5 de)
g/(25℃-90℃)=-1,5deg/-70
℃ = 0.0214deg/'C-...■.Therefore, to correct the temperature characteristics of the Faraday rotary element, ΔaC/ΔT=-0,0214deg/'C.=...
= ■Characteristics! The optical component may be placed before or after the Faraday rotation element.

第1図は本発明の原理を示す図である。同図に於て11
は光学軸が入射直線偏光に対し45 deg回転した第
1位相板、12はその光学軸が前記第1位相板に入射し
た直線偏光に対し平行な第2位相板である。
FIG. 1 is a diagram showing the principle of the present invention. In the same figure, 11
12 is a first phase plate whose optical axis is rotated by 45 degrees relative to the incident linearly polarized light, and 12 is a second phase plate whose optical axis is parallel to the linearly polarized light incident on the first phase plate.

第1位相板11に入射した直線偏光は位相差θを生じ次
段の第2位相板12に入射することKよシ再び直線偏光
となる。この状態をポアンカレ球にて表示すると第2図
に示す如く、先づ8点にある直線偏光は第1位相板に入
射することによりS。
The linearly polarized light incident on the first phase plate 11 generates a phase difference θ, and when it enters the second phase plate 12 at the next stage, it becomes linearly polarized light again. When this state is expressed on a Poincaré sphere, as shown in Figure 2, the linearly polarized light at the first eight points enters the first phase plate and becomes S.

軸を中心に90 deg回転し円偏光となシ、次段の第
2位相板にて80軸を中心に90deg回転することに
よシ再び直線偏光に戻る。
It rotates by 90 degrees around the axis to become circularly polarized light, and then returns to linearly polarized light by rotating by 90 degrees around the 80 axis at the second phase plate in the next stage.

即ち、2枚の位相板を組み合わせることにょシ旋光子を
構成し、それに補正用の温度特性をもたせればよく、そ
の為に温度変化にともなうS、軸回シの回転角の変化量
を所望の値に設定し、更KS1軸を中心に90 deg
回転させ所望の温度特性を有す旋光子を構成すればよい
In other words, it is sufficient to construct a optical rotator by combining two phase plates and provide it with temperature characteristics for correction.For this purpose, the amount of change in the rotation angle of S and shaft rotation due to temperature change can be adjusted to a desired value. Set the value to 90 degrees around the KS1 axis.
What is necessary is to rotate it to construct an optical rotator having desired temperature characteristics.

この方法に基づき前述したファラデー回転素子の温度特
性補正用光学部品を構成するには70”Cの温度変化に
対して1.5degの旋光角の変化を伴うよう位相板の
材質、光学軸方位、切断角度、長さ及び使用波長等を選
定すればよく、以下、数式を用いて各種パラメータの設
定方法を説明する。
Based on this method, to configure the optical component for correcting the temperature characteristics of the Faraday rotation element described above, the material of the phase plate, the optical axis direction, The cutting angle, length, wavelength to be used, etc. may be selected, and a method for setting various parameters will be explained below using mathematical formulas.

ここでは説明を簡単にするため位相板としてはYカット
水晶板を用い、使用波長780nm、光の入射角Ode
g、使用温度範囲を25℃〜90℃として説明する。但
し、水晶特有の円板屈折性は無視するものとする。
To simplify the explanation, a Y-cut crystal plate is used as the phase plate, the wavelength used is 780 nm, and the incident angle of light is Ode.
g. The operating temperature range will be explained as 25°C to 90°C. However, the disk refractive properties peculiar to quartz are ignored.

