JPH02139900A - plasma equipment - Google Patents
plasma equipmentInfo
- Publication number
- JPH02139900A JPH02139900A JP63293041A JP29304188A JPH02139900A JP H02139900 A JPH02139900 A JP H02139900A JP 63293041 A JP63293041 A JP 63293041A JP 29304188 A JP29304188 A JP 29304188A JP H02139900 A JPH02139900 A JP H02139900A
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- microwave
- generation chamber
- circularly polarized
- plasma generation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Drying Of Semiconductors (AREA)
- Plasma Technology (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はプラズマ生成室内にて電子サイクロトロン共鳴
(Electron Cyclotron Re5o
nance。[Detailed Description of the Invention] [Industrial Application Field] The present invention uses electron cyclotron resonance (Electron Cyclotron Re5o) in a plasma generation chamber.
nance.
ECR)励起により生成したECRプラズマを利用する
CVD装置、ドライエツチング装置等のプラズマ装置に
関するものである。This invention relates to plasma devices such as CVD devices and dry etching devices that utilize ECR plasma generated by ECR) excitation.
前記ECR励起によりプラグ”7を生成する装置は、低
ガス圧で活性度が高いプラズマを生成できること、イオ
ンエネルギ及びイオン流の大きさを広範囲に選択できる
こと、またイオン流の指向性、均一性に優れていること
等多くの利点があり、半導体基板上に所望の物質の薄膜
を形成せしめるためのCVD装置、半導体基板上に微細
な回路パターンを形成せしめるためのドライエツチング
装置等、半導体集積回路の製造への通用が進められてい
る。The device that generates the plug "7" by ECR excitation has the following features: it can generate highly active plasma at low gas pressure, it can select the ion energy and the size of the ion flow over a wide range, and it has the following advantages: It has many advantages, such as CVD equipment for forming thin films of desired substances on semiconductor substrates, dry etching equipment for forming fine circuit patterns on semiconductor substrates, etc. Progress is being made in applying it to manufacturing.
第4図はECRプラズマを利用した従来のCVD装置の
縦断面模式図であり、31はプラズマ生成室を示す。プ
ラズマ生成室31は周囲壁を2重構造にして冷却水の通
流路31aを備え、また−側壁中央には石英ガラス板3
1bにて封止したマイクロ波m入口31cを、更にマイ
クロ波導入口31cと対向する他側壁中央にはプラズマ
引出窓31dを夫々備えており、このプラズマ引出窓3
1dに臨ませて試料室34が配設される。マイクロ波導
入口31cには他端をマイクロ波発振器33に接続した
マイクロ波導波管32の一端が接続され、プラズマ生成
室31及びこれに接続した導波管32の一端部にわたっ
てこれらを囲むように励磁コイル35が同心状に配設さ
れる。FIG. 4 is a schematic vertical cross-sectional view of a conventional CVD apparatus using ECR plasma, and numeral 31 indicates a plasma generation chamber. The plasma generation chamber 31 has a double structure around the surrounding wall, and is equipped with a cooling water passage 31a, and a quartz glass plate 3 in the center of the side wall.
1b, and a plasma extraction window 31d is provided at the center of the other side wall facing the microwave introduction port 31c.
A sample chamber 34 is arranged facing 1d. One end of a microwave waveguide 32 whose other end is connected to a microwave oscillator 33 is connected to the microwave inlet 31c, and the plasma generation chamber 31 and one end of the waveguide 32 connected thereto are energized so as to surround them. Coils 35 are arranged concentrically.
反応室34内にはウェーハ等の試料Sを装着する試料台
36が前記プラズマ引出窓31dと対向させて配設され
ており、その後面側に位置す、る試料室34の後壁には
図示しない排気装置に連なる排気口37が開口される。Inside the reaction chamber 34, a sample stage 36 on which a sample S such as a wafer is mounted is disposed facing the plasma extraction window 31d, and on the rear wall of the sample chamber 34 located on the rear side, there is a hole shown in the figure. An exhaust port 37 connected to an exhaust device that is not connected is opened.
