JPH02142145A - Method for growing compound semiconductor crystals - Google Patents
Method for growing compound semiconductor crystalsInfo
- Publication number
- JPH02142145A JPH02142145A JP29531788A JP29531788A JPH02142145A JP H02142145 A JPH02142145 A JP H02142145A JP 29531788 A JP29531788 A JP 29531788A JP 29531788 A JP29531788 A JP 29531788A JP H02142145 A JPH02142145 A JP H02142145A
- Authority
- JP
- Japan
- Prior art keywords
- mercury
- crystal
- substrate
- epitaxial
- reaction tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【発明の詳細な説明】
〔概 要]
水銀を含む化合物半導体結晶の成長方法に関し、所望の
水銀の空孔濃度を有した水根を含む化合物半導体結晶の
気相成長方法の提供を目的とし、反応管内に設置した化
合物半導体基板を加熱し7ながら、該基板に水根と、水
銀以外のエピタキシャル成長用ガスとを供給して基板り
に水銀を含む化合物半導体のエピタキシャル結晶を成長
する工程、
次いで該成長したエピタキシャル結晶を有する基板を加
熱するとともに、水銀を除くエピタキシャル成長用ガス
の供給を停止し、水銀のみを基板に供給して前記エピタ
キシャル結晶を熱処理して所望の導電型に変換する工程
、
上記エピタキシャル結晶を基板−Lに成長する工程、お
よびエピタキシャル結晶の熱処理工程を少なくとも各々
1回収り順次繰り返して行いながら基板上に所望の導電
型の単結晶層を形成する工程を含むことで構成する。[Detailed Description of the Invention] [Summary] Regarding a method for growing a compound semiconductor crystal containing mercury, the present invention aims to provide a method for vapor phase growth of a compound semiconductor crystal containing water roots having a desired mercury vacancy concentration. a step of growing an epitaxial crystal of a compound semiconductor containing mercury on the substrate by supplying water and an epitaxial growth gas other than mercury to the substrate while heating the compound semiconductor substrate placed in the reaction tube; a step of heating the substrate having the grown epitaxial crystal, stopping the supply of the epitaxial growth gas except for mercury, and supplying only mercury to the substrate to heat-treat the epitaxial crystal to convert it into a desired conductivity type; The method includes the steps of growing a crystal on the substrate-L and sequentially repeating each step of heat treatment of the epitaxial crystal at least once to form a single crystal layer of a desired conductivity type on the substrate.
〔産業上の利用分野]
本発明は水銀を含む化合物半導体結晶の気相成長方法に
関する。[Industrial Application Field] The present invention relates to a method for vapor phase growth of compound semiconductor crystals containing mercury.
赤外線検知素子のような光電変換素子の形成用結晶とし
てエネルギーバンドギャップの狭い水銀・カドミウム・
テルル()Ig+□CdうTe)のような化合物半導体
結晶が用いられている。Mercury, cadmium,
A compound semiconductor crystal such as tellurium (Ig+□CdTe) is used.
従来、このようなt1g+−+v C+J+ Teの結
晶をカドミウムテルル(CdTe)のような基板上に気
相エピタキシャル成長する際、第3図に示すように反応
管1内のサセプタ2上に設置したCdTe基板3を、前
記反応管1の周囲に設けた高周波コイル4に通電するこ
とで前記サセプタ2を加熱しながら該基板を加熱すると
ともに、該基板に水銀(tlg)ガス、およびジメチル
カドミウム((C113) zcd )ガス、ジエチル
テルル((C2115) zTe )ガス等のエピタキ
シャル成長用ガスを供給し、これ等水銀およびエピタキ
シャル成長用ガスと基板との気相化学反応によって基板
−Lにo、−XCdヶTeの二〔ビター1−シャ11層
を気相成長している。Conventionally, when a crystal of t1g+-+v C+J+ Te is grown by vapor phase epitaxial growth on a substrate such as cadmium tellurium (CdTe), a CdTe substrate placed on a susceptor 2 in a reaction tube 1 is grown as shown in FIG. 3 is applied to the high frequency coil 4 provided around the reaction tube 1 to heat the substrate while heating the susceptor 2, and at the same time, the substrate is heated with mercury (TLG) gas and dimethyl cadmium ((C113)). Epitaxial growth gases such as zcd ) gas and diethyl tellurium ((C2115) zTe ) gas are supplied, and two o, - [Bitter 1-Sha 11 layers are grown in vapor phase.