水晶における複屈折率は n (λ)=1.53152+4369/λ”+137
8−10’/λ4=1.53152+4369/780
 +1378・10/780’=1.538738  
 ・−・・・・・・・■n (λ)=1.54022+
45057λ+1521−10 /λ=1.54766
6    ・・・・・・・・・ ■であシ、ま九温度変
化に伴う複屈折率はnol (λ、 ’f )=n0+
 (Δn、、/ΔT )ΔT=n、、+(−0,547
−10)ΔT=1.538738−0.547−101
1ΔT・・・■n +(λ、T)=n +(−0,65
1−10)ΔTe             e =1.54766−0.651−10−’・ΔT・・・
・・・■(但し ΔT=T−25℃) で表すことができる。
The birefringence of quartz is n (λ)=1.53152+4369/λ”+137
8-10'/λ4=1.53152+4369/780
+1378・10/780'=1.538738
・−・・・・・・・■n (λ)=1.54022+
45057λ+1521-10 /λ=1.54766
6 ・・・・・・・・・ ■Ashi, Maki The birefringence due to temperature change is nol (λ, 'f)=n0+
(Δn,,/ΔT)ΔT=n,,+(-0,547
-10)ΔT=1.538738-0.547-101
1ΔT...■n + (λ, T) = n + (-0,65
1-10) ΔTe e =1.54766-0.651-10-'・ΔT...
...■ (However, ΔT=T-25°C) It can be expressed as follows.

一万、水晶における線膨張係数1/j(Δl/ΔT)1
/l(Δl/ΔT)=(13CO3r+7siar )
−to  /’C=(130)SO+7sinO)・1
0  /’C=13−10  /’C・・・・・・・・
・ ■と成υ、また位相板に光が入射することによシそ
の偏光方向が回転する角度rは r= 360/λ・llIΔne(1+1/l(Δl/
ΔT)ΔT)/ω57(Δn=ne−”<7.’)  
  ・・・・・・・・・■で表すことができる。ここで
例えば回転角Fを90 degと仮定した場合の25℃
におけろ板厚1は!=90・780・10   /36
0拳8.928・1O−8=0.0218366sm 
   ・・・・・・・・・ ■=21.8366/7m と求まシ、この板厚の水晶板を用いた場合70℃の温度
変化に対してどの程度回転角rが変動するか第8式を用
いて試長すると第1表に示した如き結果を得る。
10,000, coefficient of linear expansion in crystal 1/j (Δl/ΔT) 1
/l(Δl/ΔT)=(13CO3r+7sial)
-to /'C=(130)SO+7sinO)・1
0 /'C=13-10 /'C・・・・・・・・・
・■ and υ, and the angle r at which the polarization direction rotates when light enters the phase plate is r = 360/λ・llIΔne(1+1/l(Δl/
ΔT)ΔT)/ω57(Δn=ne-"<7.')
It can be expressed as ・・・・・・・・・■. Here, for example, assuming that the rotation angle F is 90 degrees, the temperature is 25 degrees Celsius.
The board thickness is 1! =90・780・10/36
0 fist 8.928・1O-8=0.0218366sm
・・・・・・・・・ ■=21.8366/7m is calculated. If a crystal plate with this thickness is used, how much the rotation angle r changes with respect to a temperature change of 70°C. When testing the length using the formula, the results shown in Table 1 are obtained.

0式からも明らかな如く前記板厚の4.61倍の位相板
を選定すればよい。従って、位相板の選定板厚は 21.8366x4.6154=100.784amと
なる。
As is clear from Equation 0, it is sufficient to select a phase plate that is 4.61 times as thick as the above plate thickness. Therefore, the selected thickness of the phase plate is 21.8366x4.6154=100.784am.

第1表 即ち、回転角′4!:90deg与えろ板厚21.83
6677mの位相板では70℃の温度変化に対して回転
角が0.65deg変化し、前述した如き7アラデ一回
転素子の温度変化に基づく回転角の変動を補正するには 1.5degX2=0.65Xa a=3deg10.65 =4゜61    ・・・・・・・t−[株]第2表 第2表は板厚100.784am  の位相板を用いた
場合の温度変化に対する回転角Pを第8式を用いて算出
したものであシ、同表からも明らかな如く70℃の温度
変化に対し回転角rは3.01deg 変化する。
Table 1, rotation angle '4! :90deg filter plate thickness 21.83
In the 6677m phase plate, the rotation angle changes by 0.65deg for a temperature change of 70°C, and in order to correct the fluctuation in the rotational angle due to the temperature change of the 7-Alade single-rotation element as described above, 1.5degX2=0. 65Xa a=3deg10.65 =4゜61 ・・・・・・・・・t-[Co., Ltd.] Table 2 Table 2 shows the rotation angle P with respect to temperature change when using a phase plate with a plate thickness of 100.784 am. It was calculated using Equation 8, and as is clear from the table, the rotation angle r changes by 3.01 degrees for a temperature change of 70°C.

