[go: up one dir, main page]

JPH02140643A - Measuring method for magnetic grain quantity in magnetic fluid - Google Patents

Measuring method for magnetic grain quantity in magnetic fluid

Info

Publication number
JPH02140643A
JPH02140643A JP63294284A JP29428488A JPH02140643A JP H02140643 A JPH02140643 A JP H02140643A JP 63294284 A JP63294284 A JP 63294284A JP 29428488 A JP29428488 A JP 29428488A JP H02140643 A JPH02140643 A JP H02140643A
Authority
JP
Japan
Prior art keywords
magnetic
test piece
polarizer
light
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63294284A
Other languages
Japanese (ja)
Inventor
Kosuke Nagaya
幸助 長屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP63294284A priority Critical patent/JPH02140643A/en
Publication of JPH02140643A publication Critical patent/JPH02140643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To measure the magnetic grain quantity of a general magnetic fluid containing a fluid of low concentration whose grain quantity is small, as well in a short time by providing a test piece and a magnet, and placing a polarizer on both sides of the test piece. CONSTITUTION:When a magnet 3 is allowed to work on both ends of a test piece 4, magnetic grains are arranged with directivity in the magnetic pole direction by an action of magnetic force, therefore, when a monochromatic light which is brought to plane polarization by a polarizer 2 is allowed to pass through therein, a double refraction is generated. Subsequently, when a polarizer 5 whose main axis is rotated at a right angle against a main axis of the polarizer 2 is placed behind the test piece 4, the test piece 4 is a non-polarization substance, when a magnetic field is not applied, and light is cut off by the polarizers 2, 5. However, when a magnetic field is applied to a magnetic fluid, an optical anisotropy is generated, a double refraction of light caused by magnetism occurs and the light is detected. Since magnitude of this double refraction is proportional to the quantity of the magnetic grains, the quantity of the magnetic grains can be known by photodetecting the intensity of light which passes through the polarizer 5 by a photodetecting part 7, and measuring it by an oscilloscope 8.

Description

【発明の詳細な説明】 (産業上の利用分野) 磁性粒子をコロイド状に分散させた液体は磁性流体と言
われ、計測制御面で近時非常に注目されており、これを
用いたセンサーあるいはアクチュエータの開発が盛んに
行われている。たとえば、磁性流体を用いた磁気軸受、
磁気シール、磁’jK?ツ上、磁気ダンパ、光スィッチ
なとは、すでに実用化の試みがなされている。また医学
面でも細胞に磁性粒子を付着させ、あるいは、細胞内に
磁性粒子を取り込み、これを血液とともに取り出して調
べる方法の研究も近時行われている。これらに用いられ
る磁性粒子を含む流体(以下磁性流体と総称する)の性
質はもともと流体内に混入した磁性粒子の性質を用いて
いるので、磁性粒子の量により、その磁性流体としての
特性は著しく異なる。
[Detailed Description of the Invention] (Industrial Application Field) A liquid in which magnetic particles are dispersed in a colloidal form is called a magnetic fluid, and has recently attracted much attention in terms of measurement and control. Actuators are actively being developed. For example, magnetic bearings using magnetic fluid,
Magnetic seal, magnetic 'jK? Attempts have already been made to put things into practical use, such as magnets, magnetic dampers, and optical switches. In addition, in the field of medicine, research has recently been conducted on methods of attaching magnetic particles to cells, or incorporating magnetic particles into cells, and then extracting them along with blood for examination. The properties of the fluid containing magnetic particles (hereinafter collectively referred to as magnetic fluid) used in these applications are based on the properties of the magnetic particles originally mixed into the fluid, so depending on the amount of magnetic particles, the characteristics as a magnetic fluid can be significantly affected. different.

したがって流体中の磁性粒子の量を正確に測定する方法
は、磁性流体を用いた機器の開発には必須である。
Therefore, a method for accurately measuring the amount of magnetic particles in a fluid is essential for the development of devices using magnetic fluids.