ところでこのIIg+−x CdX Teのエピタキシ
ャル結晶層は水銀が易蒸発性元素であるため、結晶の格
子点位置より抜は易く、エピタキシャル結晶の成長時の
成長温度や水銀分圧のようにエピタキシャル成長の条件
によって、この水銀原子が抜は出た結晶に空格子点が形
成され、この空格子点がアクセプタとなるために一般に
P型の導電型を呈するようになる。By the way, in this epitaxial crystal layer of IIg+-x CdX Te, since mercury is an easily evaporable element, it is easy to extract from the lattice point position of the crystal, and the epitaxial growth conditions such as the growth temperature and mercury partial pressure during epitaxial crystal growth can be changed. As a result, vacancies are formed in the crystal from which the mercury atoms are extracted, and since these vacancies serve as acceptors, the crystal generally exhibits P-type conductivity.
ところで一般に赤外線検知素子形成用結晶としては、N
型の導電型を有する結晶、或いはアクセプタの濃度の低
いP型の結晶が要望されている。By the way, N is generally used as a crystal for forming an infrared sensing element.
There is a demand for crystals having a conductivity type of P-type or P-type crystals with a low acceptor concentration.
そのため、このような結晶を得るために第4図に示すよ
うに、反応管1内に前記t1g+−x CdXTeのエ
ピタキシャル結晶を形成した基板5を石英治具6に設置
するとともに、水銀7を収容した容器8を設置し、この
反応管1内を」4空に排気した後、反応管lを加熱して
水銀7の蒸気を容器内に充満させ、この水銀の雰囲気内
で長時間基板を加熱処理して前記形成されたエピタキシ
ャル結晶の空格子点を水銀原子で埋めてN型の導電型、
或いは所望のアクセプタ濃度を有するP型結晶としてい
る。Therefore, in order to obtain such a crystal, as shown in FIG. 4, a substrate 5 on which the epitaxial crystal of t1g+-x CdXTe is formed is placed in a quartz jig 6 in a reaction tube 1, and a mercury 7 is placed in the reaction tube 1. After evacuating the reaction tube 1 to empty, the reaction tube 1 is heated to fill the container with mercury 7 vapor, and the substrate is heated for a long time in this mercury atmosphere. The vacancies of the epitaxial crystal thus formed are filled with mercury atoms to form an N-type conductivity type,
Alternatively, it is a P-type crystal having a desired acceptor concentration.
然し、上記した従来の方法では、前記した空格子点を水
銀原子が埋めるには24時間程度の長時間を必要とし、
特にエピタキシャル結晶層の厚さが厚くなると結晶層の
下部にまで水銀原子が拡散浸透するのに長時間を要する
問題がある。However, in the conventional method described above, it takes a long time of about 24 hours for the mercury atoms to fill the vacancies.
In particular, when the epitaxial crystal layer becomes thick, there is a problem that it takes a long time for mercury atoms to diffuse and permeate to the lower part of the crystal layer.
またエピタキシャル結晶層の厚さが厚いと、結晶層の上
部捏水銀原子が拡散浸透し易いので、結晶層の上部と下
部とでは水銀原子の濃度が変動し、結晶層の厚さ方向に
沿って均一な水銀の濃度が得られない問題がある。In addition, when the thickness of the epitaxial crystal layer is thick, mercury atoms in the upper part of the crystal layer tend to diffuse and permeate, so the concentration of mercury atoms fluctuates between the upper and lower parts of the crystal layer, and the concentration of mercury atoms changes along the thickness direction of the crystal layer. There is a problem that a uniform mercury concentration cannot be obtained.
