[go: up one dir, main page]

JPH02141643A - Mechanical property measuring device - Google Patents

Mechanical property measuring device

Info

Publication number
JPH02141643A
JPH02141643A JP63296991A JP29699188A JPH02141643A JP H02141643 A JPH02141643 A JP H02141643A JP 63296991 A JP63296991 A JP 63296991A JP 29699188 A JP29699188 A JP 29699188A JP H02141643 A JPH02141643 A JP H02141643A
Authority
JP
Japan
Prior art keywords
measurement sample
ultrasonic
sample
measurement
propagation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63296991A
Other languages
Japanese (ja)
Inventor
Atsushi Otake
大嶽 篤
Yoshimasa Okubo
喜正 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP63296991A priority Critical patent/JPH02141643A/en
Publication of JPH02141643A publication Critical patent/JPH02141643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 1更立旦的 [産業上の利用分野] この発明は物質の剛性率等の機械的性質を測定する測定
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION 1. Field of Industrial Application This invention relates to a measuring device for measuring mechanical properties such as rigidity of a substance.

[従来の技術] 一般に機械的性質測定装置は静的測定装置と動的測定装
置とに大別される。従来の静的測定装置としては、例え
ば引張試験機がある。引張試験機は測定試料に引張荷重
を与えてひずみを生じさせ、この生じたひずみと与えた
荷重とが描く関係から測定試料の縦弾性係数等の機械的
性質を求めるようにしたものである。
[Prior Art] Mechanical property measuring devices are generally classified into static measuring devices and dynamic measuring devices. An example of a conventional static measuring device is a tensile tester. A tensile testing machine applies a tensile load to a measurement sample to generate strain, and determines the mechanical properties of the measurement sample, such as the longitudinal elastic modulus, from the relationship drawn between the generated strain and the applied load.

一方、動的測定装置としては、例えば共振周波数を用い
た測定装置がある。この測定装置は、測定試料に振動を
与えてその共振周波数を検出し、共振周波数に基づいて
測定試料の同様な曙械的性質を求めるものである。
On the other hand, as a dynamic measuring device, for example, there is a measuring device using a resonant frequency. This measuring device applies vibration to a measurement sample, detects its resonant frequency, and determines similar mechanical properties of the measurement sample based on the resonance frequency.

[発明が解決しようとする課題] しかしながら、上述した従来装置では測定試料の寸法や
形状に規制があり、種々の問題が発生していた。
[Problems to be Solved by the Invention] However, in the conventional apparatus described above, there are restrictions on the size and shape of the measurement sample, and various problems have occurred.

第1に、引張試験機や共振周波数を用いた測定装置にお
いては、測定試料に生ずるひずみの検出、または測定試
料への共振の誘起という測定原理よ、共に測定試料とし
て寸法が大きくかつ棒形状又は線形形状のものを用意し
なければならなかった。
First, in a tensile tester or a measurement device using a resonance frequency, the measurement principle of detecting strain occurring in a measurement sample or inducing resonance in a measurement sample is important. I had to prepare something with a linear shape.

現実には測定試料として数ミリ(例えば5Mないし10
m)程度の材料片しか入手できない場合がしばしばあり
、従来の装置ではこうした小片による測定は極めて困難
であった。
In reality, the measurement sample is several millimeters (for example, 5M to 10M).
It is often the case that only small pieces of material of size m) are available, and measurements using such small pieces are extremely difficult with conventional equipment.

第2に、従来装置では、例えば測定条件の一つである温
度を一定にして測定する場合、測定試料の寸法が大きく
形状が棒状又は線状であるため、その温度分布を同一に
することが容易でなく、厳密な測定が困難であるという
問題があった。ことに高温条件下の測定では、周囲温度
との差が大きいこともあって、測定試料の温度分布を均
一にすることが困難であった。加えて、高温条件下では
測定試料の弾性限度が低下しかつクリープが生じること
もあり、引張試験機のように大きなひずみを検出するも
のでは正確な測定が期しがたかった。
Second, with conventional devices, when measuring at a constant temperature, which is one of the measurement conditions, it is difficult to make the temperature distribution the same because the measurement sample is large and has a rod-like or linear shape. There was a problem in that it was not easy and difficult to make precise measurements. In particular, when measuring under high temperature conditions, it is difficult to make the temperature distribution of the measurement sample uniform, partly because the difference from the ambient temperature is large. In addition, under high-temperature conditions, the elastic limit of the sample to be measured decreases and creep may occur, making it difficult to measure accurately using a device that detects large strains such as a tensile tester.

本発明の機械的性質測定装置は、上述した問題点を解決
し、この種の測定を正確かつ容易なものとすることを目
的とする。
The mechanical property measuring device of the present invention aims to solve the above-mentioned problems and to make this type of measurement accurate and easy.

