JPH02145999A - Multi-layered reflecting mirror for x-ray - Google Patents
Multi-layered reflecting mirror for x-rayInfo
- Publication number
- JPH02145999A JPH02145999A JP63298144A JP29814488A JPH02145999A JP H02145999 A JPH02145999 A JP H02145999A JP 63298144 A JP63298144 A JP 63298144A JP 29814488 A JP29814488 A JP 29814488A JP H02145999 A JPH02145999 A JP H02145999A
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- layer
- ray
- substrate
- layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 125000006850 spacer group Chemical group 0.000 claims abstract description 27
- 239000000463 material Substances 0.000 claims abstract description 21
- 239000010409 thin film Substances 0.000 claims abstract description 10
- 238000010030 laminating Methods 0.000 claims abstract description 6
- 238000010521 absorption reaction Methods 0.000 abstract description 10
- 230000003287 optical effect Effects 0.000 abstract description 5
- 230000006866 deterioration Effects 0.000 abstract description 2
- 238000002310 reflectometry Methods 0.000 abstract 2
- 239000006185 dispersion Substances 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 39
- 239000010408 film Substances 0.000 description 34
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- 239000000126 substance Substances 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 239000011800 void material Substances 0.000 description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 230000001678 irradiating effect Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000007738 vacuum evaporation Methods 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000001015 X-ray lithography Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Landscapes
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、X線リソグラフィー X線望遠鏡、X線顕微
鏡、X線レーザ、各種X線分析装置等において、X線領
域での反射光学系に用いられる多層膜反射鏡に関するも
のである。[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to reflective optical systems in the X-ray region in X-ray lithography, X-ray telescopes, X-ray microscopes, X-ray lasers, various X-ray analyzers, etc. This invention relates to a multilayer reflective mirror used.
[従来の技術]
xa!領域での物質の屈折率は
n、=1−δ−iβ(δ、β:実数) ・・・(1)と
表わされ、δ、βともに1に比べて非常に小さい、即ち
、屈折率がほぼ1に近く、X線はほとんど屈折しないの
で、可視光領域のような光の屈折を利用したレンズは使
用できない。そこでX線領域では反射を利用した光学系
が用いられるが、白金等を着膜した超平滑鏡面にX線を
全反射臨界角(波長25人で6°程度)よりも小さい角
度で入射させて反射させる全反射鏡では、臨界角よりも
垂直に近い入射角ではほとんど反射しないという問題点
がある。[Prior art] xa! The refractive index of the substance in the region is expressed as n, = 1-δ-iβ (δ, β: real numbers) (1), where both δ and β are very small compared to 1, that is, the refractive index is is close to 1, and X-rays are hardly refracted, so lenses that utilize refraction of light such as those in the visible light region cannot be used. Therefore, in the X-ray region, optical systems that utilize reflection are used, but X-rays are incident on an ultra-smooth mirror surface coated with platinum or the like at an angle smaller than the critical angle for total reflection (about 6 degrees for a wavelength of 25 people). A total reflection mirror has the problem that almost no reflection occurs at an incident angle closer to perpendicular than the critical angle.
近年、このような問題点を解決するために、屈折率の差
の大きい物質の組合せを何層も積層することにより、反
射面を多数(例えば数百層も)設けて、それぞれの反射
波の位相が合うように光学干渉理論に基づいて各層の厚
さを調整した多層膜反射鏡が開発された。In recent years, in order to solve these problems, a large number of reflective surfaces (for example, several hundred layers) are created by laminating many layers of materials with large differences in refractive index, and each reflected wave is A multilayer reflector has been developed in which the thickness of each layer is adjusted based on optical interference theory so that the phases match.
より具体的に説明すれば、多層膜反射鏡は、使用X線波
長において真空との屈折率差が大きい物質と屈折率差が
小さい物質を2 fi1m類またはそれ以上交互に積層
することによって得られ、その代表的な組合せとして、
W(タングステン)/C(炭素)、Mo(モリブデン)
/Si (シリコン)などが知られており、スパッタ
リング・真空蒸着・CVD等の薄膜形成技術によって形
成されている。To explain more specifically, a multilayer film reflecting mirror is obtained by alternately laminating 2 fi 1 m or more of materials that have a large refractive index difference with vacuum and materials that have a small refractive index difference at the X-ray wavelength used. , as a typical combination,
W (tungsten)/C (carbon), Mo (molybdenum)
/Si (silicon) and the like are known, and are formed by thin film forming techniques such as sputtering, vacuum evaporation, and CVD.
かかる多層膜反射鏡で高い反射率を得るためには、積層
するZ fffl類(2種類以上積層しても良い)の物
質の屈折率(n=1−δ−1β)は使用する波長域で以
下の2つの条件を満足すれば良いことが知られている。In order to obtain a high reflectance with such a multilayer reflector, the refractive index (n = 1-δ-1β) of the Z fffl type (two or more types of materials may be laminated) to be laminated must be set in the wavelength range to be used. It is known that it is sufficient to satisfy the following two conditions.
