[go: up one dir, main page]

JPH0214446B2 - - Google Patents

Info

Publication number
JPH0214446B2
JPH0214446B2 JP63086725A JP8672588A JPH0214446B2 JP H0214446 B2 JPH0214446 B2 JP H0214446B2 JP 63086725 A JP63086725 A JP 63086725A JP 8672588 A JP8672588 A JP 8672588A JP H0214446 B2 JPH0214446 B2 JP H0214446B2
Authority
JP
Japan
Prior art keywords
flame
fiber
fiber bundle
fibers
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63086725A
Other languages
Japanese (ja)
Other versions
JPS63264918A (en
Inventor
Osamu Yoshinari
Yoshifumi Kawakatsu
Hideaki Fukumizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP8672588A priority Critical patent/JPS63264918A/en
Publication of JPS63264918A publication Critical patent/JPS63264918A/en
Publication of JPH0214446B2 publication Critical patent/JPH0214446B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、アクリロニトリル系炭素繊維を連続
的に製造するに当り、耐炎繊維束に特定化学物質
を特定量付着させて、集束性を良好にし繊維束に
発生する毛羽立ちを防止するとともに膠着を解繊
し表面損傷を防止して高性能の炭素繊維を製造す
る方法に関する。更に詳述すると、本発明は、炭
素化炉で堆積してくる毛羽や繊維屑を減少させて
糸道の狭窄を防いで通過する繊維束の毛羽発生を
抑え、また、炉に至るまでのガイドローラーでの
毛羽立ち、巻付を防止し、更に加えて、耐炎化工
程で惹起した膠着を解繊し、またローラーガイド
通過時に惹起する耐炎繊維、炭素繊維の表面損傷
を防止して高性能の炭素繊維を製造する方法であ
る。 一般に、炭素繊維を製造するには、アクリロニ
トリル系繊維束を酸化性雰囲気中約260℃で耐炎
化して耐炎繊維として次いで不活性雰囲気中約
1300℃で炭素化して炭素繊維とする。 かかる製造法を連続操業する場合には幾多の技
術的問題が起る。すなわち、炭素化時に炉内に
毛羽、繊維屑が堆積し炉内の糸道が堆積物によつ
て狭窄され、これが原因となつて通過繊維束に毛
羽立ちを生じ、また、通過するローラーガイドに
よつても繊維束に毛羽立ちを起す。アクリロニ
トリル系繊維から耐炎繊維を得る耐炎化工程では
繊維同志の膠着がある程度は避けられないが、膠
着の程度が大きい場合、解繊しないと炭素化して
得られる炭素繊維の強度が低下し、高性能の炭素
繊維は得られない。耐炎繊維を炭素化炉時に2
段炭素化炉にて熱処理して炭素繊維にする場合、
繊維は多数のローラー、押えローラーガイドを通
過せねばならず、このとき或程度の表面損傷が通
常避けられないが、表面損傷があるとそれだけ炭
素繊維の強度が低下し、高性能の炭素繊維は得ら
れない。 本発明は、炭素繊維の製造におけるこれら問題
を一挙に解決し、高品質、高性能の炭素繊維を得
るものである。 すなわち、本発明は次の通りである。 耐炎繊維束を炭素化炉に供給し連続的に熱処理
してアクリロニトリル系炭素繊維を製造するに当
り、耐炎繊維束に予め、分子量10万以上のポリエ
チレンオキサイド、エチルエーテル化若しくはヒ
ドロキシエチルエーテル化されたセルロース、又
は(及び)、ポリビニルメチルエーテルの水性液
を付着させ、その際付着量を0.01〜0.5重量%と
なし、次いで250℃以下の温度にて乾燥し、その
後に前記熱処理を行うことを特徴とする炭素繊維
の製造法。 本発明によると、炭素化炉における堆積物を顕
著に減少させるとともに、得られた炭素繊維の毛
羽を顕著に減少させることができる。また、耐炎
化工程で膠着した耐炎繊維を解繊し膠着の少ない
高強度の炭素繊維が得られ、更に表面損傷を防止
して高強度の炭素繊維を得ることができる。 本発明において、被処理繊維束の耐炎繊維束は
アクリロニトリル系繊維束から得られる。アクリ
ロニトリル系繊維とは、その重合体成分中にアク
リロニトリル成分を少なくとも90重量%以上含
み、共重合体成分として通常アクリロニトリルと
共重合用ビニル系化合物を0〜10重量%含む重合
体又は共重合体よりなる繊維である。繊維束とし
ては単繊維繊度0.5〜1.5デニールのフイラメント
100〜30000本構成のものが通常用いられる。 被処理繊維束である耐炎繊維束に付着させる化
学物質(以下「集束剤」という)は分子量10万以
上のポリエチレンオキサイド(PEO)であり、
好ましくは、分子量10万〜480万、特に好ましく
は10万〜110万のPEOである。分子量が10万未満
のときは粘性が低く毛羽防止等の効果が十分に得
られない。PEOの場合、分子量が110万を超える
と低濃度でも粘性が高くなる傾向がある。この場
合、アセトン、メタノール、エタノール等を加え
ることもできる。 その他の集束剤としてはエチルエーテル化又は
ヒドロキシエチルエーテル化されたセルロースで
あつて、例えばエチルセルロース、ヒドロキシエ
チルセルロースである。また、別の集束剤はポリ
ビニルメチルエーテルである。 前記集束剤は1種又は2種以上使用することが
できる。 これらの集束剤を水性液として被処理繊維束に
付着させる。通常、集束剤を1g/〜20g/
の水溶液として使用する。溶媒としては、水単独
又は水とアセトン、メタノール、エタノール等と
の混合溶媒が使用される。混合溶媒の使用は、水
単独溶媒使用では、溶液粘度が高く使用し難くな
るときに有効である。溶液粘度が高くなるとスト
ランド(繊維束)相互が粘着しやすく、乾燥後毛
羽立ちの原因となる。 混合溶媒を使用する場合、有機溶媒を40〜80%
含む水溶液で使用される。 集束剤の付着量は、0.01〜0.5重量%であるこ
とが必要である。0.01重量%未満では毛羽抑え等
の効果があがらず、0.5重量%を超えるとストラ
ンド相互のひつつき及び炭素化後の膠着を起す。
好ましい範囲は0.1〜0.3重量%である。 通常、被処理繊維束に集束剤水性液を付着させ
るには、繊維束を水性液中に浸漬通過させる、又
は、繊維束に水性液をスプレーし若しくはローラ
ー接触させるなど任意の方法で行う。集束剤水性
液を耐炎繊維束に付着させるには、上記いずれの
方法によるにせよ、付着後に押えローラーで絞り
乾燥するのがよい。それというのも、集束剤水性
液を付着させ耐炎繊維の表面損傷を防止しつつ押
えローラーで絞り、耐炎化工程で生じた膠着を解
繊して繊維束の絞り後の水分率をドライベースで
45%程度の状態で乾燥すると乾燥時のストランド
相互のひつつきがなく乾燥を行うことができるか
らである。 集束剤を付着させた後、250℃以下の温度で乾
燥する。乾燥せずに炭素化炉に導入すると、製品
繊維の強度が低下する。また、250℃を超えた温
度で乾燥すると、繊維束に膠着が生じ製品繊維の
性能低下が起る。 集束剤の付着及び乾燥は炭素化処理されるスト
ランドの状態のままで行うのがよい。合糸、かせ
の状態、かせ又はボビンに巻取られた状態で行う
と、ストランド相互が接着して不都合である。 耐炎繊維について集束剤付着量及び乾燥温度の
影響を下記の第1表及び第2表に示す。