灸皿二里感 [課題を解決するための手段] 本発明の機械的性質測定装置は、第1図に例示するよう
に、 超音波の送信部および受信部と、該送信部および受信部
が取り付けられ前記超音波を伝播する緩衝部とからなり
、測定試料Sに当接される超音波測定子M1と、 前記超音波の前記超音波測定子M1における前記送信部
と前記受信部間の伝播時間に基づき、前記測定試料S内
の前記超音波の伝播時間を算出する試料内伝播時間算出
手段M2と、 前記測定試料S内の超音波の伝播時間と前記測定試料の
超音波伝播方向の厚みDとから前記測定試料S内の前記
超音波の伝播速度を算出する試料的伝播速度演算手段M
3と、 前記測定試料S内の超音波の伝播速度と前記測定試料S
の密度とに基づき、前記測定試料Sの剛性率等の機械的
諸性質を算出する機械的性質演算手段M4と を備えることを要旨とする。
Moxibustion Dish Erritan [Means for Solving the Problems] As illustrated in FIG. 1, the mechanical property measuring device of the present invention includes an ultrasonic transmitter and a receiver, and an ultrasonic probe M1 that is attached to the buffer section that propagates the ultrasonic waves and is brought into contact with the measurement sample S; and propagation of the ultrasonic waves between the transmitting section and the receiving section in the ultrasonic probe M1. an in-sample propagation time calculation means M2 that calculates the propagation time of the ultrasonic wave in the measurement sample S based on time; the propagation time of the ultrasonic wave in the measurement sample S and the thickness of the measurement sample in the ultrasonic propagation direction; sample propagation velocity calculation means M for calculating the propagation velocity of the ultrasonic wave within the measurement sample S from D;
3, the propagation velocity of the ultrasonic wave within the measurement sample S and the measurement sample S
The apparatus further comprises a mechanical property calculation means M4 for calculating various mechanical properties such as the rigidity of the measurement sample S based on the density of the measurement sample S.

[作用J 上記構成を有する本発明の機械的性質測定装置は、超音
波測定子M1を測定試料Sに当接して測定を行なう。こ
の時、超音波測定子M1の送信部から送信した超音波は
緩衝部を介して測定試料S内に伝播する。伝播した超音
波は、測定試料S内を通過または反射し、緩衝部を介し
て超音波測定子M1の受信部に到達する。試料内伝播時
間陣出手段M2は、超音波の送信部と受信部間の伝播時
間に基づき測定試料S内の超音波の伝播時間を算出し、
試料的伝播速度演算手段M3はこの測定試料S内の超音
波の伝播時間と厚みとから測定試料S内の伝播速度を演
算する。機械的性質演算手段M4は、こうして求めた超
音波の試料的伝播速度と測定試料Sの密度とに基づいて
剛性率等の機械的性質を演算する。機械的性質を求める
演算はば例えば次の各式により行なう。
[Operation J] The mechanical property measuring device of the present invention having the above configuration performs measurement by bringing the ultrasonic probe M1 into contact with the measurement sample S. At this time, the ultrasonic waves transmitted from the transmitting section of the ultrasonic probe M1 propagate into the measurement sample S via the buffer section. The propagated ultrasonic waves pass through or are reflected within the measurement sample S, and reach the receiving section of the ultrasonic probe M1 via the buffer section. The intra-sample propagation time calculation means M2 calculates the propagation time of the ultrasonic wave within the measurement sample S based on the propagation time between the ultrasonic transmitter and the receiver,
The sample propagation velocity calculating means M3 calculates the propagation velocity within the measurement sample S from the propagation time and thickness of the ultrasonic wave within the measurement sample S. The mechanical property calculation means M4 calculates mechanical properties such as the rigidity modulus based on the sample propagation velocity of the ultrasonic waves and the density of the measurement sample S determined in this way. Calculations for determining mechanical properties are performed, for example, using the following equations.

剛性率G ソ 体積弾性率K ・・・(2) 縦弾性係数E [K≦Ff/s 2 コ ・ (3) ポリソン比ν 式中、CPは縦波超音波の伝播速度、C3は横波超音波
の伝播速度、ρCK’j/mm31は測定試料の密度、
CI[謔/S2]は重力加速度である。
Rigidity modulus G So Bulk elastic modulus K ... (2) Longitudinal elastic modulus E [K≦Ff/s 2 ko ・ (3) Polyson ratio ν In the formula, CP is the propagation velocity of the longitudinal ultrasonic wave, and C3 is the transverse wave ultrasonic wave. The propagation velocity of the sound wave, ρCK'j/mm31, is the density of the measurement sample,
CI [謔/S2] is gravitational acceleration.