(昭和62年秋期応用物理学会 講演番号t9p−zn
−z)
1、界面の振幅反射率を大きくするために、2つの物質
δの差が大きいこと。(Showa 62 Autumn Japan Society of Applied Physics Lecture No. t9p-zn
-z) 1. In order to increase the amplitude reflectance of the interface, the difference in the two substances δ must be large.
2、吸収による損失を小さくするために、2つの物質の
βが小さいこと。2. The β of the two substances must be small in order to reduce loss due to absorption.
現在、より高い反射率の多層膜反射鏡を開発するために
、上記の条件を満たす材料の組合せの探索が活発に行わ
れている。Currently, in order to develop multilayer mirrors with higher reflectance, active searches are being made for combinations of materials that satisfy the above conditions.
[発明が解決しようとする課題]
しかしながら、上記の如き従来の技術のおいては、物質
には必ずX線の吸収がある(即ち屈折率n=1−δ−i
βのβが有限の大きさを有する)ため、積層する物質を
種々選択して層数を増したとしても、一定のところで反
射率が飽和してしまい高い反射率を得ることができない
という問題点があった。例えば、25人の波長のX線に
対しては、積層する物質の組合せと多層膜の構成を最適
化しても入射角25゛で最高40を程度の反射率しか得
ることかで籾なかった。(入射角は膜面からの角度。以
下同様。)
また、従来の多層膜反射鏡では、異なる物質を交互に積
層しているため、物質の熱膨張係数の違いから、使用中
にX線の吸収または周囲の環境による温度上昇によって
、そりを生じたり、膜がff1J離してしまうという問
題点があった。[Problems to be Solved by the Invention] However, in the conventional technology as described above, substances always absorb X-rays (that is, the refractive index n=1−δ−i
(β of β has a finite size), even if the number of layers is increased by selecting various materials to be laminated, the reflectance saturates at a certain point and it is impossible to obtain a high reflectance. was there. For example, for X-rays with a wavelength of 25 people, even if we optimized the combination of laminated materials and the structure of the multilayer film, we could only obtain a maximum reflectance of about 40 at an incident angle of 25 degrees. (The incident angle is the angle from the film surface. The same applies hereinafter.) In addition, in conventional multilayer film reflectors, different materials are alternately laminated, so due to the difference in thermal expansion coefficient of the materials, X-rays There are problems in that warpage occurs or the film becomes separated by ff1J due to temperature increase due to absorption or the surrounding environment.
さらに、異なる物質の界面で物質の相互拡散が起こるた
め、高温の環境下あるいは高強度のX線を照射して吸収
による温度上昇のある場合に、容易に特性が劣化してし
まうという欠点もあった。Furthermore, since mutual diffusion of substances occurs at the interface between different substances, there is also the disadvantage that the characteristics easily deteriorate in high-temperature environments or when the temperature rises due to absorption of high-intensity X-rays. Ta.
本発明はこの様な従来の問題点に鑑みてなされたもので
、従来の多層膜反射鏡では原理的に得ることが不可能で
あった高い反射率を得ることのでき、かつ耐熱性にも優
れた新しい概念の多層II@X線反射鏡を12供するこ
とを目的とするものである。The present invention was made in view of these conventional problems, and it is possible to obtain a high reflectance that was theoretically impossible to obtain with conventional multilayer film reflectors, and also has heat resistance. The purpose is to provide an excellent new concept multilayer II@X-ray reflector.
[課題を解決するための手段]
本発明では、所定のX線波長域において真空との屈折率
差が大きい物質のfiI膜を、所定の厚さのスペーサー
を介して、複数積層したことによって上記の課題を達成
している。[Means for Solving the Problems] In the present invention, the above-mentioned problems can be achieved by laminating a plurality of fiI films made of a material having a large refractive index difference with vacuum in a predetermined X-ray wavelength range via a spacer of a predetermined thickness. have achieved their goals.
[作 用]
第1図は、本発明の基本構成を示す断面図である。本発
明による多層膜反射鏡においては、基板10上に真空と
の屈折率差が大きい物質の薄膜2が、所定の厚さのスペ
ーサー3を介して積層されており、従来の多層膜反射鏡
の一方の物′M、(真空との屈折率差が小さい物質)に
相当する層が、使用する環境により真空、または大気で
構成されることとなる。このため、この空隙層1中での
X線の吸収はほぼ男となり(空気の吸収は厳密には零で
はないが、固体の吸収と比べて充分小さい)、吸収によ
る損失が大幅に低下し、これによって従来原理的に不可
能であった高い反射率を得ることが可能になる。また、
多層1漠の界面が真空(又は空気)との界面であること
から、熱膨張率の違いや物質の相互拡散に起因する問題
も生じることかない。[Function] FIG. 1 is a sectional view showing the basic configuration of the present invention. In the multilayer film reflector according to the present invention, a thin film 2 of a substance having a large refractive index difference with vacuum is laminated on a substrate 10 with a spacer 3 having a predetermined thickness interposed therebetween. The layer corresponding to one substance 'M' (a material with a small refractive index difference from vacuum) is formed of vacuum or air depending on the environment in which it is used. Therefore, the absorption of X-rays in this void layer 1 is almost constant (the absorption of air is not strictly zero, but it is sufficiently small compared to the absorption of solids), and the loss due to absorption is significantly reduced. This makes it possible to obtain a high reflectance that was previously impossible in principle. Also,
Since the interface between the multiple layers is the interface with vacuum (or air), problems caused by differences in thermal expansion coefficients and mutual diffusion of substances do not occur.