本発明は上記した問題点を解決し、結晶の空格子点を水
銀で埋める熱処理時間を長時間必要とせず、かつエピタ
キシャル結晶層の厚さ方向に沿って水銀が均一な濃度で
空格子点に導入されるようにした化合物半導体結晶の気
相成長方法の提供を目的とする。The present invention solves the above-mentioned problems, does not require a long heat treatment time to fill the vacancies in the crystal with mercury, and mercury fills the vacancies at a uniform concentration along the thickness direction of the epitaxial crystal layer. An object of the present invention is to provide a method for vapor phase growth of compound semiconductor crystals.
上記目的を達成する本発明の化合物半導体結晶の気相成
長方法は、反応管内に設置した化合物半導体基板を加熱
しながら、該基板に水銀と、水銀以外のエピタキシャル
成長用ガスとを供給して基板上に水銀を含む化合物半導
体のエピタキシャル結晶を成長する工程、
次いで該成長したエピタキシャル結晶を有する基板を加
熱するとともに、水銀を除くエピタキシャル成長用ガス
の供給を停正し、水銀のみを基板に供給して前記エピタ
キシャル結晶を熱処理する工程、
上記エピタキシャル結晶を基板上に成長する工程、およ
びエピタキシャル結晶の熱処理工程を少なくとも各々1
回以上順次繰り返して行いながら基板上に単結晶層を形
成する工程を含むことを特徴としている。The method for vapor phase growth of a compound semiconductor crystal of the present invention which achieves the above object includes heating a compound semiconductor substrate placed in a reaction tube while supplying mercury and an epitaxial growth gas other than mercury to the substrate. a step of growing an epitaxial crystal of a compound semiconductor containing mercury, then heating the substrate having the grown epitaxial crystal, stopping the supply of the epitaxial growth gas excluding mercury, and supplying only mercury to the substrate; At least one step each of heat-treating the epitaxial crystal, growing the epitaxial crystal on a substrate, and heat-treating the epitaxial crystal.
The method is characterized in that it includes a step of forming a single crystal layer on a substrate by repeating the steps one or more times.
本発明の気相成長方法は、基板上に予めエピタキシャル
層を0.1 μm程度に薄く形成し、その後水銀以外の
エピタキシャル成長用ガスの供給を停止した状態でエピ
タキシャル成長に用いた反応管と同一の反応管を用いて
水銀の雰囲気内でエピタキシャル層を形成した基板を加
熱処理する。このようなエピタキシャル成長工程と熱処
理工程を順次繰り返して行うことで、所望の厚さの所望
の導電型のエピタキシャル結晶が得られる。In the vapor phase growth method of the present invention, an epitaxial layer is formed in advance to a thickness of about 0.1 μm on a substrate, and then the same reaction tube as that used for epitaxial growth is carried out with the supply of epitaxial growth gases other than mercury stopped. The substrate on which the epitaxial layer has been formed is heat-treated in a mercury atmosphere using a tube. By repeating such an epitaxial growth step and a heat treatment step in sequence, an epitaxial crystal having a desired thickness and a desired conductivity type can be obtained.
このようにすると、エピタキシャル層が薄いために空格
子点を水銀原子で埋める熱処理工程が短時間で行い得る
ようになり、かつエピタキシャル層の上部と下部に水銀
が拡散浸透する濃度が均一となり、エピタキシャル層の
厚さ方向に沿って水銀の濃度が均一な状態で得られ、ま
た同一の反応管を用いているため、結晶が汚染される恐
れも無くなる。In this way, since the epitaxial layer is thin, the heat treatment process to fill the vacancies with mercury atoms can be carried out in a short time, and the concentration of mercury diffused into the upper and lower parts of the epitaxial layer becomes uniform, and the epitaxial layer becomes thinner. A uniform mercury concentration is obtained along the thickness direction of the layer, and since the same reaction tube is used, there is no risk of contamination of the crystals.