この板厚100.784#m  の位相板を第1位相板
、前記板厚21.83667ym の位相板を第2位相
板とし前記第1図に示した如き構成をとると、その特性
は第3図に示す如きものとなる。
If this phase plate with a thickness of 100.784 mm is used as a first phase plate, and the phase plate with a thickness of 21.83667 mm is used as a second phase plate, and the configuration shown in FIG. It will look like the one shown in the figure.

同図(a)は25℃における特性をポアンカレ球上に図
式表示したものであって、8点にある直線偏光は第1位
相板に入射しS、軸を中心K 415゜38 deg回
転しP、aK移動する。次に第2位相板に入射するとS
□軸を中心に90deg回転するため27.69deg
の傾きを持つ直線偏光となる。また温度が70℃変化し
た場合には同図(b)に示す如く8点にある直線偏光は
第1位相板に入射しS。
Figure (a) is a diagrammatic representation of the characteristics at 25°C on the Poincaré sphere, where the linearly polarized light at 8 points enters the first phase plate S, rotates around the axis K by 415 degrees and 38 degrees, and then P , aK moves. Next, when it enters the second phase plate, S
□ Rotates 90 degrees around the axis, so 27.69 degrees
It becomes linearly polarized light with a slope of . Furthermore, when the temperature changes by 70°C, the linearly polarized light at eight points enters the first phase plate S as shown in FIG.

軸を中心に412.37deg回転しPoに移動する。It rotates 412.37 degrees around the axis and moves to Po.

次に第2位相板に入射するとS!軸を中心に89゜35
 deg回転するため26.19deg の傾きを持つ
ほぼ直線偏光となる。
Next, when it enters the second phase plate, S! 89°35 around the axis
Since the light is rotated by 26.19 degrees, it becomes almost linearly polarized light with an inclination of 26.19 degrees.

即ち、第1.2位相板の総合的な特性は第4図に示す如
く8点にある光を25℃の時には27.69degの傾
きを持つ直線偏光にし、95℃の時には26゜19de
gの傾きを持つほぼ直線偏光にするものであシ、いわゆ
る旋光子としての機能を持つ。
That is, the overall characteristics of the 1.2 phase plate are as shown in Figure 4, where the light at 8 points becomes linearly polarized light with an inclination of 27.69 deg at 25°C, and 26°19 deg at 95°C.
It converts the light into almost linearly polarized light with a slope of g, and functions as a so-called optical rotator.

このように構成した第1、第2位相板を前述した特性を
有す7アラデ一回転素子の温度特性を補正するために第
5図に示す如き構成にすると該ファラデー回転素子にて
生ずる温度変化に伴う旋光度の変化を第1、第2位相板
にて生ずる温度変化に伴う回転角の変化とが逆特性とな
夛打ち消し合うため光学系全体としての温度−旋光度特
性は一定となることが分かる。
When the first and second phase plates constructed in this way are constructed as shown in FIG. 5 in order to correct the temperature characteristics of the 7-Araday rotary element having the above-mentioned characteristics, the temperature change that occurs in the Faraday rotary element is The temperature-optical rotation characteristics of the optical system as a whole remain constant because the changes in the rotation angle caused by the temperature changes in the first and second phase plates have opposite characteristics and cancel each other out. I understand.

即ち、第1位相板の温度変化ΔTにおける回転角変化量
ΔFがファラデー回転素子が生ずる旋光変化度ΔθFの
2倍となるように該第1位相板の板厚1を設定すればよ
い。
That is, the plate thickness 1 of the first phase plate may be set so that the amount of change in rotation angle ΔF of the first phase plate due to the temperature change ΔT is twice the degree of change in optical rotation ΔθF generated by the Faraday rotation element.