なお、本発明において、スペーサー3を介して積層され
る物11 (薄膜2)は特に限定されるものではないが
、その屈折率をn=1−δ−iβとするとき、使用する
波長域で、界面の振幅反射率を大きくするためにδが大
きく、吸収による損失を少なくするためβが小さい物質
で構成すると特に効果的である。In the present invention, the material 11 (thin film 2) laminated via the spacer 3 is not particularly limited, but when its refractive index is n=1-δ-iβ, the material 11 (thin film 2) laminated via the spacer 3 is It is particularly effective to use a material that has a large δ to increase the amplitude reflectance of the interface and a small β to reduce loss due to absorption.
また、本発明にかかる多層膜反射鏡の製造方法も特に限
定されるものではないが、例えば炭素と所定の物質(真
空との屈折率差の大きい物質)をスパッタリング・真空
蒸着・CVD等の方法で交互に積層(炭素層中に予めス
ペーサを配置しておく)シ、その後酸素を含んだ雰囲気
中で熱処理して 2C+O,−2COまたは、C+O,
−CO2の反応によって炭素を炭酸ガスとして除去する
ことにより製造することができる。Furthermore, the method for manufacturing the multilayer reflective mirror according to the present invention is not particularly limited. are alternately laminated (spacers are placed in the carbon layer in advance), and then heat treated in an oxygen-containing atmosphere to form 2C+O, -2CO or C+O,
It can be produced by removing carbon as carbon dioxide gas through a -CO2 reaction.
[実施例]
まず、本発明の実施例において、共通して用いた成膜装
置について説明する。装置は第2図に示ずような「fマ
グネトロンスパッタリング装置で、2つのターゲット1
4a、14bが設けられており、それぞれ基板5直下へ
移動して高周波電源12と接続されるような機構が設け
られていて、2つのターゲットで交互にスパッタするこ
とにより多層膜を形成できるようになっている。[Example] First, a film forming apparatus commonly used in Examples of the present invention will be described. The device is an f-magnetron sputtering device as shown in Figure 2, with two targets 1
4a and 14b are provided, each of which is provided with a mechanism that moves directly below the substrate 5 and is connected to the high frequency power source 12, so that a multilayer film can be formed by alternately sputtering with two targets. It has become.
基板ホルダー4は接地電位にするか、または負の直流バ
イアスを印加(電源13)できるように切換スイッチが
接続されている。また、基板5の前面には回転及び上下
方向(Z方向)に駆動可能なシャッター6が設けられて
いる。このシャッター6には第3図に示すように開口部
7とともにメツシュ状のマスク8が設けられており、プ
レスパツタ中に基板5に膜が付着するのを防ぐとともに
、マスク8を基板に密着させて成膜を行うこともできる
ようになっている。A changeover switch is connected to the substrate holder 4 so that it can be set to a ground potential or a negative DC bias can be applied (power supply 13). Further, a shutter 6 that can be rotated and driven in the vertical direction (Z direction) is provided on the front surface of the substrate 5. As shown in FIG. 3, this shutter 6 is provided with an opening 7 and a mesh-like mask 8 to prevent a film from adhering to the substrate 5 during press sputtering and to keep the mask 8 in close contact with the substrate. It is also possible to perform film deposition.
また、基板ホルダー4は図中点線で示した位置へ移動す
ることができ、その位置でX−Y方向に精密に■3動で
きるステージ9上へ固定される。そして、真空チャンバ
ー16の外に設けたYAGレーザ15の光を光学窓から
導入し、真空チャンバー中に設けたレンズ11″C集光
して基板5に照射し、ステージ9を移動させることによ
り、形成した薄膜の所定の部分を除去することができる
ようになっている。Further, the substrate holder 4 can be moved to the position indicated by the dotted line in the figure, and at that position it is fixed on a stage 9 that can move precisely in the X-Y directions. Then, the light from the YAG laser 15 provided outside the vacuum chamber 16 is introduced through the optical window, focused by the lens 11''C provided in the vacuum chamber, and irradiated onto the substrate 5, and the stage 9 is moved. A predetermined portion of the formed thin film can be removed.
実施例 1
第4図a ’−eは本発明第1実施例における多層膜反
射鏡の製造工程を示す断面図である。(なお製造装置の
符号は前述した第2図における符号である。以下同様。Embodiment 1 FIGS. 4a' to 4e are cross-sectional views showing the manufacturing process of a multilayer mirror according to the first embodiment of the present invention. (Note that the numbers of manufacturing equipment are the same as those in FIG. 2 described above. The same applies hereinafter.
)
鏡面研府したSiウェハを基板20とし、まずシャッタ
ー6のメツシュ状のマスクを基板にeRさせて、基板ホ
ルダー4は接地電位にしてグラファイトターゲット14
aをスパッタして、厚さ28人の0層21を第4図aの
ように形成した。) Using a mirror-polished Si wafer as the substrate 20, first apply the mesh-like mask of the shutter 6 to the substrate, set the substrate holder 4 to ground potential, and connect the graphite target 14.