以下、図面を用いて本発明の一実施例につき詳細に説明
する。Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.
第1図(a)より第1図(C)迄は本発明の方法で形成
した化合物半導体結晶の断面図、第2図は本発明の方法
に用いる装置の説明図である。1(a) to 1(C) are cross-sectional views of a compound semiconductor crystal formed by the method of the present invention, and FIG. 2 is an explanatory diagram of an apparatus used in the method of the present invention.
第1図(a)および第2図に図示するように、反応管1
内のサセプタ2にエピタキシャル成長用基板3を設置し
、該反応管1内を真空に排気した後、該反応管1内のサ
セプタ2を高周波誘導コイル4に通電することで加熱し
て基板3を400°C程度の温度で加熱し、水素ガス供
給用のバルブ11と、ジメチルカドミウムが収容された
蒸発器12に連なるバルブ13、ジエチルテルルが収容
された蒸発器14に連なるバルブ15、水銀が収容され
た蒸発器16に連なるバルブ17をバルブ制御装置18
を用いて開放にして、ガス導入管I9よりキャリアガス
としての水素ガスと、該水素ガスに担持されたジメチル
カドミウム、ジエチルテルルおよび水銀のガスを反応管
1内に導入し、基板−トにこれ等のガスを供給して−J
−記ガスの気相化学反応により、基板−Lにl1g、
Cd、 Teのエピタキシャル結晶層を形成する。As shown in FIG. 1(a) and FIG. 2, a reaction tube 1
A substrate 3 for epitaxial growth is placed in a susceptor 2 inside the reaction tube 1, and after evacuating the inside of the reaction tube 1, the susceptor 2 inside the reaction tube 1 is heated by energizing a high frequency induction coil 4, and the substrate 3 is heated to 400℃. A valve 11 for supplying hydrogen gas, a valve 13 connected to an evaporator 12 containing dimethyl cadmium, a valve 15 connected to an evaporator 14 containing diethyl tellurium, and a valve 15 connected to an evaporator 14 containing diethyl tellurium. The valve 17 connected to the evaporator 16 is connected to the valve controller 18.
hydrogen gas as a carrier gas and the gases of dimethyl cadmium, diethyl tellurium and mercury supported by the hydrogen gas are introduced into the reaction tube 1 through the gas introduction tube I9, and this is applied to the substrate. -J by supplying gas such as
- Due to the gas phase chemical reaction of the above gas, l1g is added to the substrate -L,
An epitaxial crystal layer of Cd and Te is formed.
このようにして所定時間経過すると第1図(a)に示す
ようにCd Te 基1反3上にIIg、−,1CdX
Teのエピタキシャル結晶31を0.1 μmのj7さ
に形成する。After a predetermined period of time has elapsed in this way, as shown in FIG. 1(a), IIg, -, 1CdX
A Te epitaxial crystal 31 is formed to have a diameter of 0.1 μm.
次いでバルブ13.15.17を閉して熱処理用水銀が
収容された蒸発器21に連なるバルブ22を開放にして
水素ガスと水銀ガスとを前記エビタギシャル成長時より
水銀の分圧を高めた状態で反応管l内に導入し、基板3
を加熱しながら第1図(b)に示すように、前記形成さ
れた11g1□CdXTeエピタキシヤル結晶31の空
格子点を埋める熱処理を行って前記t+g+−,,Cd
x ′reのエピタキシャル結晶31をN型のエピタキ
シャル結晶32に変換する。Next, the valves 13, 15, and 17 are closed, and the valve 22 connected to the evaporator 21 containing the mercury for heat treatment is opened to supply hydrogen gas and mercury gas in a state where the partial pressure of mercury is higher than that during the above-mentioned evitigmental growth. The substrate 3 is introduced into the reaction tube 1.