In the continuous production of acrylonitrile-based carbon fibers, the present invention involves attaching a specific amount of a specific chemical substance to a flame-resistant fiber bundle to improve cohesiveness, prevent fuzzing that occurs in the fiber bundle, and defibrate agglutination. The present invention relates to a method for producing high-performance carbon fibers while preventing surface damage. More specifically, the present invention reduces the fluff and fiber waste that accumulates in the carbonization furnace, prevents narrowing of the yarn path, suppresses the generation of fluff on the fiber bundles passing through, and improves the guide to the furnace. It prevents fluffing and wrapping on rollers, and also defibrates agglutination caused during the flame-retardant process, and prevents surface damage to flame-retardant fibers and carbon fibers caused when passing through roller guides, resulting in high-performance carbon fibers. This is a method for producing fibers. Generally, to produce carbon fibers, acrylonitrile fiber bundles are made flame resistant in an oxidizing atmosphere at about 260°C to produce flame resistant fibers, and then in an inert atmosphere at about 260°C.
Carbonize at 1300℃ to make carbon fiber. A number of technical problems arise when such manufacturing methods are operated continuously. In other words, fluff and fiber waste accumulate in the furnace during carbonization, and the yarn path in the furnace is narrowed by the deposits, which causes fluff in the passing fiber bundles, and also causes the fiber bundles to become fluffy. Even when applied, the fiber bundles become fluffy. In the flame-retardant process of obtaining flame-resistant fibers from acrylonitrile fibers, a certain amount of adhesion between fibers is unavoidable, but if the degree of adhesion is large and it is not defibrated, the strength of the carbon fiber obtained by carbonization will decrease, resulting in high performance. carbon fiber cannot be obtained. 2 when flame-resistant fiber is carbonized in a furnace
When making carbon fiber by heat treatment in a stage carbonization furnace,
The fiber has to pass through a large number of rollers and presser roller guides, and at this time some degree of surface damage is usually inevitable, but the more surface damage there is, the more the strength of the carbon fiber decreases, and the high performance carbon fiber is I can't get it. The present invention solves all of these problems in the production of carbon fibers and obtains high-quality, high-performance carbon fibers. That is, the present invention is as follows. When the flame-resistant fiber bundle is supplied to a carbonization furnace and continuously heat-treated to produce acrylonitrile-based carbon fiber, the flame-resistant fiber bundle is preliminarily treated with polyethylene oxide having a molecular weight of 100,000 or more, ethyl ether, or hydroxyethyl ether. An aqueous solution of cellulose or (and) polyvinyl methyl ether is deposited, with an amount of deposited at 0.01 to 0.5% by weight, and then dried at a temperature of 250°C or less, followed by the heat treatment described above. A method for manufacturing carbon fiber. According to the present invention, deposits in a carbonization furnace can be significantly reduced, and fluff of the obtained carbon fibers can be significantly reduced. Further, by defibrating the flame-resistant fibers that have stuck together in the flame-retardant process, high-strength carbon fibers with less stickiness can be obtained, and furthermore, high-strength carbon fibers can be obtained by preventing surface damage. In the present invention, the flame-resistant fiber bundle of the fiber bundle to be treated is obtained from an acrylonitrile-based fiber bundle. Acrylonitrile fiber is a polymer or copolymer containing at least 90% by weight of an acrylonitrile component in its polymer component, and 0 to 10% by weight of acrylonitrile and a vinyl compound for copolymerization as a copolymer component. It is a fiber. As a fiber bundle, filament with a single fiber fineness of 0.5 to 1.5 denier is used.