A was sputtered to form a 0 layer 21 having a thickness of 28 layers as shown in FIG. 4a.
次にホルダー4に負の直流バイアスを印加しなからNi
ターゲット14bをスパッタして厚さ12人のNi層2
2を第4図すのように形成した。ホルダー4に負の直流
バイアスを印加するのはプラズマ中のA「イオンの基板
20への入射を促し、C層21形成時に生じた凹部(C
層形成時にマスクされた部分)を平坦化するためである
。この0層21の凹部に着膜されたNiが、0層除去後
にNi層22を支持するスペーサ23となる。このスペ
ーサ23は層構造を保つ強度をもつように格子状に配置
した。Next, without applying a negative DC bias to the holder 4, the Ni
The target 14b is sputtered to form a Ni layer 2 with a thickness of 12 layers.
2 was formed as shown in Figure 4. Applying a negative DC bias to the holder 4 promotes the incidence of A ions in the plasma onto the substrate 20 and removes the concave portions (C
This is to flatten the masked portion during layer formation. The Ni film deposited in the recessed portion of the 0 layer 21 becomes a spacer 23 that supports the Ni layer 22 after the 0 layer is removed. The spacers 23 were arranged in a grid pattern so as to have the strength to maintain the layered structure.
以上の工程を200回繰り返すことにより、第4図Cに
示されるような200周期層から成るNi/C多層膜を
形成した。(但し図中では層数を省略している。以下同
様。)
次に、基板ホルダー4をX−Yステージ9上に移動させ
、集光したYAGレーザを照射して基板を走査すること
により、多層膜の一部を第4図dに示すように除去した
。この部分が次工程で0層を除去するための除去孔24
となるが、この除去孔24は多層膜の強度を落さないよ
うスポット状に配置した。By repeating the above steps 200 times, a Ni/C multilayer film consisting of 200 periodic layers as shown in FIG. 4C was formed. (However, the number of layers is omitted in the figure. The same applies hereinafter.) Next, the substrate holder 4 is moved onto the X-Y stage 9, and the substrate is scanned by irradiating the focused YAG laser. A portion of the multilayer film was removed as shown in Figure 4d. This part is the removal hole 24 for removing the 0 layer in the next step.
However, the removal holes 24 were arranged in spots so as not to reduce the strength of the multilayer film.
続いてかかる多層膜を酸素雰囲気中で熱処理することに
よりC[21を炭酸ガスとして除去しく空隙層25)、
第4図eに示すようなNi層22がスペーサ23を介し
て積層された多層x t、3反射鏡を得た。この多層膜
反射鏡の反射率を波長25人のX線を用いて測定したと
ころ第9図に示すように、ピーク反射率は69零と従来
にない高い値を示した。Subsequently, the multilayer film is heat-treated in an oxygen atmosphere to remove C[21 as carbon dioxide gas, thereby forming a void layer 25).
A multilayer xt3 reflecting mirror in which Ni layers 22 were laminated with spacers 23 in between as shown in FIG. 4e was obtained. When the reflectance of this multilayer film reflector was measured using X-rays with a wavelength of 25, the peak reflectance was 69 zero, an unprecedentedly high value, as shown in FIG.
なお、この実施例では多層膜に除去孔24を設ける工程
を真空チャンバー16内でYAGレーザを照射すること
によって行なってか、この工程は基板を大気に取り出し
てから行ってもよいし、また、YAGレーザを用いずに
例えばフォトリソグラフィーとエツチングの技術によっ
て行なっても良い。In this embodiment, the process of forming the removal holes 24 in the multilayer film may be performed by irradiating the YAG laser in the vacuum chamber 16, or this process may be performed after the substrate is taken out to the atmosphere. For example, photolithography and etching techniques may be used instead of using a YAG laser.
実施例 2
第5図a ”’−cは本発明の第2実施例による多層膜
反射鏡の製造工程を示す断面図である。Embodiment 2 FIGS. 5a-5c are cross-sectional views showing the manufacturing process of a multilayer reflective mirror according to a second embodiment of the present invention.
鏡面研磨したSiウェハを基板30とし、まず、基板ホ
ルダ4を接地電位にしてグラファイトターゲット14a
をスパッタして厚さ35人の0層31を形成した。この
あと基板ホルダー4をX−Yステージ9上に移動させ、
集光したYAGレーザを照射して基板を走査することに
より0層31の4部を第5図aのように除去した。この
とき、レーザ強度は0層31のみを除去する程度に予め
調整しておいた。Using a mirror-polished Si wafer as the substrate 30, first, the substrate holder 4 is set to the ground potential and the graphite target 14a is
A 0 layer 31 having a thickness of 35 layers was formed by sputtering. After that, move the substrate holder 4 onto the X-Y stage 9,
By scanning the substrate with irradiation with a focused YAG laser, four parts of the 0 layer 31 were removed as shown in FIG. 5a. At this time, the laser intensity was adjusted in advance to such an extent that only the 0 layer 31 was removed.