このようなCVD装置においてECRプラズマは以下の
如き過程で生成される。プラズマ生成室31及び試料室
34を所要の真空度に設定した後、プラズマ生成室31
に原料ガスを供給し、励磁コイル35にて磁界を形成さ
せると共に、マイクロ波発振器33から発振されるマイ
クロ波をマイクロ波導波管32゜マイクロ波導入窓31
cを通じてプラズマ生成室31内へ導入する。そうする
と磁場中の電子がサイクロトロン共鳴によりプラズマ生
成室31内へ伝送されたマイクロ波のエネルギを吸収し
、前記ガスの分子と衝突して、これをイオン化させ、プ
ラズマ生成室31内にプラズマが生成される。生成され
たプラズマは励(dコイル35にて形成される発散磁界
によって試料室34内に導入され、試料S上に投射され
て、試料Sの表面に所望の物質の薄膜が形成される。In such a CVD apparatus, ECR plasma is generated in the following process. After setting the plasma generation chamber 31 and the sample chamber 34 to the required degree of vacuum, the plasma generation chamber 31
A source gas is supplied to the excitation coil 35 to form a magnetic field, and the microwave oscillated from the microwave oscillator 33 is passed through the microwave waveguide 32 and the microwave introduction window 31.
c into the plasma generation chamber 31. Then, electrons in the magnetic field absorb the microwave energy transmitted into the plasma generation chamber 31 by cyclotron resonance, collide with the gas molecules, ionize them, and generate plasma in the plasma generation chamber 31. Ru. The generated plasma is excited (introduced into the sample chamber 34 by a divergent magnetic field formed by the d coil 35) and projected onto the sample S, forming a thin film of a desired substance on the surface of the sample S.
上述した様にECRプラズマ装置においてマイクロ波を
用いてプラズマを生成し、試料に成膜、エツチング等の
処理を施す場合、プラズマ生成効率を上げ、成膜、エツ
チング等の処理能力を向上させるためにマイクロ波及び
マイクロ波導波管に着目したプラズマ装置の改良が行わ
れている。As mentioned above, when plasma is generated using microwaves in an ECR plasma device and a sample is subjected to processing such as film formation or etching, in order to increase the plasma generation efficiency and improve the processing capacity of film formation or etching, etc. Improvements have been made to plasma devices focusing on microwaves and microwave waveguides.
例えば、特公昭62−53920号公報においては、マ
イクロ波をプラズマ生成室へ導入するマイクロ波導波管
の断面上の電界強度の不均一を排除させるために、マイ
クロ波導波管に円偏波発生器を接続させて、プラズマを
均一に生成させる装置について開示されている。For example, in Japanese Patent Publication No. 62-53920, a circularly polarized wave generator is installed in a microwave waveguide in order to eliminate non-uniformity in electric field strength on the cross section of the microwave waveguide that introduces microwaves into a plasma generation chamber. An apparatus for uniformly generating plasma by connecting two devices is disclosed.
ところで、マイクロ波をプラズマ生成室へ導入するため
の導波管として円形導波管を用いた場合、以下に述べる
ような問題点がある。即ち、マクスウェルの方程式によ
り磁性体で満たされた円形導波管中を伝播する電波は円
偏波モードでのみ存在す゛ることか知られており (S
uhl、 Wa!ker : Bl:LLSyst、T
ech、J、、33.(1954)P579) 、磁気
プラズマの誘電率のテンソルは、電波の透磁率のテンソ
ルと同形なので、同様にマクスウェルの方程式により従
来のεCl?プラズマ装置の円形導波管が磁気プラズマ
で満たされた場合にも、プラグ゛7を伝播するマイクロ
波は円偏波モードでのみ存在するといえる。プラズマを
伝播する円偏波モードのマイクロ波は右回り円偏波(R
波)及び左回り円偏波(L波)の2つの波に分離して存
在する。By the way, when a circular waveguide is used as a waveguide for introducing microwaves into a plasma generation chamber, there are problems as described below. In other words, it is known that according to Maxwell's equations, radio waves propagating in a circular waveguide filled with magnetic material exist only in circularly polarized mode (S
Uhl, Wa! ker: Bl:LLSyst, T
ech, J., 33. (1954) P579), the tensor of the permittivity of magnetic plasma is isomorphic to the tensor of magnetic permeability of radio waves, so similarly, using Maxwell's equation, the conventional εCl? Even when the circular waveguide of the plasma device is filled with magnetic plasma, it can be said that the microwave propagating through the plug 7 exists only in the circularly polarized mode. Microwaves in circularly polarized mode propagating through plasma are clockwise circularly polarized (R
wave) and left-handed circularly polarized wave (L wave).