上記各式(1)ないしく4)は、縦波および/または横
波の音波が無限に広いとみなしえる固体中に伝播する際
の伝播速度の式および剛性率等の機械的性質間の関係式
から導出したものである。
The above equations (1) to 4) are the equation of propagation velocity when longitudinal and/or transverse sound waves propagate through a solid that can be considered infinitely wide, and the relational equation between mechanical properties such as rigidity. It is derived from

以下にその各式を示す。The formulas are shown below.

縦波超音波伝播速度CP 横波超音波伝播速度C3 横ひずみと縦ひずみの比であるポアソン比νッ=E−2
G=3に−E= 3に一2G2G    6K   2
 (3に十G)・・・(7) [実施例] 以上説明した本発明の構成・作用を一層明らかにする為
に、次に本発明の好適な実施例について説明する。第2
図は実施例の機械的性質測定装置の概略構成図である。
Longitudinal wave ultrasonic propagation velocity CP Transverse wave ultrasonic propagation velocity C3 Poisson's ratio, which is the ratio of transverse strain to longitudinal strain ν = E-2
G = 3 - E = 3 - 2G2G 6K 2
(3 to 10 G) (7) [Example] In order to further clarify the structure and operation of the present invention described above, preferred embodiments of the present invention will be described next. Second
The figure is a schematic configuration diagram of a mechanical property measuring device according to an example.

図示するように、この機械的性質測定装置は、超音波を
送受信する超音波測定子1と、その送信波のコントロー
ルと受信波の検知を行なう超音波送受信装置2と、送受
信波に基づき各種演算を行なうコンピュータ3と、測定
試料Sの厚みを測定する厚み測定器5、および測定試料
Sを内部に配置し所定温度に保持する電気炉6とから構
成される。
As shown in the figure, this mechanical property measuring device includes an ultrasonic probe 1 that transmits and receives ultrasonic waves, an ultrasonic transceiver 2 that controls the transmitted waves and detects the received waves, and performs various calculations based on the transmitted and received waves. The apparatus is comprised of a computer 3 for performing this, a thickness measuring device 5 for measuring the thickness of the sample S to be measured, and an electric furnace 6 in which the sample S to be measured is placed and maintained at a predetermined temperature.

超音波測定子1は、縦波振動子11および横波振動子1
3とこれらを取りつけた緩衝部15とからなる。実施例
の縦波振動子11および横波振動子13はそれぞれ超音
波の送信部と受信部を兼ねるものであり、緩衝部15の
一端に並設されている。超音波の送信周波数は縦波振動
子11が10[MH2]、横波振動子13が5[MH2
]、各振動子11.13の直径は共に6.35[#]で
ある。これらの各振動子11.13の送信周波数と直径
、さらに厚みは、測定試料の厚みと所望する分解能に応
じて変更することが好ましい。送信周波数を高くすれば
、測定装置の分解能は一般に良好となる。また振動子の
直径と厚みを大きくすれば超音波の送信出力は増大する
ので、測定試料の厚みが大きいものでも良好に測定する
ことができる。尚、横波振動子13は、その振動面の垂
直方向に横波超音波を送信できるものである。横波振動
子13としてはこの他、縦波振動子を傾斜配置して用い
てもよい。この場合の横波超音波は斜行する縦波超音波
より生ずる。
The ultrasonic probe 1 includes a longitudinal wave transducer 11 and a transverse wave transducer 1.
3 and a buffer section 15 to which these are attached. The longitudinal wave transducer 11 and the transverse wave transducer 13 of the embodiment serve as an ultrasonic transmitting section and a receiving section, respectively, and are arranged in parallel at one end of the buffer section 15. The ultrasonic transmission frequency is 10 [MH2] for the longitudinal wave transducer 11 and 5 [MH2] for the transverse wave transducer 13.
], the diameters of each vibrator 11.13 are both 6.35 [#]. It is preferable that the transmission frequency, diameter, and thickness of each of these vibrators 11, 13 are changed depending on the thickness of the measurement sample and the desired resolution. The higher the transmission frequency, the better the resolution of the measurement device will generally be. Furthermore, if the diameter and thickness of the transducer are increased, the transmitted power of the ultrasonic wave will be increased, so even a thick sample can be measured satisfactorily. Note that the transverse wave transducer 13 is capable of transmitting transverse ultrasonic waves in a direction perpendicular to its vibration surface. In addition to this, a longitudinal wave vibrator may be used as the transverse wave vibrator 13 in an inclined arrangement. In this case, the transverse ultrasound waves are generated from oblique longitudinal ultrasound waves.