次に、基板ホルダー4を成膜の位置へ戻し、シャッター
6のメツシュ状のマスクを基板に密着させ、Niターゲ
ット14bをスパッタして厚さ15人のNi層32を形
成した。このとき、基板ホルダー4には負の直流バイア
スを印加しておき、第5図すのように0層31を除去し
た凹部33を平坦化した。この部分が本実施例における
スペーサー33となる。Next, the substrate holder 4 was returned to the film forming position, the mesh-like mask of the shutter 6 was brought into close contact with the substrate, and the Ni target 14b was sputtered to form a Ni layer 32 with a thickness of 15 layers. At this time, a negative DC bias was applied to the substrate holder 4, and the recess 33 from which the 0 layer 31 was removed was flattened as shown in FIG. This portion becomes the spacer 33 in this embodiment.
また、C層形成時にマスクされた領域が炭素のの除去孔
34となるが、層構造の強度を落さぬよう実施例1で用
いたものよりマスク領域の少ない(開口率の大きい)マ
スクを用いて成膜を行なった。In addition, the area masked during the formation of the C layer becomes the carbon removal hole 34, but a mask with a smaller mask area (larger aperture ratio) than the one used in Example 1 was used in order not to reduce the strength of the layer structure. The film was formed using the following method.
以上の工程を 200回繰り返して 200周期層から
成るN i / C多層膜を形成し、その後多層膜を酸
素雰囲気中で熱処理することにより0層31を炭酸ガス
として除去して、空隙層35を形成し、第5図Cに示す
ようにスペーサ33を介してNi層32が積層された多
層I′liX線反射鏡を作製した。The above process is repeated 200 times to form a Ni/C multilayer film consisting of 200 periodic layers, and then the multilayer film is heat treated in an oxygen atmosphere to remove the 0 layer 31 as carbon dioxide gas and form the void layer 35. Then, as shown in FIG. 5C, a multilayer I'li X-ray reflecting mirror was manufactured in which a Ni layer 32 was laminated with a spacer 33 interposed therebetween.
なお、本実施例ではスペーサ33.炭素の除去孔34と
もに格子状に配置したが、後名は強度を落さぬよう狭く
、粗く配置した。Note that in this embodiment, the spacer 33. The carbon removal holes 34 were arranged in a grid pattern, but they were arranged narrowly and roughly so as not to reduce strength.
この反射鏡の反射率を波長25人のX線を用いて測定し
たところ第10図に示すように73%のピーク反射・率
を得た。When the reflectance of this reflector was measured using X-rays with a wavelength of 25, a peak reflectance of 73% was obtained as shown in FIG.
実施例 3
第6図a ”−’ cは本発明の第3実施例にかかる多
層膜反射鏡の製造工程を示す断面図である。Embodiment 3 FIGS. 6a"-'c are sectional views showing the manufacturing process of a multilayer reflective mirror according to a third embodiment of the present invention.
鏡面研磨したSiウェハを基板40とし、まず基板ホル
ダー4を接地電位にしてグラファイトターゲット14a
をスパッタして厚さ42人の0層41を形成した。この
後基板ホルダー4をX−Yステージ9上に移動させ、集
光したYAGレーザを照射して基板を走査することによ
り0層41の一部を第6図aのように除去した。このと
きレーザ強度は0層21のみを除去する程度に予め調整
しておいた。除去された部分は後にスペーサー43が形
成される。A mirror-polished Si wafer is used as the substrate 40, and the graphite target 14a is first set with the substrate holder 4 at ground potential.
A zero layer 41 having a thickness of 42 layers was formed by sputtering. Thereafter, the substrate holder 4 was moved onto the X-Y stage 9, and a part of the 0 layer 41 was removed as shown in FIG. 6a by scanning the substrate with irradiation with a focused YAG laser. At this time, the laser intensity was adjusted in advance to such an extent that only the 0 layer 21 was removed. A spacer 43 will be formed in the removed portion later.
次に基板ホルダー4を成膜の位置へ戻し、負の直流バイ
アスを印加しなからNiターゲット14bをスパッタし
て厚さ18人のNi層42を0層41を除去した凹部な
平坦化するように形成した。その後、再び基板ホルダー
4をX−Yステージ9上に移動させ、集光したYAGレ
ーザを照射して基板を走査することによりNi層42の
一部を第6図すのように除去した。このときのレーザ強
度はNi層42のみを除去する程度に予め調整しておい
た。除去された部分は後に0層の除去孔44となる。Next, the substrate holder 4 is returned to the film-forming position, and without applying a negative DC bias, the Ni target 14b is sputtered to flatten the Ni layer 42 with a thickness of 18 to the concave portion where the layer 41 has been removed. was formed. Thereafter, the substrate holder 4 was moved onto the XY stage 9 again, and a portion of the Ni layer 42 was removed as shown in FIG. 6 by irradiating the substrate with a focused YAG laser and scanning the substrate. The laser intensity at this time was adjusted in advance to such an extent that only the Ni layer 42 was removed. The removed portion will later become a removal hole 44 of layer 0.