冑、本発明の実施例では2枚の位相板を組み合わせるこ
とによシ構成した旋光子の25℃における旋光角1に2
7.69deg  とし九がこれに限るものでなく、光
の入射角度及び位相板の切断角度等を適宜選定すること
によシ所望の旋光能を得ることができ、例えは25℃に
於て磁界を加えないときのファラデー回転素子の出力が
45degxn(n=整数)の偏光方向となるように光
学系全体を調整すれt′fPB8にて出力を分割する際
に夫々の分光出力の光量が1:1若しくは1:oとなる
ため検出精度が高く容易に測定することが可能な電流変
成器を構成することができる。
In the embodiment of the present invention, the optical rotation angle at 25°C of the optical rotator constructed by combining two phase plates is 1 to 2.
7.69 deg The number is not limited to this, and the desired optical rotation power can be obtained by appropriately selecting the incident angle of the light, the cutting angle of the phase plate, etc. For example, when the magnetic field is Adjust the entire optical system so that the output of the Faraday rotator when not adding 45 degrees x n (n = integer) polarization direction.When dividing the output at t'fPB8, the light amount of each spectral output is 1: 1 or 1:o, it is possible to construct a current transformer that has high detection accuracy and can be easily measured.

上述したようにファラデー回転素子の25℃且つ無磁界
の際の出力を45×nの偏光方向を有す直線偏光とする
ためには、第1位相板における回転角rを 7’=11X180+90 とし、且つ温度変化に伴う回転角の変動Δrw所望の値
となるように板厚11に:選定すればよく、例えば本実
施例では第1位相板における回転角rを450 deg
  となるよう板厚109.183umY選定すれば第
3表に示す如く25℃に於て450deg。
As mentioned above, in order to make the output of the Faraday rotation element at 25° C. and in the absence of a magnetic field into linearly polarized light with a polarization direction of 45×n, the rotation angle r in the first phase plate is set to 7′=11×180+90, In addition, the plate thickness may be selected to be 11 so that the variation Δrw of the rotation angle due to temperature change becomes the desired value. For example, in this embodiment, the rotation angle r of the first phase plate is set to 450 deg.
If a plate thickness of 109.183umY is selected so that the temperature is 450deg at 25°C as shown in Table 3.

95℃に於て446.74 degとな、り70”Cの
温度変化に対して1.63deg の変化を有す旋光子
を構成することができファラデー回転素子の温度−旋光
度特性なほぼ一定にすることができる。
The temperature-optical rotation characteristic of the Faraday rotating element is almost constant. It can be done.

第3表 また、本発明の実施例では2枚の位相板を独立したもの
を用いて説明したがこれに限るものでは危く張ル合わせ
一体型のものを用いても良いことは明らかである。
Table 3 Also, in the embodiments of the present invention, two independent phase plates were used, but it is clear that the invention is not limited to this, and an integrated type with two layers joined together may also be used. .

(発明の効果) 本発明は上述した如く構成し且つ機能するものであるか
ら温度変化に伴う旋光度の変化量を任意に設定すること
ができ、例えばファラデー回転素子等の補正用光学部品
として本発明による旋光子を用いれば温度変化に影響さ
れることなく小型の電流変成器を構成することができる
(Effects of the Invention) Since the present invention is configured and functions as described above, it is possible to arbitrarily set the amount of change in the optical rotation due to temperature change, and the present invention can be used as a correcting optical component for, for example, a Faraday rotation element. By using the optical rotator according to the invention, a small current transformer can be constructed without being affected by temperature changes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明する図、第2図は本発明の
原理tポアンカレ球上にて図式表示した図、第3図及び
第4図は本発明の旋光子の機能をポアンカレ球上に図式
表示した図、第5図は本発明の旋光子をファラデー回転
素子の温度特性補正用に用いた一実施例を示す図、第6
図は従来用いられていたファラデー回転素子を用いた電
流変成器の一実施例を示す図、第7図はファラデー回転
素子の特性を説明する図、第8図はファラデー回転素子
の温度−旋光度特性の一例を示す図である。 1・・・・・・・・・光源、   2・・・・・・・・
・偏光子、3.7・・・・・・・・・ファラデー回転素
子、4・・・・・・・・・偏光ビームスプリッタ、5.
6・・・・・・・・・受光器、   11・・・・・・
・・・第1位相板、12・・・・・・・・・第2位相板
。 特許出願人 東洋通信機株式会社 第 図
Fig. 1 is a diagram explaining the present invention in detail, Fig. 2 is a diagram showing the principle of the invention on the Poincare sphere, and Figs. 3 and 4 are diagrams showing the function of the optical rotator of the present invention on the Poincare sphere. The diagrams shown above, FIG. 5, are diagrams showing an embodiment in which the optical rotator of the present invention is used for correcting the temperature characteristics of a Faraday rotation element, and FIG.
The figure shows an example of a current transformer using a conventionally used Faraday rotary element, Figure 7 is a diagram explaining the characteristics of the Faraday rotator, and Figure 8 shows the temperature-optical rotation of the Faraday rotator. FIG. 3 is a diagram showing an example of characteristics. 1・・・・・・・・・Light source, 2・・・・・・・・・
・Polarizer, 3.7...Faraday rotation element, 4...Polarizing beam splitter, 5.
6......Receiver, 11...
...First phase plate, 12... Second phase plate. Patent applicant: Toyo Tsushinki Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 入射直線偏光を所望の方位及び楕円率の楕円偏光とする
第1の位相板と該第1の位相板を透過した光を直線偏光
にする第二の位相板とを組み合わて旋光角の温度に対す
る変化量を任意に設定するようにしたことを特徴とする
旋光子。
By combining a first phase plate that converts incident linearly polarized light into elliptically polarized light with a desired orientation and ellipticity and a second phase plate that converts the light transmitted through the first phase plate into linearly polarized light, An optical rotator characterized in that the amount of change can be arbitrarily set.
JP63301358A 1988-11-29 1988-11-29 Optical rotator Expired - Lifetime JP2782071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63301358A JP2782071B2 (en) 1988-11-29 1988-11-29 Optical rotator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63301358A JP2782071B2 (en) 1988-11-29 1988-11-29 Optical rotator