緩衝部15は、超音波の媒質として有効な水ガラス、石
英、マグネシウム、ニッケル等よりなり、その先端表面
は、測定試料Sとの当接面15aとして高い平滑度に仕
上げられている。従って超音波振動子11.15からの
超音波は効率よく測定試料S内に入射する。
The buffer section 15 is made of water glass, quartz, magnesium, nickel, etc., which are effective as a medium for ultrasonic waves, and its tip surface is finished with high smoothness as a contact surface 15a with the measurement sample S. Therefore, the ultrasonic waves from the ultrasonic transducers 11.15 efficiently enter the measurement sample S.

超音波送受信装置2は、超音波測定子1の縦波および横
波振動子11.13の超音波送信コントロールと、両振
動子11.13の受信超音波の検知を行なうものである
The ultrasonic transmitting/receiving device 2 controls the ultrasonic transmission of the longitudinal wave and transverse wave transducers 11.13 of the ultrasonic probe 1, and detects the ultrasonic waves received by both transducers 11.13.

コンピュータ3は、CRTデイスプレィ31やキーボー
ド33等の入出力機器と電子制御装置35等から構成さ
れる。電子制御装置35は周知のCPU37、ROM3
9、RAM41等を中心に算術論理演痒回路として構成
され、ビデオRAM43と、上記入出力機器のための入
出力ボート45、および超音波送受信装置2と厚み測定
器5のための測定器入出力ボート47等を備える。この
電子制御装置35はROM39に記″匹されている所定
の手順を実行することにより試料内伝播時間算出手段と
、試料内伝播速度演算手段、および機械的性質演算手段
として働くものである。
The computer 3 includes input/output devices such as a CRT display 31 and a keyboard 33, and an electronic control device 35. The electronic control device 35 includes a well-known CPU 37 and a ROM 3.
9. Constructed as an arithmetic and logic operation circuit centering on RAM 41, etc., video RAM 43, input/output board 45 for the above input/output equipment, and measuring device input/output for ultrasonic transmitting/receiving device 2 and thickness measuring device 5. Equipped with 47 boats. This electronic control device 35 functions as an intra-sample propagation time calculation means, an intra-sample propagation velocity calculation means, and a mechanical property calculation means by executing a predetermined procedure stored in the ROM 39.

厚み測定器5は、所定傾斜角を有する検査光を投光しか
つその反射光を受光する投受光センサ51を備えており
、測定物上面の高さと測定物が置かれた基準面の高さを
測定し、その高低差を測定物の厚みとして出力するもの
である。
The thickness measuring device 5 includes a light emitting/receiving sensor 51 that emits an inspection light having a predetermined inclination angle and receives the reflected light, and measures the height of the top surface of the object to be measured and the height of the reference surface on which the object to be measured is placed. The height difference is output as the thickness of the measured object.

電気炉6は、内部に測定試料Sを配置し、これをヒータ
61により所定の温度に昇温、保持するものであって、
天井には超音波測定子1の緩衝部15の横断面とほぼ同
じ大きさの開閉口63を備えている。この電気炉6は温
度調節機構として、温度の指示設定と設定した指示温度
および実際温度の比較をする温度指示調節器65と、炉
内の測定試料Sとほぼ同じ高さに位置決めした温度計6
7と、温度指示調節器65の出力に基づきヒータ61の
加熱調節を行なうヒータ電源制御器69を備えている。
The electric furnace 6 has a measurement sample S placed therein, and is heated to and maintained at a predetermined temperature by a heater 61.
The ceiling is provided with an opening 63 having approximately the same size as the cross section of the buffer section 15 of the ultrasonic probe 1. This electric furnace 6 has, as a temperature control mechanism, a temperature indicator controller 65 that compares the temperature instruction setting with the set instruction temperature and the actual temperature, and a thermometer 6 positioned at approximately the same height as the measurement sample S in the furnace.
7, and a heater power supply controller 69 that adjusts the heating of the heater 61 based on the output of the temperature indication controller 65.

このように構成された機械的性質測定装置による測定を
第3図のフローチャートに沿って説明する。電気炉6に
より測定試料Sを測定条件の温度に昇温しかつ保持した
(炎、電気炉6の開閉口63から厚み測定器5の投受光
センサ51の検査光を測定試料Sに向は投光し、測定試
料Sの条件温度下の厚みを測定する(ステップ100)
Measurement by the mechanical property measuring device configured as described above will be explained along the flowchart of FIG. 3. The temperature of the measurement sample S was raised to the temperature of the measurement conditions using the electric furnace 6 and held there. and measure the thickness of the measurement sample S under temperature conditions (step 100).
.