本発明は磁性流体内の磁性粒子量を光学的に測定する方
法に関するものである。
The present invention relates to a method for optically measuring the amount of magnetic particles in a magnetic fluid.

(従来の技術) 磁性粒子を多く含む高1度の磁性流体では、磁性粒子と
溶液の比重が分かれば、その体積とII量から磁性粒子
の量を計測できる。しかしこの方法では、サンプルとし
て、相当の量の磁性流体と、正確な体積と重量を計る計
測器を必要とし、かつ溶液と磁性粒子の相当正確な比重
を予め求めておかなければならない欠点があった。とく
に磁性粒子の量が少ない低濃度流体では、測定誤差が大
きく、流体内の磁性粒子量の正確な測定ができなかった
ー (発明が解決しようとする課題) 本発明は、上記した従来の欠点を改善するもので、その
目的は微量のサンプルで、短時閏に粒子量の少ない低濃
度の流体も含む一般の磁性流体の磁性粒子量を測定でき
る計測方法を得ることである。
(Prior Art) In a high 1 degree magnetic fluid containing many magnetic particles, if the specific gravity of the magnetic particles and the solution is known, the amount of magnetic particles can be measured from the volume and the II amount. However, this method has the disadvantage that it requires a considerable amount of magnetic fluid as a sample, a measuring device to accurately measure volume and weight, and the specific gravity of the solution and magnetic particles must be determined in advance. Ta. Especially in low-concentration fluids where the amount of magnetic particles is small, the measurement error is large and the amount of magnetic particles in the fluid cannot be accurately measured. The objective is to obtain a measurement method that can measure the amount of magnetic particles in general magnetic fluids, including low-concentration fluids with a small amount of particles, in a short time and with a small amount of sample.

(課題を解決するための手段) 本目的を達するため、本発明は、サンプル液を充填され
た光を透過する物体(以下試験片と言う)とそれの一方
向に磁気を与える磁石を有し、かつ試験片の両側に偏光
子をその主軸が互いに直角になるように配置するように
構成され、これに単色光を通過させ、光学的に磁性粒子
量を計測することを特徴とする流体内の磁性粒子量の計
測方法を与えるものである。
(Means for Solving the Problems) In order to achieve this object, the present invention includes a light-transmitting object (hereinafter referred to as a test piece) filled with a sample liquid and a magnet that applies magnetism in one direction to the object. , and is configured such that polarizers are arranged on both sides of the test piece so that their main axes are perpendicular to each other, and monochromatic light is passed through the polarizers to optically measure the amount of magnetic particles in the fluid. This provides a method for measuring the amount of magnetic particles.

ここに試験片は、光を通す物体の中に閏隙を設け、サン
プル液としての磁性流体を充填したもので、物質の種類
は光を透過させるものなら何でもよいが、構造は実施例
のような面方向にサンプル液を満たした板状のものが光
軸合わせに都合が良い、もちろん光のビームを固定して
おき、ビームの当たる面にサンプル液を配置した場合は
、とくに板状である必要も無くブロック状、はり状のも
のでもよい。
The test piece is made by providing a gap in an object that allows light to pass through, and filling it with a magnetic fluid as a sample liquid.The material may be any material that allows light to pass through, but the structure is similar to that in the example. A plate-shaped object filled with sample liquid in a plane direction is convenient for aligning the optical axis. It is not necessary and may be block-shaped or beam-shaped.

また磁石は永久磁石でも電磁石でも良く、試験片の中、
すなわち磁性流体の中を一方向の磁束が通るように配置
される。一方、磁石の軸は実施例のように単色光の光軸
と直交する場合に大きな光量の出力が得られるが、斜交
させても計測は可能である。
The magnet may be a permanent magnet or an electromagnet, and inside the test piece,
That is, they are arranged so that magnetic flux passes in one direction through the magnetic fluid. On the other hand, when the axis of the magnet is orthogonal to the optical axis of the monochromatic light as in the embodiment, a large amount of light can be output, but measurement is possible even if the axis is crossed obliquely.