第3図は横軸にR波及びL波のωC/ω(ω。In Fig. 3, the horizontal axis is ωC/ω (ω) of R waves and L waves.
:サイクロトロン周波数、ω;マイクロ波周波数)をと
り、立て軸にマイクロ波の屈折率nをとり、R波及びL
波の屈折率の磁場依存性を示したグラフである。ωp/
ω(ωp :プラズマ周波数)=0.5.Koro−3
,0(Ko :真空中の波数、ro:円筒磁気プラズ
マの半径)の条件において、R波及びL波をプラズマ生
成室内に導入したところ、ω。: cyclotron frequency, ω: microwave frequency), the refractive index n of the microwave is taken on the vertical axis, and R wave and L wave
It is a graph showing the magnetic field dependence of the refractive index of waves. ωp/
ω (ωp: plasma frequency) = 0.5. Koro-3
, 0 (Ko: wave number in vacuum, ro: radius of cylindrical magnetic plasma), when R waves and L waves were introduced into the plasma generation chamber, ω.
/ωが1,0前後では、ωC/ωの低下とともにR波の
屈折率nは急激に増大しており、ECR効果が現れてい
ることを裏付けている。一方、L波の屈折率nはωC/
ωの値に依存しない。すなわちECRの効果を示さない
。When /ω is around 1.0, the refractive index n of the R wave increases rapidly as ωC/ω decreases, which confirms that the ECR effect appears. On the other hand, the refractive index n of the L wave is ωC/
It does not depend on the value of ω. In other words, it does not show the effect of ECR.
このことからもわかるように、EC[l励起によりエネ
ルギを吸収しプラズマを生ぜしめろために有用なのはR
波のみであり、L波は十分吸収されず、反射し、エネル
ギー的に損失するのみである。従って、円形4波管を用
いてプラズマ生成室にマイクロ波を導入した場合、上述
した様にマイクロ波にはR波、L波の両方が存在するが
、プラズマ生成室におけるECR励起によるマイクロ波
の吸収にL波は関与しないため、効率の良いプラズマの
生成が行えないという問題があった。As can be seen from this, R is useful for absorbing energy and generating plasma through EC[l excitation.
L waves are not absorbed sufficiently, but are reflected and are only lost in terms of energy. Therefore, when microwaves are introduced into the plasma generation chamber using a circular four-wave tube, both R waves and L waves exist in the microwaves as described above, but the microwaves due to ECR excitation in the plasma generation chamber are Since L waves are not involved in absorption, there is a problem in that efficient plasma generation cannot be achieved.
本発明はかかる事情に濫みなされたものであり、磁性体
でみたされた円形導波管中を伝播する円偏波モード、即
ちTE、、、 TM、。(m、n:整数、n≠0)モー
ドのマイクロ波をR波に変換し、R波のみをプラズマ生
成室へ導入させ、L波によるエネルギー損失を防いでE
CRプラズマ装置におけるマイクロ波の吸収効率を向上
させる装置を提供することを目的とする。The present invention has been made in consideration of such circumstances, and uses circularly polarized wave modes, namely TE, TM, which propagate in a circular waveguide filled with a magnetic material. (m, n: integer, n≠0) mode microwave is converted into R waves, only R waves are introduced into the plasma generation chamber, energy loss due to L waves is prevented, and E
An object of the present invention is to provide a device that improves microwave absorption efficiency in a CR plasma device.