以上の工程を200回繰り返して200周期層から成る
N i / C多層膜を形成し、これを酸素雰囲気中で
熱処理することにより0層41を炭酸ガスとして除去し
て空隙層45を形成し、第6図Cに示ずようにスペーサ
43を介してNi層42が積層された多層1漠X線反射
鏡を作製した。The above steps are repeated 200 times to form a Ni/C multilayer film consisting of 200 periodic layers, and this is heat treated in an oxygen atmosphere to remove the 0 layer 41 as carbon dioxide gas to form a void layer 45. As shown in FIG. 6C, a multilayer X-ray reflector was prepared in which a Ni layer 42 was laminated with a spacer 43 interposed therebetween.
本実施例ではスペーサ43は層構造を保つ強度をもつよ
う格子状に配置し、炭素の除去孔44は強度を落さぬよ
うスポット状に配置した。In this embodiment, the spacers 43 are arranged in a lattice shape so as to have the strength to maintain the layered structure, and the carbon removal holes 44 are arranged in spots so as not to reduce the strength.
かかる多層1漠反射鏡の反射率を波長25人のX線を用
いて測定したところ第11図に示すように75%のピー
ク反射率を得た。When the reflectance of such a multilayer one-distance reflector was measured using X-rays of 25 wavelengths, a peak reflectance of 75% was obtained as shown in FIG.
実施例4
第7図a ’−eは本発明の第4実施例にかかる多層膜
反射鏡の製造工程を示す断面図である。Embodiment 4 FIGS. 7a' to 7e are cross-sectional views showing the manufacturing process of a multilayer reflective mirror according to a fourth embodiment of the present invention.
鏡面研摩したSiウェハを基板50とし、基板ホルダー
4を接地電位とし、グラファイトターゲット14a及び
Niターゲット14bを交互にスパッタして第7図aに
示すように厚さ50人の0層51と厚さ20人のNi層
52が交互にそれぞれ200層ずつ積層された多層膜を
形成した。A mirror-polished Si wafer is used as the substrate 50, the substrate holder 4 is set to the ground potential, and a graphite target 14a and a Ni target 14b are sputtered alternately to form a layer 51 with a thickness of 50 and a thickness of 50, as shown in FIG. 7a. A multilayer film was formed by alternately stacking 200 Ni layers 52 each.
次にこの上にフォトレジスト56を塗布し、露光現象し
てスペーサ53及び炭素の除去孔54を設ける部分のみ
レジスト56を除去した。これをA「と0.を主成分と
するガスを用いてドライエツチングを行い、第7図すの
ように加工した。このときエツチングされた断面が垂直
ではなくテーパー状になるような条件で加工を行った。Next, a photoresist 56 was applied thereon, and by exposure, the resist 56 was removed only at the portions where the spacers 53 and the carbon removal holes 54 were to be provided. This was dry-etched using a gas mainly composed of A' and 0. I did it.
その後、レジスト56を一旦剥離し、再度レジスト57
を塗布して露光・現象を行ないスペーサ53となる部分
のみレジスト57除去した。この上に第7図Cに示すよ
うに多層膜の厚さと同じ厚さにスパッタリング、または
真空蒸着によりNi11! 58を形成した後、レジス
ト57を剥離しくいわゆるリフトオフ)、第7図dに示
すように不要部分のNi膜を除去するとともにスペーサ
53を形成した。After that, the resist 56 is once removed, and the resist 57 is removed again.
The resist 57 was coated, exposed and developed, and only the portions that would become the spacers 53 were removed. As shown in FIG. 7C, Ni11! is applied by sputtering or vacuum evaporation to the same thickness as the multilayer film. After forming the resist 58, the resist 57 was peeled off (so-called lift-off), and as shown in FIG. 7d, unnecessary portions of the Ni film were removed and spacers 53 were formed.
次にこれを酸素雰囲気中で熱処理することにより0層5
1を除去孔54から炭酸ガスとして除去して空隙層55
を形成し、第7図eに示すようにNi層52がスペーサ
53を介して積層された多層膜X線反射鏡を作製した。Next, by heat-treating this in an oxygen atmosphere, the 0 layer 5
1 is removed as carbon dioxide gas from the removal hole 54 to form a void layer 55.
A multilayer X-ray reflecting mirror in which a Ni layer 52 was laminated with a spacer 53 interposed therebetween as shown in FIG. 7e was fabricated.
本実施例ではスペーサ53は層構造を保つ強度をもつよ
う格子状に配置し、炭素の除去孔54は強度を落さぬよ
うスポット状に配置した。In this embodiment, the spacers 53 are arranged in a grid pattern so as to have the strength to maintain the layered structure, and the carbon removal holes 54 are arranged in spots so as not to reduce the strength.
この反射鏡の反射率を波長25人のX線を用いて測定し
たところ第12図に示すように76%のピーク反射率を
得た。When the reflectance of this reflector was measured using X-rays of 25 wavelengths, a peak reflectance of 76% was obtained as shown in FIG.