As shown in FIG. 1(b), while heating the 11g1□CdXTe epitaxial crystal 31, a heat treatment is performed to fill the vacancies in the 11g1□CdXTe epitaxial crystal 31, thereby forming the t+g+-,,Cd
The x're epitaxial crystal 31 is converted into an N-type epitaxial crystal 32.
次いでバルブ23を閉じ、バルブ13.15.17を開
放にして前記N型のエピタキシャル結晶32を形成した
基板に水素ガスに担持された水根、ジメチルカドミウム
およびジエチルテルルを供給して第1図(C)に示すよ
うに、基板上に更に0.1 μmのHP、 、−8Cd
XTeのエピタキシャル結晶33を形成する。Next, the valve 23 was closed, and the valves 13, 15, and 17 were opened to supply water, dimethyl cadmium, and diethyl tellurium supported by hydrogen gas to the substrate on which the N-type epitaxial crystal 32 was formed. As shown in C), additional 0.1 μm of HP, , -8Cd on the substrate
An epitaxial crystal 33 of XTe is formed.
このエビタギシャル成長時は、高分圧の水銀蒸気内で行
うため、エピタキシャル結晶の空格子点に埋められた水
銀原子が蒸発することはない。Since this epitaxial growth is performed in mercury vapor at a high partial pressure, the mercury atoms buried in the vacancies of the epitaxial crystal do not evaporate.
次いでバルブ13.15.17を閉じて熱処理用水銀が
収容された蒸発器21に連なるバルブ22を開放にして
水素ガスと水銀ガスとを反応管1内に導入して前記形成
したエピタキシャル結晶33をN型層に変換する。Next, the valves 13, 15, and 17 are closed, and the valve 22 connected to the evaporator 21 containing the mercury for heat treatment is opened to introduce hydrogen gas and mercury gas into the reaction tube 1 to remove the epitaxial crystal 33 formed above. Convert to N-type layer.
上記した操作を多数回、繰り返すと、基板上に所望の厚
さのN型に変換されたlIg+−x cciXTeのエ
ピタキシャル結晶層が得られる。By repeating the above operation many times, an epitaxial crystal layer of lIg+-x cciXTe converted to N-type with a desired thickness is obtained on the substrate.
このようにすれば、非常に厚さの薄いエピタキシャル結
晶層に水銀ガスを導入するため、エピタキシャル結晶の
空格子点が水jfQで埋められる熱処理時間が短くて済
み、またエピタキシャル結晶層の厚さが薄いために、該
結晶層の上部と下部で水銀が導入される濃度が均一にな
り、均一な濃度に水銀が添加された結晶層が得られる。In this way, since mercury gas is introduced into the epitaxial crystal layer, which is very thin, the heat treatment time for filling the vacancies in the epitaxial crystal with water jfQ can be shortened, and the thickness of the epitaxial crystal layer can be reduced. Because of its thinness, the concentration of mercury introduced into the upper and lower parts of the crystal layer becomes uniform, resulting in a crystal layer in which mercury is added at a uniform concentration.
またエピタキシャル成長と熱処理に用いる反応管が同一
の反応管で済むため、エピタキシャル結晶の汚染も防止
できる。Furthermore, since the same reaction tube is used for epitaxial growth and heat treatment, contamination of the epitaxial crystal can be prevented.
なお、本実施例でば11g1□CdイTe結晶に例を用
いて述べたが、その他本発明は水銀・マンガン・テルル
(lIgMnTe) 、水銀・亜鉛・テルル(HgZn
Te)のような水銀を含む化合物半導体結晶に適用でき
、また結晶の成長方法は本発明の気相エピタキシャル成
長方法の他に、分子線エピタキシャル成長方法、或いは
ホットウォールエピタキシャル成長方法を用いても良い
。Although this embodiment has been described using 11g1□Cd-Te crystal as an example, the present invention is also applicable to mercury-manganese-tellurium (lIgMnTe), mercury-zinc-tellurium (HgZn).