本発明に係るプラズマ装置は、プラズマ生成室にマイク
ロ波を導入すると共に、磁界を印加し、電子サイクロト
ロン共鳴励起によりプラズマを生成させるプラズマ装置
において、マイクロ波発振器から発振されたマイクロ波
をプラズマ生成室へ導入する導波管に、TEmn+ T
Mmn (m、 n :整数。A plasma device according to the present invention introduces microwaves into a plasma generation chamber, applies a magnetic field, and generates plasma by electron cyclotron resonance excitation. TEmn+T in the waveguide introduced into
Mmn (m, n: integer.
n≠0)モードのマイクロ波を右回り円偏波に変換させ
る円偏波発生器を設けたことを特徴とする。The present invention is characterized in that it includes a circularly polarized wave generator that converts microwaves in the n≠0) mode into right-handed circularly polarized waves.
マイクロ波発振器から発振されたマイクロ波をプラズマ
生成室へ導入する導波管に設けられた円偏波発生器にT
Es+n+ TMmn (m、 n :整数、n≠O
)モードのマイクロ波が伝送されると、マイクロ波は右
回り円偏波に変換される。この右回り円偏波はプラズマ
生成室へ尋人され、ECR励起により効率良く吸収され
る。A circularly polarized wave generator installed in a waveguide that introduces microwaves oscillated from a microwave oscillator into the plasma generation chamber is
Es+n+ TMmn (m, n: integer, n≠O
) mode of microwaves is converted to right-handed circularly polarized waves. This right-handed circularly polarized wave is transmitted to the plasma generation chamber and efficiently absorbed by ECR excitation.
以下本発明をCVD装置として構成した実施例について
図面に基づき具体的に説明する。第1図は本発明に係る
プラズマ装置の縦断面模式図であり、前記第4図の従来
装置と同様に、プラズマ生成室31は周囲壁を2重構造
にして冷却水の通流路31aを備え、また−側壁中央に
は石英ガラス板31bにて封止したマイクロ波導入口3
1cを、更にマイクロ波導入口31cと対向する他側壁
中央にはプラズマ引出窓31dを夫々備えており、この
プラズマ引出窓31dに臨ませて試料室34が配設され
る。マイクロ波導入口31cには他端をマイクロ波発振
器33に接続したマイクロ波導波管32a、 32b、
32c、 32dの一端が接続され、プラズマ生成室
31及びこれに接続した導波管32a、 32b、 3
2c、 32dの一端部にわたってこれらを囲むように
励磁コイル35が同心状に配設される。EMBODIMENT OF THE INVENTION Hereinafter, an embodiment in which the present invention is configured as a CVD apparatus will be described in detail based on the drawings. FIG. 1 is a schematic vertical cross-sectional view of a plasma device according to the present invention. Similar to the conventional device shown in FIG. Also, in the center of the side wall is a microwave inlet 3 sealed with a quartz glass plate 31b.
1c is further provided with a plasma extraction window 31d at the center of the other side wall facing the microwave introduction port 31c, and a sample chamber 34 is arranged facing the plasma extraction window 31d. The microwave inlet 31c includes microwave waveguides 32a, 32b whose other ends are connected to the microwave oscillator 33.
One ends of 32c and 32d are connected to the plasma generation chamber 31 and waveguides 32a, 32b, 3 connected thereto.
An excitation coil 35 is disposed concentrically over one end of 2c and 32d so as to surround them.
反応室34内にはウェーハ等の試料Sを装置する試料台
36が前記プラズマ引出窓31dと対向させて配設され
ており、その後面側に位置する試料室34の後壁には図
示しない排気装置に連なる排気口37が開口される。In the reaction chamber 34, a sample stage 36 on which a sample S such as a wafer is placed is arranged facing the plasma extraction window 31d, and an exhaust gas (not shown) is provided on the rear wall of the sample chamber 34 located on the rear side. An exhaust port 37 connected to the device is opened.