次に、超音波測定子1の緩衝部15を電気炉開閉口63
に挿入し、その当接面15aを測定試料Sの上面に当て
る。こうした後、超音波送受信装置2のコントロールの
もと超音波振動子1の縦波および横波振動子11.13
より超音波を送信する(ステップ110)。実施例装置
では、第4図の説明図に示すように、各振動子11.1
3から送信した超音波Wの一部W1は、緩衝部]5と測
定試料S上面との境界面において反射し、緩衝部15を
逆進して各振動子11,13に伝播する。
Next, the buffer part 15 of the ultrasonic probe 1 is attached to the electric furnace opening/closing port 63.
, and its contact surface 15a is brought into contact with the upper surface of the measurement sample S. After this, under the control of the ultrasonic transceiver 2, the longitudinal and transverse wave transducers 11 and 13 of the ultrasonic transducer 1 are
The ultrasonic wave is then transmitted (step 110). In the embodiment device, as shown in the explanatory diagram of FIG.
A part W1 of the ultrasonic wave W transmitted from 3 is reflected at the interface between the buffer section] 5 and the upper surface of the measurement sample S, travels backward through the buffer section 15, and propagates to each of the transducers 11 and 13.

これに対し、測定試料Sに入射した超音波W2は、測定
試料Sの底面とテーブル面との境界面において反射して
測定試料Sを往復し、緩衝部15を逆進して各振動子1
1.13に伝播する。
On the other hand, the ultrasonic wave W2 incident on the measurement sample S is reflected at the interface between the bottom surface of the measurement sample S and the table surface, travels back and forth through the measurement sample S, and travels backward through the buffer section 15 to each transducer 1.
1.13.

第5図は超音波送受信装@2が検出するパルスの一例を
示すものである。横軸は時間、縦軸はパルスの大きさを
表わす。超音波送受信装置2は、測定試料上面による反
射波W1が各振動子11゜13に到達するのに要した伝
播時間T1と、測定試料底面による反射波W2が各振動
子11.’13に到達するのに要した伝播時間T2を測
定する(ステップ120)。
FIG. 5 shows an example of pulses detected by the ultrasonic transceiver @2. The horizontal axis represents time, and the vertical axis represents pulse size. The ultrasonic transmitter/receiver 2 determines the propagation time T1 required for the reflected wave W1 from the top surface of the measurement sample to reach each transducer 11. The propagation time T2 required to reach '13 is measured (step 120).

コンピュータ3の電子制御装置35は、測定試料上面の
反射波W1の伝播時間T1と測定試料底面の反q:i波
W2の伝播時間T2とに基づき各種演算を行なう(ステ
ップ130)。実施例では、測定試料上面の反射波W1
と測定試料底面の反射波W2は共に緩衝部15を往復す
るので、両反射波W1.W2の伝播時間TI、T2の差
を超音波の試料的往復伝播時間として降出する。この試
料的往復伝播時間と測定試料Sの厚みとから超音波の試
汎内伝播速度を演算し、求めた試料内伝播速度と測定試
料Sの密度とを[作用]の項の式(1)。
The electronic control unit 35 of the computer 3 performs various calculations based on the propagation time T1 of the reflected wave W1 on the top surface of the measurement sample and the propagation time T2 of the inverse q:i wave W2 on the bottom surface of the measurement sample (step 130). In the example, the reflected wave W1 from the upper surface of the measurement sample
and the reflected wave W2 from the bottom surface of the measurement sample both reciprocate through the buffer section 15, so both reflected waves W1. The difference between the propagation times TI and T2 of W2 is determined as the sample round-trip propagation time of the ultrasonic wave. The intra-sample propagation velocity of the ultrasonic wave is calculated from this sample-like round trip propagation time and the thickness of the measurement sample S, and the obtained intra-sample propagation velocity and the density of the measurement sample S are calculated using equation (1) in the [action] section. .

(2)、(3)、(4)に代入して測定試料Sの剛性率
、体積弾性率、縦弾性係数およびポアソン比を演算出力
する。
By substituting into (2), (3), and (4), the rigidity modulus, bulk elastic modulus, longitudinal elastic modulus, and Poisson's ratio of the measurement sample S are calculated and output.

この実施例装置の測定結果を表1ないし表3に示す。表
1は測定試料の内容を、表2は縦波および横波超音波の
試料内伝播速度の演算内容を表3は求めた機械的性質の
結果を示すものである。表3の右欄には、比較のために
従来の共振周波数を用いた測定装置により求めた縦弾性
係数をのせた。
The measurement results of this example device are shown in Tables 1 to 3. Table 1 shows the contents of the measurement sample, Table 2 shows the calculation details of the propagation velocity in the sample of longitudinal waves and transverse ultrasonic waves, and Table 3 shows the results of the determined mechanical properties. In the right column of Table 3, for comparison, the longitudinal elastic modulus determined by a conventional measuring device using a resonant frequency is listed.