なお、本実施例では、スペーサー53を形成する際にテ
ーパーエツチングをしておいて、その上にNi膜を形成
し、リフトオフにより不要部分を除去する方法をとった
が、第8図aに示すようにNi層5重よりも0層52を
オーバーエツチングしておき、また、表面には5in2
の薄lI!159を形成しておいて、WF6ガスを用い
たプラズマCVDによるWWAの選択成長技術による埋
め込みを行って、第8図すのようにWから成るスペーサ
60を形成しても良い、この場合はNi層51中に格子
状にWが点在することになるが、反射率の点で特に不都
合はない、また、表面に形成した5in2層59もその
まま残しても良いし、後にこれを除去しても良い。In this example, when forming the spacer 53, taper etching was performed, a Ni film was formed thereon, and unnecessary portions were removed by lift-off. As shown, the 0 layer 52 is over-etched compared to the 5 Ni layers, and the surface is covered with 5 in 2 layers.
Thin lI! 159 may be formed, and the spacer 60 made of W may be formed as shown in FIG. 8 by filling the WWA selective growth technique by plasma CVD using WF6 gas. In this case, the spacer 60 made of W may be formed. W is dotted in a grid pattern in the layer 51, but there is no particular disadvantage in terms of reflectance.Furthermore, the 5 inch 2 layer 59 formed on the surface may be left as is, or it may be removed later. Also good.
以上、本発明の4つの実施例を説明したが、本発明にか
かる多層膜反射鏡は上記の方法で製造されたものに限定
されるものではないことはいうまでもない。Although four embodiments of the present invention have been described above, it goes without saying that the multilayer film reflecting mirror according to the present invention is not limited to those manufactured by the above method.
なお、実施例1〜3ではNi層の平坦化を行なうため基
板に負の直流バイアスをかけて成膜したが、0層があま
り厚くなければバイアスをかけずに成膜しても良い。In Examples 1 to 3, the Ni layer was formed by applying a negative DC bias to the substrate in order to planarize it, but if the 0 layer is not too thick, the film may be formed without applying a bias.
また、上記の実施例では基板と多層膜を異なる物質で構
成したが、使用条件によって多層膜と基板との熱膨張率
の違い等が問題となる場合には基板も多層膜と同じ物質
で構成すれば良い。In addition, in the above embodiment, the substrate and the multilayer film were made of different materials, but if the difference in thermal expansion coefficient between the multilayer film and the substrate becomes a problem depending on the usage conditions, the substrate may also be made of the same material as the multilayer film. Just do it.
[発明の効果]
以上の様に本発明は、真空との屈折率差が大ぎい物質の
薄膜を、所定の厚さのスペーサーを介して積層したこと
により、従来の多層膜反射鏡では得られなかワた非常に
高い反射率を得ることができるという極めて優れた効果
を有している。[Effects of the Invention] As described above, the present invention has advantages that cannot be obtained with conventional multilayer film reflecting mirrors by laminating thin films of materials with a large refractive index difference with vacuum through spacers of a predetermined thickness. It has an extremely excellent effect of being able to obtain a very high reflectance.
本発明による多層膜反射鏡はX線の吸収が従来に比較し
て大幅に少なくなっているので、物質によるX線の吸収
が大きい比較的波長の長い軟X線領域(50〜100o
eV)で特に効果的であり、長波長領域で用いるものの
方が層の厚さが厚くてもよいので製造も容易である。The multilayer reflective mirror according to the present invention has significantly less X-ray absorption than conventional ones, so it is in the soft X-ray region (50 to 100 degrees
eV), and those used in the long wavelength range are easier to manufacture because the layer thickness may be thicker.
また、本発明の多層膜反射鏡における界面は真空又は大
気との界面となるので、基本的に物質の熱膨張係数の違
いに起因する問題を生ずることがなく、また界面で物質
の相互拡散による特性の劣化も起こらないので、品温の
環境下あるいは高強度のX線を照射する場合にも好適に
用いることがで参る。In addition, since the interface in the multilayer reflector of the present invention is the interface with vacuum or the atmosphere, there is basically no problem caused by differences in the coefficient of thermal expansion of substances, and there is no problem due to mutual diffusion of substances at the interface. Since no deterioration of properties occurs, it can be suitably used even in environments with high product temperatures or when irradiating high-intensity X-rays.
第1図は本発明の基本的構成を示す断面図、第2図は本
発明実施例で用いたrfマグネトロンスパッタリング装
置の構成図、第3図は第2図の装置で用いたシャッター
の説明図、第4図a ’−e 。
第5図a ’−c 、第6図a Ncはそれぞれ本発明
の第1.第2.第3実施例の製造工程を説明する断面図
、第7図a ”−’ e及び第8図a % bは本発明
の第4実施例の製造工程を説明する断面図、第9図、第
10図、第11図、第12図は本発明の第1、第2.第
3及び第4実施例による多層膜反射鏡の反射率測定結果
を示すグラフである。
〔主要部分の符号の説明]
1・・・・・・・・・・・・・・・・・・空隙層2・・
・・・・・・・・・・・・・・・・薄膜14a、14b
・・・・・・・・・・・・ターゲット4・・・・・・・
・・・・・・・・・・・基板ホルダー5・・・・・・・
・・・・・・・・・・・基板6・・・・・・・・・・・
・・・・・・・シャッター9・・・・・・・・・・・・
・・・・・・X−YステージlO・・・・・・・・・・
・・・・・・・・YAGレーザ20.30,40.50
・・・Si基板21.31,41.51・・・0層
22.32,42.52・・・Ni層
23、:13,43,53.fiO・・・スペーサー2
4.34,44.54・・・除去孔
25.35,45.55・・・空隙層Figure 1 is a sectional view showing the basic configuration of the present invention, Figure 2 is a configuration diagram of the RF magnetron sputtering apparatus used in the embodiment of the present invention, and Figure 3 is an explanatory diagram of the shutter used in the apparatus shown in Figure 2. , Fig. 4 a'-e. Figure 5 a'-c and Figure 6 a Nc are the first embodiment of the present invention. Second. FIGS. 7a-'e are sectional views illustrating the manufacturing process of the third embodiment, and FIGS. 10, 11, and 12 are graphs showing the reflectance measurement results of multilayer mirrors according to the first, second, third, and fourth embodiments of the present invention. [Explanation of symbols of main parts] ] 1・・・・・・・・・・・・・・・Void layer 2...