A configuration with 100 to 30,000 pieces is usually used. The chemical substance (hereinafter referred to as "sizing agent") attached to the flame-resistant fiber bundle, which is the fiber bundle to be treated, is polyethylene oxide (PEO) with a molecular weight of 100,000 or more.
Preferably, PEO has a molecular weight of 100,000 to 4.8 million, particularly preferably 100,000 to 1.1 million. When the molecular weight is less than 100,000, the viscosity is low and the anti-fuzz effect cannot be obtained sufficiently. In the case of PEO, when the molecular weight exceeds 1.1 million, the viscosity tends to increase even at low concentrations. In this case, acetone, methanol, ethanol, etc. can also be added. Other sizing agents include ethyl etherified or hydroxyethyl etherified cellulose, such as ethyl cellulose and hydroxyethyl cellulose. Another sizing agent is polyvinyl methyl ether. One type or two or more types of the above-mentioned sizing agents can be used. These sizing agents are applied as an aqueous liquid to the fiber bundle to be treated. Usually, sizing agent is 1g/~20g/
Use as an aqueous solution. As the solvent, water alone or a mixed solvent of water and acetone, methanol, ethanol, etc. is used. The use of a mixed solvent is effective when using water alone as a solvent becomes difficult to use due to high solution viscosity. When the viscosity of the solution increases, the strands (fiber bundles) tend to stick to each other, causing fluff after drying. When using a mixed solvent, the organic solvent should be 40-80%
used in aqueous solutions containing The amount of deposited sizing agent needs to be 0.01 to 0.5% by weight. If it is less than 0.01% by weight, it will not be effective in suppressing fuzz, and if it exceeds 0.5% by weight, it will cause the strands to stick together and stick together after carbonization.
The preferred range is 0.1-0.3% by weight. Usually, the aqueous sizing agent liquid is applied to the fiber bundle to be treated by any method such as passing the fiber bundle immersed in the aqueous liquid, spraying the aqueous liquid onto the fiber bundle, or bringing the aqueous liquid into contact with the fiber bundle. In order to attach the aqueous sizing agent to the flame-resistant fiber bundle, whichever of the above methods is used, it is preferable to squeeze and dry the sizing agent with a pressing roller after the adhesion. This is because the aqueous sizing agent is attached to the flame-resistant fibers, which is squeezed with a presser roller while preventing surface damage, and the agglutination that occurs during the flame-proofing process is defibrated to reduce the moisture content of the fiber bundle after squeezing.
This is because drying in a state of about 45% allows the strands to be dried without sticking to each other during drying. After applying the sizing agent, dry at a temperature below 250°C. If the fiber is introduced into the carbonization furnace without drying, the strength of the product fiber will decrease. Furthermore, if the fiber is dried at a temperature exceeding 250°C, the fiber bundles will stick together and the performance of the product fiber will deteriorate. It is preferable to apply the sizing agent and dry the strand while it is in the state of being carbonized. If the strands are doubled, skeined, or wound around a skein or bobbin, the strands will adhere to each other, which is inconvenient. Tables 1 and 2 below show the influence of the amount of sizing agent deposited and drying temperature on flame-resistant fibers.