マイクロ波発振器33から発振されたマイクロ波は矩形
導波管32aに伝送された後、・TE、。モードのマイ
クロ波として矩形・円形変換器32bに伝送され、円形
TE、モードのマイクロ波に変換される。After the microwave oscillated from the microwave oscillator 33 is transmitted to the rectangular waveguide 32a, TE. It is transmitted as a mode microwave to the rectangular/circular converter 32b, where it is converted into a circular TE mode microwave.
更にこのTEzモードのマイクロ波は円偏波発生器32
cへ伝送され、ECRによりプラズマを生成せしめるた
めに有用なR波に変換される。Furthermore, this TEz mode microwave is transmitted to a circularly polarized wave generator 32.
c and is converted into R waves useful for generating plasma by ECR.
第2図は円偏波発生器32cの横断面図であり、基本モ
ードがTE、モードである円形導波管の壁面部に例えば
アルミニウム等の金属板C1及びC2が入射電界に対し
て45°の位置に対向させて取り付けられている。これ
により入射波に位相差が生じ、R波のみが円形導波管3
2dへ伝送される。更にこのR波は石英ガラス仮31b
、マイクロ波導入口31cを通じてプラズマ生成室31
内に導入され、ECR励起により吸収され、プラズマを
生成せしめる。FIG. 2 is a cross-sectional view of the circularly polarized wave generator 32c, in which the fundamental mode is TE, and metal plates C1 and C2 made of aluminum or the like are placed on the wall of the circular waveguide at an angle of 45 degrees to the incident electric field. It is installed opposite the position. This causes a phase difference in the incident waves, and only the R wave enters the circular waveguide 3.
2d. Furthermore, this R wave is caused by the quartz glass temporary 31b.
, the plasma generation chamber 31 through the microwave inlet 31c.
is introduced into the atmosphere, absorbed by ECR excitation, and generates plasma.
上述した本発明のプラズマ装置及び従来のプラズマ装置
において、マイクロ波の周波数を2.45GHz 。In the plasma device of the present invention and the conventional plasma device described above, the microwave frequency is 2.45 GHz.
矩形導波管32aは縦109.22鶴、横54.61鶴
、長さ200龍、矩形・円形変換器32bは4ji81
.13 am、横67.82龍、長さ46.66 am
、円偏波発生器32cは内径84+em、長さ165.
71軌対向する金属板の距離72龍、円形導波管32d
は内径84m++、長さ100龍、プラズマ生成室31
は内径84龍、長さ100nとし、図示しないガス供給
系よりプラズマ生成室31内にガス圧力3.5 X 1
0”TorrのN2ガスを30secm供給し、励磁コ
イル35にて875Gaussの磁界を形成し゛、マイ
クロ波入射電力2.0kWによりプラズマを生成した。The rectangular waveguide 32a has a length of 109.22 mm, a width of 54.61 mm, and a length of 200 mm, and the rectangular/circular converter 32b has a length of 4 ji81 mm.
.. 13 am, width 67.82 am, length 46.66 am
, the circularly polarized wave generator 32c has an inner diameter of 84+em and a length of 165.
71 track Distance between opposing metal plates 72 long, circular waveguide 32 d
has an inner diameter of 84m++, a length of 100mm, and a plasma generation chamber of 31mm.
has an inner diameter of 84mm and a length of 100n, and a gas pressure of 3.5 x 1 is supplied into the plasma generation chamber 31 from a gas supply system (not shown).
N2 gas of 0'' Torr was supplied for 30 seconds, a magnetic field of 875 Gauss was formed by the excitation coil 35, and plasma was generated by microwave incident power of 2.0 kW.