(作用) 微少量の磁性粒子を含む磁性流体の簡単な磁性粒子量の
計測法は未だ確立されておらず、磁性流体を用いた機器
の開発に支障を来している0本発明により、磁性粒子の
量をかなり正確にしかも微量のサンプル液で容易に計測
できるようになるので、磁性流体を用いた精密な機器の
設計が可能となる。とくに各種センサー アクチュエー
タ等の開発が促進される。
(Function) A simple method for measuring the amount of magnetic particles in a magnetic fluid containing a small amount of magnetic particles has not yet been established, which has hindered the development of devices using magnetic fluid. Since the amount of particles can be measured fairly accurately and easily with a small amount of sample liquid, it becomes possible to design precision equipment using magnetic fluids. In particular, the development of various sensors and actuators will be promoted.

(実施例) 本発明の実施例の構成を第1図に示す0本計測法では、
単色光R1、偏光子2、磁石3、試験片4、偏光子5、
フィルタ6、光電子増倍管7などの受光部分、オッシロ
スコープ8などの計測部分により構成される0本発明の
原理は磁性流体の充填された試験片40Bi気による複
屈折性を利用したものである。すなわち、試験片の両端
に磁気(N−3)3を作用させると、磁性流体内に分散
していた磁性粒子が磁力の作用により磁極方向に方向性
な持って配列するので、この状態のところへ偏光子2で
平面偏光させた単色光を通過させると、複屈折を生ずる
。偏光子2の主軸に対して、直角に主軸を回転させた偏
光子6を試験片4の後ろに配置すると、試験片4は磁場
が印加されていないときは非偏光物質であって、2.5
によフて光は遮断されている。しかし磁性流体に磁場が
印加されると、光学異方性が生じ、磁気による光の複屈
折を起こし、光が検出される。この複屈折の大きさは磁
性粒子の量が多くなればなるほど大きいので、偏光子6
を通過した光の強さを受光部分7で受け、オッシロスコ
ープ8などで測定することで、磁性粒子の量を知ること
ができる。磁性流体の光学異方性については、周知のこ
とであるが、磁性粒子量と光の複屈折の関係は明かでは
無く、本発明により初めて明かにされたものである。
(Example) In the zero-line measurement method, the configuration of an example of the present invention is shown in FIG.
Monochromatic light R1, polarizer 2, magnet 3, test piece 4, polarizer 5,
The principle of the present invention, which is composed of a filter 6, a light receiving part such as a photomultiplier tube 7, and a measuring part such as an oscilloscope 8, utilizes the birefringence of a test piece 40 filled with magnetic fluid. In other words, when magnetism (N-3)3 is applied to both ends of the test piece, the magnetic particles dispersed in the magnetic fluid are oriented in the direction of the magnetic poles due to the action of the magnetic force. When monochromatic light that has been plane-polarized by the polarizer 2 is passed through it, birefringence occurs. When a polarizer 6 whose main axis is rotated at right angles to the main axis of the polarizer 2 is placed behind the test piece 4, the test piece 4 is a non-polarizing material when no magnetic field is applied, and 2. 5
The light is blocked by the light. However, when a magnetic field is applied to a magnetic fluid, optical anisotropy occurs, causing birefringence of light due to magnetism, and the light is detected. The magnitude of this birefringence increases as the amount of magnetic particles increases, so the polarizer 6
The amount of magnetic particles can be determined by receiving the intensity of the light that has passed through the light receiving portion 7 and measuring it with an oscilloscope 8 or the like. Although the optical anisotropy of magnetic fluids is well known, the relationship between the amount of magnetic particles and the birefringence of light is not clear, and was clarified for the first time by the present invention.