It can be applied to compound semiconductor crystals containing mercury such as Te), and in addition to the vapor phase epitaxial growth method of the present invention, a molecular beam epitaxial growth method or a hot wall epitaxial growth method may be used as the crystal growth method.
[発明の効果]
以上の説明から明らかなように本発明によればエピタキ
シャル成長したP型のIlg、、 Cd、 Teの結晶
の空格子点が短時間で水銀原子で埋められるため、短時
間にN型に変換され、容易に赤外線検知素子形成用結晶
が得られる効果がある。[Effects of the Invention] As is clear from the above description, according to the present invention, the vacancies in the epitaxially grown P-type Ilg, Cd, and Te crystals are filled with mercury atoms in a short time, so that N It has the effect that it is converted into a mold and a crystal for forming an infrared sensing element can be easily obtained.
第1図(a)より第1図(C)迄は本発明の方法で形成
した化合物半導体結晶の断面図、
第2図は本発明の方法に用いる装置の説明図、第3図は
従来の気相成長方法の説明図、第4図は従来の熱処理方
法の説明図である。1(a) to 1(C) are cross-sectional views of a compound semiconductor crystal formed by the method of the present invention, FIG. 2 is an explanatory diagram of the apparatus used in the method of the present invention, and FIG. 3 is a conventional An explanatory diagram of the vapor phase growth method, and FIG. 4 is an explanatory diagram of the conventional heat treatment method.
図に於いて、
1は反応管、2はサセプタ、3はCdTeJ、5仮、4
はコイル、11は水素ガス供給バルブ、12はジメヂル
カドミウム蒸発器、13.15.17.22はバルブ、
14はジエチルテルル蒸発器、16は水根蒸発器、18
はバルブ制御装置、21は熱処理用水銀蒸発器、31.
33はIlg、−、CdXTeエピタキシャル結晶、3
2はN型1+8X Cdw Teエピタキシャル結晶を
示す。In the figure, 1 is the reaction tube, 2 is the susceptor, 3 is CdTeJ, 5 is temporary, 4 is
is a coil, 11 is a hydrogen gas supply valve, 12 is a dimedium cadmium evaporator, 13.15.17.22 is a valve,
14 is a diethyl tellurium evaporator, 16 is a water root evaporator, 18
21 is a mercury evaporator for heat treatment; 31. is a valve control device;
33 is Ilg, -, CdXTe epitaxial crystal, 3
2 shows an N-type 1+8X Cdw Te epitaxial crystal.