【表】【table】

〔毛羽数測定法〕[Fuzz count measurement method]

6000フイラメント・ストランドをアセトンに浸
漬してサイジング剤を溶解除去した後、約1.5m
の長さに張りわたし、アセトン風乾し、次いで送
風して開繊し突出した毛羽数を1mの間について
数える。 〔膠着数測定法〕 6000フイラメント・ストランドを3mmの長さに
切断し、アセトン中に投入し超音波洗浄を行つて
サイジング剤を溶解除去した後、顕微鏡により
6.3倍率下で太い膠着糸を数える。
After soaking the 6000 filament strand in acetone to dissolve and remove the sizing agent, approximately 1.5 m
The fibers were stretched to a length of 100 mm, air-dried with acetone, opened with air, and the number of protruding fuzz was counted over a length of 1 m. [Method for measuring stickiness number] Cut 6000 filament strands into 3mm lengths, put them into acetone, perform ultrasonic cleaning to dissolve and remove the sizing agent, and then measure using a microscope.
Count the thick glue threads under 6.3 magnification.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 耐炎繊維束を炭素化炉に供給し連続的に熱処
理してアクリロニトリル系炭素繊維を製造するに
当り、耐炎繊維束に予め、分子量10万以上のポリ
エチレンオキサイド、エチルエーテル化若しくは
ヒドロキシエチルエーテル化されたセルロース、
又は(及び)、ポリビニルメチルエーテルの水性
液を付着させ、その際付着量を0.01〜0.5重量%
となし、次いで250℃以下の温度にて乾燥し、そ
の後に前記熱処理を行うことを特徴とする炭素繊
維の製造法。
1. When supplying a flame-resistant fiber bundle to a carbonization furnace and continuously heat-treating it to produce acrylonitrile-based carbon fiber, the flame-resistant fiber bundle is preliminarily treated with polyethylene oxide having a molecular weight of 100,000 or more, ethyl etherification, or hydroxyethyl etherification. cellulose,
Or (and) depositing an aqueous solution of polyvinyl methyl ether, with a deposit amount of 0.01 to 0.5% by weight.
A method for producing carbon fibers, which comprises drying the fibers, followed by drying at a temperature of 250° C. or lower, and then carrying out the heat treatment.
JP8672588A 1988-04-08 1988-04-08 Production of carbon fiber Granted JPS63264918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8672588A JPS63264918A (en) 1988-04-08 1988-04-08 Production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8672588A JPS63264918A (en) 1988-04-08 1988-04-08 Production of carbon fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57176335A Division JPS5966518A (en) 1982-10-08 1982-10-08 Production of carbon or graphite fiber