実施例装置により求めた縦弾性係数はこれによく一致す
ることがわかる。なお、測定は常温において実施した。
It can be seen that the longitudinal elastic modulus determined by the example device agrees well with this. Note that the measurements were performed at room temperature.

以上説明した実施例のは械的性質測定装置は、縦波およ
び横波超音波の測定試料S内の伝播速度を求めることに
より測定試料Sの機械的性質を測定するものであるから
、測定試料Sがいかなる大きさ、形状であってもその測
定が可能である。しかもその測定は、超音波測定子1を
測定試料Sに当接して行なうので簡単にかつ短時間に実
施できる。
The mechanical property measuring device of the embodiment described above measures the mechanical properties of the measurement sample S by determining the propagation velocity of longitudinal waves and transverse ultrasonic waves within the measurement sample S. It is possible to measure any size or shape. Moreover, since the measurement is carried out by bringing the ultrasonic probe 1 into contact with the measurement sample S, it can be carried out easily and in a short time.

また、高温条件下の測定を行なう場合、測定試料を小さ
くできるのでその温度分布状態を均一にしやすく、測定
精度は極めて高い。この測定の際、超音波測定子1の各
振動子11.13は緩衝部15により炉内部より隔てら
れるので、その温度は適性な動作温度範囲内(上限的5
0 ’C)に維持できる。したがって、実施例装置によ
れば、常温から高温(約1000℃)まで極めて広範囲
の中から温度条件を設定しその条件下で測定試料の機械
的性質の測定ができる。尚、1000″C以上であって
も、緩衝部15の耐熱性によっては測定を実施すること
ができる。また、低温、極低温条件下の測定も可能であ
る。
Furthermore, when performing measurements under high temperature conditions, the measurement sample can be made small, making it easier to make the temperature distribution uniform, and the measurement accuracy is extremely high. During this measurement, each vibrator 11.13 of the ultrasonic probe 1 is separated from the inside of the furnace by the buffer section 15, so the temperature is within the appropriate operating temperature range (up to 5
0'C). Therefore, according to the apparatus of the embodiment, it is possible to set temperature conditions from a very wide range from room temperature to high temperature (approximately 1000° C.) and measure the mechanical properties of the measurement sample under those conditions. Note that even if the temperature is 1000''C or higher, measurement can be carried out depending on the heat resistance of the buffer section 15. Measurement can also be carried out under low-temperature or extremely low-temperature conditions.

さらに、縦波および横波超音波を用いる測定が実施でき
るから、−挙に剛性率、体積弾性率、縦弾性係数、ポア
ソン比の全てを得ることができる。
Furthermore, since measurements can be carried out using longitudinal and transverse ultrasound waves, all of the stiffness modulus, bulk modulus, longitudinal elastic modulus, and Poisson's ratio can be obtained.

本実施例装置は、上述の効果に加え超音波測定子1の送
信部および受信部を1つの超音波振動子11 (13)
が兼ねるという構成を有するものであるから次の効果を
奏する。測定の際には超音波測定子1を測定試料の一点
に当接するだけでよく、−層簡単に測定を行なうことが
できる。また、超音波測定子1のこの当接操作は測定試
料Sの厚みに何ら影響されず、その簡便性に変わりない
。さらにコンピュータ3の演算処理において、測定試料
上面の反射波M1の伝播時間T1と測定試料底面の反射
波M2の伝播時間T2とに含まれる緩衝部15内の伝播
時間は、両反射波M1.M2の伝播時間TI、T2の差
を求めることにより相殺することができ、両反射波M1
.M2の伝播時間T1、T2の差をそのまま超音波の試
料内往復伝播時間とすることができる。
In addition to the above-mentioned effects, the device of this embodiment has the transmitting section and the receiving section of the ultrasonic probe 1 integrated into one ultrasonic transducer 11 (13).
Since it has a structure in which both functions are used, the following effects are achieved. At the time of measurement, it is only necessary to bring the ultrasonic probe 1 into contact with one point of the measurement sample, and the measurement can be carried out easily. Further, this contact operation of the ultrasonic probe 1 is not affected by the thickness of the measurement sample S, and its simplicity remains the same. Furthermore, in the arithmetic processing of the computer 3, the propagation time in the buffer section 15 included in the propagation time T1 of the reflected wave M1 on the top surface of the measurement sample and the propagation time T2 of the reflected wave M2 on the bottom surface of the measurement sample is determined by the propagation time of both reflected waves M1. Can be canceled by finding the difference between the propagation times TI and T2 of M2, and both reflected waves M1
.. The difference between the propagation times T1 and T2 of M2 can be directly used as the reciprocal propagation time of the ultrasonic wave within the sample.