以上の構成に甚く具体的な実施例を以下に説明する。実
験に用いた磁性流体は、比重1.43(256C)、飽
和磁化310±20ガウス、外観は黒色液体で、水を溶
媒とし、溶質(磁性粒子)は20〜50nmのマグネタ
イト粒子である。測定に際して用いた試験片4は長さ4
0 rn In * 輻10mm、  厚さ1.3mm
の2枚の透明ガラス板の間にポリ塩化ビニールのスペー
サ(厚さ0.1mm)をサンドウィッチし、その中に磁
性流体を満したものである。一方磁気による異方性を与
えるための磁石3は電磁石で、−様な磁場を発生するよ
うに工夫されており、また単色光源はへリュームネオン
レーザである。
A very specific example of the above configuration will be described below. The magnetic fluid used in the experiment had a specific gravity of 1.43 (256 C), a saturation magnetization of 310±20 Gauss, and an appearance of a black liquid. Water was used as a solvent, and the solute (magnetic particles) was magnetite particles of 20 to 50 nm. The length of the test piece 4 used in the measurement was 4.
0 rn In * Radius 10mm, Thickness 1.3mm
A polyvinyl chloride spacer (thickness: 0.1 mm) is sandwiched between two transparent glass plates, and the spacer is filled with magnetic fluid. On the other hand, the magnet 3 for providing magnetic anisotropy is an electromagnet designed to generate a negative magnetic field, and the monochromatic light source is a helium neon laser.

これらを第1図とまったく同様に配置し、位相差と磁性
流体の混入濃度を調べ、図示したものが第2図である。
These were arranged in exactly the same manner as in FIG. 1, and the phase difference and the mixed concentration of the magnetic fluid were examined, and FIG. 2 shows the result.

なお本例では、磁性粒子の少ない低濃度の磁性流体につ
いての実施例を示したが、試験片内のサンプル液を充填
する間隙を狭くすると、もちろん高濃度の測定もできる
In this example, a low-concentration magnetic fluid with few magnetic particles was shown, but of course high-concentration measurements can be made by narrowing the gap in which the sample liquid is filled in the test piece.

(発明の効果) 本方法は以上のように構成したので、つぎのよ(1) 
 第2図より明かなように位相は磁性流体内の粒子濃度
とともに増大している。したがって本方法により磁性流
体の磁性粒子量の計測ができる。
(Effect of the invention) Since this method is configured as described above, the following (1)
As is clear from FIG. 2, the phase increases with the particle concentration within the magnetic fluid. Therefore, the amount of magnetic particles in the magnetic fluid can be measured by this method.

(2)低濃度の磁性流体の粒子量を計測できく第2図1
1N)、従来の比重差計測法に対する低濃度流体の測定
不能の欠点を除去できる。
(2) Capable of measuring the amount of particles in low-concentration magnetic fluids (Figure 2 1)
1N), it is possible to eliminate the disadvantage of the inability to measure low concentration fluids with respect to the conventional specific gravity measurement method.

(3)磁性流体のサンプルを試験片に充填し、レーザ光
を発塩するだけで、測定結果が得られるので、v&量の
サンプルで短時間の測定ができる。
(3) Measurement results can be obtained simply by filling a test piece with a sample of magnetic fluid and emitting salt with a laser beam, so measurements can be carried out in a short time with a sample of v& amount.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による磁性流体の磁性粒子測定法の配置
図、第2図は磁性流体の磁性粒子濃度と位相の関係を表
したグラフ図である。 図中符号、1 ・・単色光源、2・ ・偏光子、3・ 
・磁石、4・ ・試験片、5・ ・偏光子、6・・・フ
ィルタ、7・ ・光電子増倍管、8・争オッシログラフ うな効果が得られた。
FIG. 1 is a layout diagram of a method for measuring magnetic particles in a magnetic fluid according to the present invention, and FIG. 2 is a graph showing the relationship between the magnetic particle concentration and phase of a magnetic fluid. Symbols in the figure: 1. Monochromatic light source, 2. Polarizer, 3.
・Magnet, 4. ・Test piece, 5. ・Polarizer, 6. Filter, 7. ・Photomultiplier tube. 8. A similar effect to the oscilloscope was obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 サンプル液を充填された光を透過する物体(以下試
験片と言う)とそれの一方向に磁気を与える磁石を有し
、かつ試験片の両側に偏光子をその主軸が互いに直角に
なるように配置するように構成され、これに単色光を通
過させ、光学的に磁性粒子量を計測することを特徴とす
る流体中の磁性粒子量の計測方法
1 A light-transmitting object (hereinafter referred to as a test piece) filled with a sample liquid and a magnet that applies magnetism in one direction, and polarizers are placed on both sides of the test piece so that their main axes are at right angles to each other. A method for measuring the amount of magnetic particles in a fluid, the method comprising: passing monochromatic light through the magnetic particles, and measuring the amount of magnetic particles optically.
JP63294284A 1988-11-21 1988-11-21 Measuring method for magnetic grain quantity in magnetic fluid Pending JPH02140643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63294284A JPH02140643A (en) 1988-11-21 1988-11-21 Measuring method for magnetic grain quantity in magnetic fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63294284A JPH02140643A (en) 1988-11-21 1988-11-21 Measuring method for magnetic grain quantity in magnetic fluid