(Ql
(b)
(C)
−1ミ月ミトロ月4八→テは1;[Pいン□5ヒ【]L
些3iaづSコ第2図
第1図(Ql (b) (C) -1 month Mitro month 48 → Te is 1; [Pin□5hi[]L
Figure 2 Figure 1
Claims (1)
熱しながら、該基板(3)に水銀と、水銀以外のエピタ
キシャル成長用ガスとを供給して基板上に水銀を含む化
合物半導体のエピタキシャル結晶(31)を成長する工
程、 次いで該成長したエピタキシャル結晶(31)を有する
基板(3)を加熱するとともに、水銀を除くエピタキシ
ャル成長用ガスの供給を停止し、水銀のみを基板に供給
して前記エピタキシャル結晶を熱処理して所望の導電型
の結晶(32)に変換する工程、上記エピタキシャル結
晶を基板上に成長する工程、およびエピタキシャル結晶
の熱処理工程を少なくとも各々1回以上順次繰り返して
行いながら基板上に所望の導電型を有する単結晶層を形
成する工程を含むことを特徴とする化合物半導体結晶の
成長方法。[Claims] While heating a compound semiconductor substrate (3) placed in a reaction tube (1), mercury and an epitaxial growth gas other than mercury are supplied to the substrate (3) to form mercury on the substrate. Next, the substrate (3) having the grown epitaxial crystal (31) is heated, the supply of epitaxial growth gas excluding mercury is stopped, and only mercury is grown. A step of supplying the epitaxial crystal to a substrate and heat-treating the epitaxial crystal to convert it into a crystal of a desired conductivity type (32), a step of growing the epitaxial crystal on the substrate, and a step of heat-treating the epitaxial crystal are performed at least once each at least once. A method for growing a compound semiconductor crystal, the method comprising the step of repeatedly forming a single crystal layer having a desired conductivity type on a substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29531788A JPH02142145A (en) | 1988-11-22 | 1988-11-22 | Method for growing compound semiconductor crystals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29531788A JPH02142145A (en) | 1988-11-22 | 1988-11-22 | Method for growing compound semiconductor crystals |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02142145A true JPH02142145A (en) | 1990-05-31 |
Family
ID=17819044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29531788A Pending JPH02142145A (en) | 1988-11-22 | 1988-11-22 | Method for growing compound semiconductor crystals |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02142145A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5306660A (en) * | 1991-02-19 | 1994-04-26 | Rockwell International Corporation | Technique for doping mercury cadmium telluride MOCVD grown crystalline materials using free radical transport of elemental indium and apparatus therefor |
-
1988
- 1988-11-22 JP JP29531788A patent/JPH02142145A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5306660A (en) * | 1991-02-19 | 1994-04-26 | Rockwell International Corporation | Technique for doping mercury cadmium telluride MOCVD grown crystalline materials using free radical transport of elemental indium and apparatus therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69209901T2 (en) | Heteroepitaxial growth of germanium on silicon using ultra high vacuum CVD | |
CS249502B2 (en) | Method of compounds' thin layers formation | |
US4939103A (en) | Method of diffusing plurality of dopants simultaneously from vapor phase into semiconductor substrate | |
US4622083A (en) | Molecular beam epitaxial process | |
JPH02142145A (en) | Method for growing compound semiconductor crystals | |
WO1997033305A1 (en) | Silicon single crystal and process for producing single-crystal silicon thin film | |
EP0609886B1 (en) | Method and apparatus for preparing crystalline thin-films for solid-state lasers | |
JP5631633B2 (en) | Chamber, apparatus, and method for annealing a 2-6 group semiconductor material | |
US3290181A (en) | Method of producing pure semiconductor material by chemical transport reaction using h2s/h2 system | |
US3563816A (en) | Method for the vapor growth of semiconductors | |
JP3684660B2 (en) | Manufacturing method of semiconductor single crystal thin film | |
JPS582036A (en) | Manufacture of semiconductor device | |
JPH04330717A (en) | Manufacture of semiconductor film | |
JPH05251481A (en) | Manufacture of semiconductor device | |
JPH0310595B2 (en) | ||
JP2725647B2 (en) | Method for growing II-VI compound semiconductor single crystal | |
JPH1167779A (en) | Semiconductor substrate and manufacture thereof | |
FR2582023A1 (en) | METHOD FOR DEVELOPING A FILM OF A MONOCRYSTAL GAAS IN THE FORM OF A SINGLE MOLECULAR LAYER | |
JPH03126693A (en) | Production of ii-vi compound semiconductor crystal | |
JPS6226568B2 (en) | ||
JPH0247836A (en) | Manufacture of semiconductor device | |
JPH03218622A (en) | Impurity doping method | |
JPS6134924A (en) | Semiconductor crystal growth equipment | |
JPH10242053A (en) | Gallium nitride semiconductor device and method of manufacturing gallium nitride semiconductor device | |
JP2700123B2 (en) | Liquid phase epitaxy growth method and apparatus for HgCdTe |