その際、プラズマ生成室31内にラングミューアブロー
ブを設けて、反射電力及びプラズマ密度を測定したとこ
ろ、本発明装置においては、反射電力0.1kW、プラ
ズマ密度1.6X10”cm−’であった。At that time, a Langmuir probe was installed in the plasma generation chamber 31 to measure the reflected power and plasma density, and in the device of the present invention, the reflected power was 0.1 kW and the plasma density was 1.6 x 10"cm-'. .
一方導波管に円偏波発生器を設けない従来のプラズマ装
置にて上記と同条件でプラズマを生成した場合の反射電
力は0.7kW、プラズマ密度は8X1010cm −
’であった。On the other hand, when plasma is generated under the same conditions as above using a conventional plasma device without a circularly polarized wave generator in the waveguide, the reflected power is 0.7 kW and the plasma density is 8 x 1010 cm -
'Met.
これにより明らかなように、本発明装置においては、従
来のものと比べてプラズマ生成室内の反射電力が減少し
、プラズマ密度が大きくなり、マイクロ波のプラズマに
よる吸収効率が向上し、効率良くプラズマが生成される
。As is clear from this, in the device of the present invention, compared to the conventional device, the reflected power inside the plasma generation chamber is reduced, the plasma density is increased, the absorption efficiency of microwaves by the plasma is improved, and the plasma is efficiently generated. generated.
なお、本実施例においてはTE、、モードのマイクロ波
を円偏波発生器により右回り円偏波に変換させたが、円
偏波発生器の内径、または長さ、金属板の形状等を変化
させることにより、TE、、、 TMffi。In this example, the TE mode microwave was converted to right-handed circularly polarized waves by a circularly polarized wave generator, but the inner diameter or length of the circularly polarized wave generator, the shape of the metal plate, etc. By varying TE,..., TMffi.
(m、n:整数、n≠0)モードのマイクロ波であれば
どのようなマイクロ波でも右回り円偏波に変換させるこ
とができ、上述と同様の効果が得られる。Any microwave in the (m, n: integer, n≠0) mode can be converted into a right-handed circularly polarized wave, and the same effect as described above can be obtained.
また、上記実施例では、原料ガスをプラズマ生成室に導
入する例を示したが、原料ガスは試料室に導入してもよ
い。導入された原料ガスはプラズマ生成室に拡散するの
で、プラズマ生成室に導入した場合と同様な効果が得ら
れる。Further, in the above embodiment, an example was shown in which the source gas is introduced into the plasma generation chamber, but the source gas may also be introduced into the sample chamber. Since the introduced raw material gas diffuses into the plasma generation chamber, the same effect as when introduced into the plasma generation chamber can be obtained.
以上詳述した如く、本発明装置においては、TE□。 As detailed above, in the device of the present invention, TE□.
TM、lIn (m、 rl :整数、n≠0)モー
ドのマイクロ波を右回りの円偏波に変換させた後にプラ
ズマ生成室へ導入するので、プラズマ生成室内の反射が
減少しECR励起によるマイクロ波の吸収効率が向上し
、効率の良いプラズマの生成が行われる。TM, lIn (m, rl: integers, n≠0) mode microwaves are converted into clockwise circularly polarized waves before being introduced into the plasma generation chamber, reducing reflections within the plasma generation chamber and reducing microwaves due to ECR excitation. The wave absorption efficiency is improved and plasma is generated efficiently.