Publications (1)

Publication Number Publication Date
JPH02140643A true JPH02140643A (en) 1990-05-30

Family

ID=17805711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63294284A Pending JPH02140643A (en) 1988-11-21 1988-11-21 Measuring method for magnetic grain quantity in magnetic fluid

Country Status (1)

Country Link
JP (1) JPH02140643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019020285A (en) * 2017-07-19 2019-02-07 大成建設株式会社 Magnetic substance abundance measuring method, contaminated water purifying method, and purifying device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019020285A (en) * 2017-07-19 2019-02-07 大成建設株式会社 Magnetic substance abundance measuring method, contaminated water purifying method, and purifying device

Similar Documents

Publication Publication Date Title
JP5178187B2 (en) Atomic magnetic sensor and magnetic sensing method
Forte et al. First measurement of parity-nonconserving neutron-spin rotation: The tin isotopes
JP4556463B2 (en) Birefringence measuring device
US10184796B2 (en) Chip-scale atomic gyroscope
Kotar et al. Interparticle potential and drag coefficient in nematic colloids
Badoz et al. Measurement and interpretation of magnetic circular dichroism and magnetic linear dichroism spectra
KR20090128735A (en) Ultra High Sensitivity Permeability Detection Device Using Atomic Magnetometer and Its Use Method
US3817634A (en) Testing of optically active substances by polarized radiation
DE60314493D1 (en) Device for determining the location and orientation of an invasive device
Krishnamoorthy Temperature jump as a new technique to study the kinetics of fast transport of protons across membranes
Simpson et al. An optically pumped nuclear magnetic resonance gyroscope
Gaffney et al. Effect of a magnetic field on phospholipid membranes
JPH02140643A (en) Measuring method for magnetic grain quantity in magnetic fluid
Kahn et al. The size of sodium montmorillonite particles in suspension from electro-optical birefringence studies
Wu et al. Cylindrical vector beam for vector magnetic field sensing based on magnetic fluid
WO2015156841A1 (en) Chip-scale atomic gyroscope
US4509014A (en) Nuclear magnetic resonance gyroscope
CN101852721B (en) Device for detecting concentration of transparent mixed solution with two solutes
Wagreich et al. Accurate magneto-optic sensitivity measurements of some diamagnetic glasses and ferrimagnetic bulk crystals using small applied AC magnetic fields
Ingersoll The Kerr Rotation for Transverse Magnetic Fields, and the Experimental Verification of Wind's Magneto-Optic Theory
CN205484007U (en) Verdet constant measuring device of magneto optic material
Wilson et al. A simple apparatus for the measurement of the Cotton-Mouton effect in particulate suspensions
SU408247A1 (en) VPTB
Watarai et al. Transverse magneto-optical measurements of magnetic nanoparticles in glass/water reflection cell
JPS5524614A (en) Faraday effect detector