以上本発明の実施例について説明したが、本発明はこう
した実施例に回答限定されるものではなく、例えば横波
超音波のみを用いる構成、超音波の受信部と送信部が分
離した構成等、本発明の要旨を逸脱しない範囲において
、種々なる態様で実施し得ることは勿論である。
Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments. It goes without saying that the invention can be implemented in various ways without departing from the gist of the invention.

発明の効果 以上詳述したように、本発明の機械的性質測定装置は、
測定試料内の超音波の伝播速度を求め、この試料的伝播
速度に基づいて測定試料の剛性率の機械的性質を演算す
るものであるから、測定試料がいかなる大きさ、寸法で
あっても測定できるという優れた効果を奏する。たとえ
ば、従来測定が困難であったわずか5onないし10M
角程0材料片であっても容易に測定できる。
Effects of the Invention As detailed above, the mechanical property measuring device of the present invention has the following effects:
The method calculates the propagation velocity of the ultrasonic wave within the measurement sample and calculates the mechanical properties of the rigidity of the measurement sample based on this sample propagation velocity, so it can be measured regardless of the size or dimensions of the measurement sample. It has excellent effects. For example, only 5on to 10M, which was difficult to measure in the past.
Even a piece of material with zero angle can be easily measured.

測定操作はただ超音波測定子を測定試料に当接するのみ
であり、簡単にかつ短時間に測定ができる。
The measurement operation is simply to bring the ultrasonic probe into contact with the sample to be measured, and the measurement can be carried out easily and in a short time.

また、測定試料をその使用温度条件の下測定する場合で
も、測定試料を小さくして温度分布を均一にしやすいこ
とから、低温から高温まで正確な測定が実現できる。特
に本発明装置の超音波測定子の超音波送信部および受信
部は緩衝部によって測定環境から隔てられその保護が図
られるから、温度条件の他あらゆる環境条件下での測定
に有効である。
Furthermore, even when measuring a measurement sample under its operating temperature conditions, since the measurement sample can be made small and the temperature distribution can be easily made uniform, accurate measurement can be achieved from low to high temperatures. In particular, the ultrasonic transmitter and receiver of the ultrasonic probe of the device of the present invention are separated from the measurement environment by the buffer section and protected, so that the device is effective for measurements under all environmental conditions in addition to temperature conditions.

さらに、本発明において縦波および横波の両超音波を用
いて測定するように構成したものは、剛性率、体積弾性
率、縦弾性係数およびポアソン比等の機械的諸性質を一
挙に(qることができるという優れた効果を奏する。
Furthermore, in the present invention, the device configured to measure using both longitudinal and transverse ultrasonic waves can measure various mechanical properties such as rigidity modulus, bulk modulus, longitudinal elastic modulus, and Poisson's ratio all at once. It has the excellent effect of being able to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本的構成を例示するブロック図、第
2図は本発明一実施例としての機械的性質測定装置の概
略構成図、第3図に)≠hキ;壬#井はその測定過程を
示すフローチャート、第4図は実施例装置における超音
波伝播経路の説明図、第5図は超音波送受信装置におC
フる超音波の検知例を示すタイミングチャートである。 1・・・超音波測定子  2・・・超音波送受信装置3
・・・コンピュータ 6・・・電気炉 5・・・厚み測定器 S・・・測定試料
Figure 1 is a block diagram illustrating the basic configuration of the present invention, Figure 2 is a schematic configuration diagram of a mechanical property measuring device as an embodiment of the present invention, and Figure 3) A flowchart showing the measurement process, FIG. 4 is an explanatory diagram of the ultrasonic propagation path in the example device, and FIG.
2 is a timing chart showing an example of detection of ultrasonic waves. 1... Ultrasonic probe 2... Ultrasonic transmitting/receiving device 3
... Computer 6 ... Electric furnace 5 ... Thickness measuring device S ... Measurement sample

Claims (1)