Publications (2)

Publication Number Publication Date
JPH02146517A true JPH02146517A (en) 1990-06-05
JP2782071B2 JP2782071B2 (en) 1998-07-30

Family

ID=17895908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63301358A Expired - Lifetime JP2782071B2 (en) 1988-11-29 1988-11-29 Optical rotator

Country Status (1)

Country Link
JP (1) JP2782071B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6386781B1 (en) 1997-04-15 2002-05-14 L'oreal Unit for packaging and applying a liquid product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151301A (en) * 1984-08-22 1986-03-13 深水 清則 Wood-chopping machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151301A (en) * 1984-08-22 1986-03-13 深水 清則 Wood-chopping machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6386781B1 (en) 1997-04-15 2002-05-14 L'oreal Unit for packaging and applying a liquid product
US6692173B2 (en) 1997-04-15 2004-02-17 L'oreal Unit for packaging and applying a liquid product

Also Published As

Publication number Publication date
JP2782071B2 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
Dauler et al. Tests of a two-photon technique for measuring polarization mode dispersion with subfemtosecond precision
US3807866A (en) Ring laser gyroscope having a constant output beat-frequency
US6473181B1 (en) Measurement of waveplate retardation using a photoelastic modulator
WO1982003914A1 (en) A temperature detector
US4179217A (en) Dynamic photoelasticimeter with rotating birefringent element
JPH0682489A (en) Optical voltage/field sensor
US5734473A (en) Method of determining polarization profiles for polychromatic sources
Chandrasekhar et al. Piezobirefringence above the fundamental edge in Si
JPH02146517A (en) Azimuth rotator
Ledsham et al. Far infrared measurements on KH2PO4 using dispersive reflection spectroscopy
JPH08503068A (en) Method and apparatus for compensating residual birefringence in an interferometric fiber optic gyro
JP4278209B2 (en) Optical element and manufacturing method thereof
US5734263A (en) Electro-optic voltage transducer with extended range and temperature compensation
US5357342A (en) Process and apparatus for measuring degree of polarization and angle of major axis of polarized beam of light
JPS59107273A (en) Photocurrent and magnetic field sensor
Beckers et al. The polarization of coronal emission lines
CN115950624B (en) Broadband achromatic phase delay piece delay amount calibration system and calibration method
JP2580442B2 (en) Optical voltage sensor
JPH0115808B2 (en)
JPS5962807A (en) Superposed phase plate
JPH01113626A (en) Measuring method for optical wavelength
SU1130778A1 (en) Mach-zender interferometer-based device for measuring optical parameters of transparent media
JP2003014790A (en) Optical applied measuring device
JPH0146033B2 (en)
Nagib et al. Polymeric sheets as phase retardation elements