第1図は本発明に係るプラズマ装置の縦断面模式図、第
2図は本発明に係るプラズマ装置に用いる円偏波発生器
の横断面模式図、第3図はR彼及びL波の屈折率の磁場
依存性を示すグラフ、第・1図は従来のプラズマ装置の
縦断面模式図である。
31・・・プラズマ生成室 32(、・・・円偏波発生
器33・・・マイクロ波発振器 35・・・励Cコ)コ
イル特 許 出願人 住友金属工業目:武会社代理人
弁理士 河 野 登 夫2a
図
図
第
・Z
(βC,/ヮ
酩
VFig. 1 is a schematic longitudinal cross-sectional view of a plasma device according to the present invention, Fig. 2 is a schematic cross-sectional view of a circularly polarized wave generator used in the plasma device according to the present invention, and Fig. 3 is a refraction of R and L waves. FIG. 1 is a graph showing the dependence of the rate on the magnetic field, and is a schematic vertical cross-sectional view of a conventional plasma device. 31...Plasma generation chamber 32 (,...Circularly polarized wave generator 33...Microwave oscillator 35...Excitation C) Coil patent Applicant: Sumitomo Metal Industries, Ltd. Name: Take Company Agent Patent attorney Kawa No Noboru 2a Diagram No. Z (βC, /ヮ酩V
Claims (1)
界を印加し、電子サイクロトロン共鳴励起によりプラズ
マを生成させるプラズマ装置において、 マイクロ波発振器から発振されたマイクロ 波をプラズマ生成室へ導入する導波管に、TE_m_n
TM_m_n(m、n:整数、n≠0)モードのマイク
ロ波を右回り円偏波に変換させる円偏波発生器を設けた
ことを特徴とするプラズマ装置。[Claims] 1. In a plasma device that introduces microwaves into a plasma generation chamber, applies a magnetic field, and generates plasma by electron cyclotron resonance excitation, the microwaves oscillated from a microwave oscillator are transmitted to the plasma generation chamber. TE_m_n in the waveguide introduced into
A plasma device comprising a circularly polarized wave generator that converts a TM_m_n (m, n: integer, n≠0) mode microwave into a right-handed circularly polarized wave.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63293041A JPH02139900A (en) | 1988-11-18 | 1988-11-18 | plasma equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63293041A JPH02139900A (en) | 1988-11-18 | 1988-11-18 | plasma equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02139900A true JPH02139900A (en) | 1990-05-29 |
Family
ID=17789721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63293041A Pending JPH02139900A (en) | 1988-11-18 | 1988-11-18 | plasma equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02139900A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0725164A3 (en) * | 1992-01-30 | 1996-10-09 | Hitachi Ltd | Method and device for plasma generation and method for processing a semiconductor |
-
1988
- 1988-11-18 JP JP63293041A patent/JPH02139900A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0725164A3 (en) * | 1992-01-30 | 1996-10-09 | Hitachi Ltd | Method and device for plasma generation and method for processing a semiconductor |
US5646489A (en) * | 1992-01-30 | 1997-07-08 | Hitachi, Ltd. | Plasma generator with mode restricting means |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0197399A (en) | Plasma processing method and device | |
JPH10512391A (en) | Apparatus for generating plasma by plasma induced microwave energy | |
JPS63216298A (en) | Plasma generating treatment apparatus | |
JPS63142636A (en) | Vacuum apparatus | |
JPH01184923A (en) | Plasma processor optimum for etching, ashing, film formation and the like | |
JPH02139900A (en) | plasma equipment | |
JPH10199698A (en) | Plasma treatment device | |
JP3021117B2 (en) | Electron cyclotron resonance plasma CDV system | |
JPH0217636A (en) | dry etching equipment | |
WO1996003019A1 (en) | Plasma processing device | |
JP2009146837A (en) | Surface wave exciting plasma treatment device | |
JP3136386B2 (en) | Plasma processing equipment | |
JP2857090B2 (en) | Microwave-excited plasma processing equipment | |
JP3042347B2 (en) | Plasma equipment | |
JPH0614521B2 (en) | Microwave plasma processing equipment | |
JP2639292B2 (en) | ECR plasma processing equipment | |
JPH0673567A (en) | Microwave plasma treatment device | |
JP2836329B2 (en) | Plasma apparatus and plasma processing method | |
JPH02119100A (en) | plasma equipment | |
JPS63316427A (en) | Ecr plasma reaction device | |
JPH0390577A (en) | Microwave plasma processing equipment | |
JP2721856B2 (en) | Plasma generator | |
JPH01122123A (en) | Plasma processor | |
JP2727748B2 (en) | Microwave plasma generator | |
JPH04141594A (en) | Method and device for plasma treatment |