【特許請求の範囲】 1 超音波の送信部および受信部と、該送信部および受
信部が取り付けられ前記超音波を伝播する緩衝部とから
なり、測定試料に当接される超音波測定子と、 前記超音波の前記超音波測定子における前記送信部と前
記受信部間の伝播時間に基づき、前記測定試料内の前記
超音波の伝播時間を算出する試料内伝播時間算出手段と
、 前記測定試料内の超音波の伝播時間と前記測定試料の超
音波伝播方向の厚みとから前記測定試料内の前記超音波
の伝播速度を算出する試料内伝播速度演算手段と、 前記測定試料内の超音波の伝播速度と前記測定試料の密
度とに基づき、前記測定試料の剛性率等の機械的諸性質
を算出する機械的性質演算手段とを備えた機械的性質測
定装置。
[Scope of Claims] 1. An ultrasonic probe that is made of an ultrasonic transmitting section and a receiving section, and a buffer section to which the transmitting section and receiving section are attached and that propagates the ultrasonic waves, and that is brought into contact with a measurement sample. , an in-sample propagation time calculation means for calculating the propagation time of the ultrasonic wave within the measurement sample based on the propagation time of the ultrasonic wave between the transmitting section and the receiving section of the ultrasonic probe; and the measurement sample. in-sample propagation velocity calculation means for calculating the propagation velocity of the ultrasonic waves in the measurement sample from the propagation time of the ultrasonic waves in the measurement sample and the thickness of the measurement sample in the ultrasonic propagation direction; A mechanical property measuring device comprising mechanical property calculation means for calculating various mechanical properties such as rigidity of the measurement sample based on a propagation velocity and a density of the measurement sample.
JP63296991A 1988-11-24 1988-11-24 Mechanical property measuring device Pending JPH02141643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63296991A JPH02141643A (en) 1988-11-24 1988-11-24 Mechanical property measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63296991A JPH02141643A (en) 1988-11-24 1988-11-24 Mechanical property measuring device

Publications (1)

Publication Number Publication Date
JPH02141643A true JPH02141643A (en) 1990-05-31

Family

ID=17840838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63296991A Pending JPH02141643A (en) 1988-11-24 1988-11-24 Mechanical property measuring device

Country Status (1)

Country Link
JP (1) JPH02141643A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215728A (en) * 1992-02-04 1993-08-24 Choonpa Kogyo Kk Device for measuring slid-state elastic modulus and internal friction in wide temperature range from low to high temperature
JP2006010493A (en) * 2004-06-25 2006-01-12 Kurenooton Kk Evaluation method for evaluating object using ultrasonic wave
JP2007139784A (en) * 2005-11-22 2007-06-07 General Electric Co <Ge> Method of ultrasonic elastic modulus calculation and imaging
JP2009128033A (en) * 2007-11-20 2009-06-11 Polyplastics Co Poisson's ratio measurement method for materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215728A (en) * 1992-02-04 1993-08-24 Choonpa Kogyo Kk Device for measuring slid-state elastic modulus and internal friction in wide temperature range from low to high temperature
JP2006010493A (en) * 2004-06-25 2006-01-12 Kurenooton Kk Evaluation method for evaluating object using ultrasonic wave
JP2007139784A (en) * 2005-11-22 2007-06-07 General Electric Co <Ge> Method of ultrasonic elastic modulus calculation and imaging
JP2009128033A (en) * 2007-11-20 2009-06-11 Polyplastics Co Poisson's ratio measurement method for materials

Similar Documents

Publication Publication Date Title
KR101955440B1 (en) Dynamic modulus and residual stress measurement test evaluation device using ultrasonic sound velocity difference
KR100832839B1 (en) Thickness measuring device and method using ultrasonic wave and transverse wave
JP2019060740A (en) Temperature measurement method
JP5133108B2 (en) Temperature measuring device and temperature measuring method
JPH02141643A (en) Mechanical property measuring device
KR102657400B1 (en) Residual stress measurement method using ultrasonic sensor
CN107748205A (en) A kind of elastic constant measurement method varied with temperature
CN114112132A (en) System and method for measuring gradient residual stress by laser ultrasonic
Periyannan et al. Temperature dependent E and G measurement of materials using ultrasonic guided waves
JP2008076387A (en) Ultrasonic stress measuring method and instrument
JP3597182B2 (en) Ultrasonic sound velocity measurement method and method for determining Young&#39;s modulus and Poisson&#39;s ratio based on these methods
Glover et al. A magnetostrictive instrument for measuring the viscoelastic properties of liquids in the frequency range 20-100 kHz
JP2670738B2 (en) Method and apparatus for measuring molding characteristics of polymer materials
Degertekin et al. In-situ temperature monitoring in RTP by acoustical techniques
SU815614A1 (en) Ultrasonic method of young&#39;s modulus measurement
JPH02264843A (en) Hardness measuring apparatus
JPH02296147A (en) Method and apparatus for measuring acoustic anisotropy
JPH06174455A (en) Concurrently measuring method for thickness and sonic velocity of material
US3540279A (en) Acoustic sensing system
JP2824488B2 (en) Method of measuring plate thickness of concrete structure by ultrasonic pulse reflection method
JPH09257773A (en) Ultrasonic transmitter / receiver for defect sizing and ultrasonic transmitter / receiver method
JPH06258297A (en) Ultrasonic material testing device and material testing method by using ultrasonic wave
JPS5842919Y2 (en) stress measuring device
JP3088614B2 (en) Array flaw detection method and device therefor
JPS6235256A (en) Nondestructive testing machine utilizing ultrasonic wave