・・・・・・・・・・・・・・・Thin films 14a, 14b
・・・・・・・・・・・・Target 4・・・・・・・
・・・・・・・・・・・・Substrate holder 5・・・・・・・
・・・・・・・・・・・・Substrate 6・・・・・・・・・・・・
・・・・・・Shutter 9・・・・・・・・・・・・
・・・・・・X-Y stage lO・・・・・・・・・・
・・・・・・YAG laser 20.30, 40.50
. . . Si substrate 21.31, 41.51 . . . 0 layer 22.32, 42.52 . . . Ni layer 23, : 13, 43, 53. fiO...Spacer 2
4.34, 44.54...Removal hole 25.35, 45.55...Void layer
Claims (1)
質の薄膜を、所定の厚さのスペーサーを介して、複数積
層してなる多層膜X線反射鏡。A multilayer X-ray reflecting mirror is made by laminating a plurality of thin films of a material that has a large refractive index difference with vacuum in a predetermined X-ray wavelength range via spacers of a predetermined thickness.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63298144A JPH02145999A (en) | 1988-11-28 | 1988-11-28 | Multi-layered reflecting mirror for x-ray |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63298144A JPH02145999A (en) | 1988-11-28 | 1988-11-28 | Multi-layered reflecting mirror for x-ray |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02145999A true JPH02145999A (en) | 1990-06-05 |
Family
ID=17855766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63298144A Pending JPH02145999A (en) | 1988-11-28 | 1988-11-28 | Multi-layered reflecting mirror for x-ray |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02145999A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005234573A (en) * | 2004-02-16 | 2005-09-02 | Organisation Intergouvernementale Dite Agence Spatiale Europeenne | Optical reflection element, method for manufacturing the same, and optical apparatus including the element |
JP2007189151A (en) * | 2006-01-16 | 2007-07-26 | Nikon Corp | Multilayer-film mirror and euv exposure device |
-
1988
- 1988-11-28 JP JP63298144A patent/JPH02145999A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005234573A (en) * | 2004-02-16 | 2005-09-02 | Organisation Intergouvernementale Dite Agence Spatiale Europeenne | Optical reflection element, method for manufacturing the same, and optical apparatus including the element |
JP2007189151A (en) * | 2006-01-16 | 2007-07-26 | Nikon Corp | Multilayer-film mirror and euv exposure device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4397496B2 (en) | Reflective exposure mask and EUV exposure apparatus | |
JP3047541B2 (en) | Reflective mask and defect repair method | |
EP0279670A2 (en) | A reflection type mask | |
US11720013B2 (en) | Graded interface in Bragg reflector | |
TW202033828A (en) | Extreme ultraviolet mask absorber materials | |
JP2883100B2 (en) | Half mirror or beam splitter for soft X-ray and vacuum ultraviolet | |
TWI835896B (en) | Extreme ultraviolet mask with backside coating | |
JP4204583B2 (en) | Photomask blank manufacturing method | |
JPH0868897A (en) | Reflection mirror and its production method | |
KR102529842B1 (en) | EUV mask blank defect reduction | |
TW202130838A (en) | Extreme ultraviolet mask absorber materials | |
JPH01175736A (en) | Reflective mask | |
JP3033323B2 (en) | Method for manufacturing X-ray multilayer mirror | |
JPH02145999A (en) | Multi-layered reflecting mirror for x-ray | |
JPH05144710A (en) | Optical element and manufacturing method thereof | |
RU2004103474A (en) | SUBSTANCE MATERIAL FOR X-RAY OPTICAL COMPONENTS | |
JPH10339799A (en) | Reflecting mirror and its manufacturing method | |
JPS63237523A (en) | X-ray mask and manufacture thereof | |
JP2000147198A (en) | Multi-layer film reflecting mirror and its manufacture | |
JP2569447B2 (en) | Manufacturing method of multilayer mirror | |
JP2993261B2 (en) | X-ray multilayer reflector | |
JPH02177532A (en) | Mild x-ray reflection type exposure mask and manufacture thereof | |
JP2792385B2 (en) | High reflection dielectric mask and method of manufacturing the same | |
US20230067566A1 (en) | Multilayer extreme ultraviolet reflector materials | |
JP2814595B2 (en) | Multilayer reflector |