Publications (2)

Publication Number Publication Date
JPS63264918A JPS63264918A (en) 1988-11-01
JPH0214446B2 true JPH0214446B2 (en) 1990-04-09

Family

ID=13894838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8672588A Granted JPS63264918A (en) 1988-04-08 1988-04-08 Production of carbon fiber

Country Status (1)

Country Link
JP (1) JPS63264918A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8246874B2 (en) 2005-12-02 2012-08-21 Tsinghua University Method for making carbon nanotube-based device
TWI272245B (en) * 2005-12-02 2007-02-01 Hon Hai Prec Ind Co Ltd A method for making carbon nanotube device
CN100500556C (en) 2005-12-16 2009-06-17 清华大学 Carbon nanotube filament and method for making the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112740A (en) * 1974-07-22 1976-01-31 Fujitsu Ltd MAIKUROPUROGURAMUNYORUKAUNTASEIGYOHOSHIKI
JPS55122021A (en) * 1979-03-08 1980-09-19 Sumitomo Chem Co Ltd Improved method of producing carbon fiber
JPS584825A (en) * 1981-06-23 1983-01-12 Toho Rayon Co Ltd Production of carbon fiber

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE100458T1 (en) * 1987-04-10 1994-02-15 Procter & Gamble SOLID INDIGESTABLE FAT-LIKE COMPOUNDS.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112740A (en) * 1974-07-22 1976-01-31 Fujitsu Ltd MAIKUROPUROGURAMUNYORUKAUNTASEIGYOHOSHIKI
JPS55122021A (en) * 1979-03-08 1980-09-19 Sumitomo Chem Co Ltd Improved method of producing carbon fiber
JPS584825A (en) * 1981-06-23 1983-01-12 Toho Rayon Co Ltd Production of carbon fiber

Also Published As

Publication number Publication date
JPS63264918A (en) 1988-11-01

Similar Documents

Publication Publication Date Title
JP6412118B2 (en) Superabsorbent polysaccharide fiber and use thereof
US4297412A (en) Two-component mixed acrylic fibres wherein acrylic components have different amounts of non-ionizable plasticizing comonomer
CN106930096B (en) Modified fiber product, preparation method and application thereof
EP1925323A1 (en) Mixed polymer superabsorbent fibers and method for their preparation
JPS6052208B2 (en) Carbon fiber tow manufacturing method
US4284615A (en) Process for the production of carbon fibers
RU2636547C2 (en) Lyocell material for tobacco filter and method of its preparing
JPS6354808B2 (en)
US4304746A (en) Process for producing preoxidized fiber spun yarns
US4575376A (en) Method for increasing the absorbency of cellulosic fibers
JPH0214446B2 (en)
JPS6197477A (en) Raw yarn for producing carbon fiber
US20030108739A1 (en) High wet resiliency curly cellulose fibers
CN114174572A (en) Method for producing lyocell staple fibers
US2277163A (en) Treatment of artificial textile materials
TW202033850A (en) Precursor fiber bundle production method, carbon fiber bundle production method, and carbon fiber bundle
JPH02242920A (en) Carbon fiber containing composite metal
JPS643987B2 (en)
US1834388A (en) Treatment of textile materials containing carbonizable fibres and product thereof
DE69529221T2 (en) METHOD FOR PRODUCING POLYBENZAZOLE FLEECE
JPS6122046B2 (en)
JPS60119248A (en) Method for manufacturing textiles using mixed spun yarn using water-soluble polyvinyl alcohol long fibers
US4228643A (en) Method for the manufacture of twistless or substantially twistless yarn
JPS58214518A (en) Acrylic precursor yarn bundle
US3122443A (en) Process for preventing cohesion between acrylonitrile polymer fibers with certain pentanediols