[go: up one dir, main page]

JPH02138963A - Cell culture method and device - Google Patents

Cell culture method and device

Info

Publication number
JPH02138963A
JPH02138963A JP1217338A JP21733889A JPH02138963A JP H02138963 A JPH02138963 A JP H02138963A JP 1217338 A JP1217338 A JP 1217338A JP 21733889 A JP21733889 A JP 21733889A JP H02138963 A JPH02138963 A JP H02138963A
Authority
JP
Japan
Prior art keywords
region
cells
partition wall
culture
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1217338A
Other languages
Japanese (ja)
Other versions
JP2810140B2 (en
Inventor
Hideo Kawaguchi
英夫 川口
Koji Takeuchi
康二 竹内
Hitoshi Ishibashi
整 石橋
Norio Shimizu
清水 範夫
Yoji Otahara
緒田原 蓉二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1217338A priority Critical patent/JP2810140B2/en
Priority to US07/505,326 priority patent/US5151362A/en
Publication of JPH02138963A publication Critical patent/JPH02138963A/en
Application granted granted Critical
Publication of JP2810140B2 publication Critical patent/JP2810140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To suppress liquid flow so as not to increase the number of cells moving from the first to the second zones from that of the cells increasing in the first zone and carry out supply of nutrient sources and removal of waste materials for a long period by moving the nutrient sources and waste materials through a partition wall. CONSTITUTION:An apparatus is composed of an inner vessel part 102, divided with a cylindrical partition wall 104 having the closed bottom and suspending cells, an outer vessel part 103 for flowing a liquid and a jacket 105 for circulating warm water for keeping the temperature of the culture vessel 101 constant. The number of cells moving from the inner vessel 102 through the partition wall 104 to the outer vessel 103 is reduced. The liquid is fed from a culture medium feed pipe 106 to the outer vessel 103 with a pump 108 and taken out of the outer vessel part 103 through a taking out pipe 107 with a pump 109. The flow rates of the pumps 108 and 109 are changed manually or using a control computer.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本命′明は細胞の培養に係り、とくに浮遊状態で増殖さ
れる細胞の高密度大量培養に好適な細胞培養方法ならび
にその培養装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to cell culture, and particularly to a cell culture method suitable for high-density, large-scale culture of cells grown in suspension, and a culture device therefor.

〔従来の技術〕[Conventional technology]

動物細胞の大量培養は、医薬品・診断薬に用いられる生
理活性物質などの生産手段どして重要な技術である。
Mass culture of animal cells is an important technology as a means of producing physiologically active substances used in pharmaceuticals and diagnostic agents.

動物細胞は、浮遊状態で増殖できるものと、固体表面に
付着した状態でのみ生育するものに大別される。前者の
浮遊培養を可能にする装置として、スピンナーフラスコ
、ローターボ1−ル、あるいは機械撹拌式培養槽などが
用いられている。しかし、上記装置を用いた培養では、
一定量の栄養源の中で培養されるため、多くの細胞系に
おいて1×1、 O’cel]、s/m Q程度の細胞
濃度しか得られていない。さらに高い細胞濃度まで培養
する方法として、培養して得られた細胞を無菌的に遠心
分離などにより培養液から分離して集め、新鮮な培地に
再浮遊して培養する方法が知られている。即ち、細胞が
排出し培養液中に蓄積した老廃物を除き、新たに新鮮培
地を添加して栄養源を供給することで高い細胞濃度が得
られる。ところが、遠心分離などの操作を繰り返すこと
は、培養系内への雑菌の侵入を招きやすく、操作も煩雑
である。したがって、連続的に培養系へ栄養源を供給し
、培養系から老廃物を除去する方法が望ましい。
Animal cells are broadly divided into those that can grow in suspension and those that grow only when attached to solid surfaces. As devices that enable the former type of floating culture, a spinner flask, a rotor bottle, or a mechanically stirred culture tank is used. However, in culture using the above device,
Since cells are cultured in a fixed amount of nutrient source, in many cell lines only a cell concentration of about 1×1, O'cel], s/m Q can be obtained. As a method for culturing to an even higher cell concentration, a method is known in which the cultured cells are aseptically separated from the culture solution by centrifugation, collected, resuspended in a fresh medium, and cultured. That is, a high cell concentration can be obtained by removing waste products excreted by the cells and accumulated in the culture solution, and adding a fresh medium to supply a nutrient source. However, repeating operations such as centrifugation tends to invite the invasion of various bacteria into the culture system, and the operations are complicated. Therefore, a method that continuously supplies nutrients to the culture system and removes waste products from the culture system is desirable.

この連続的な栄養源供給と老廃物除去を実現するために
は、細胞に損傷を与えず、長期間安定な細胞分離方法が
必要である。近年、この連続的な栄養源供給と老廃物除
去を行う細胞の高密度大量培養方法がいくつか提案され
ている。例えば、回転軸に平行な面を有する筒形フィル
タを回転させて、フィルタの目詰りを遠心力で防ぎなが
ら濾過によって培養液を入れ替える方法および装置があ
る(米国特許筒3,647,632号)。また、培養槽
内に槽底部に開口部を有する細胞を沈降させるための管
を設け、細胞が沈降した結果得られる上清を培養槽外に
排出しながら新鮮培地を加える方法および装置がある(
特公昭61−36915号公報)。他に、選択された栄
養源、老廃物または気体について特異的な透過性を有す
る半透膜を用い、細胞を含む培養液および細胞を含まな
い液を−に記半透膜の両側に膜と平行に流し、上記半透
膜を介した拡散によって栄養源、老廃物または気体を細
胞を含む培養液へ供給あるいは上記培養液から排出し細
胞を培養する方法および装置がある(特開昭59−17
5877号、特開昭5917E)878号各公報)。
In order to achieve this continuous supply of nutrients and removal of waste products, a cell separation method that does not damage cells and is stable over a long period of time is required. In recent years, several methods have been proposed for high-density, mass-culture of cells that continuously supply nutrients and remove waste products. For example, there is a method and apparatus in which a cylindrical filter having a surface parallel to the rotation axis is rotated to replace the culture solution through filtration while preventing clogging of the filter by centrifugal force (US Pat. No. 3,647,632). . There is also a method and apparatus in which a tube for sedimentation of cells is provided in the culture tank with an opening at the bottom of the tank, and a fresh medium is added while draining the supernatant obtained as a result of sedimentation of the cells to the outside of the culture tank (
(Special Publication No. 61-36915). Alternatively, a semipermeable membrane with specific permeability for selected nutrients, waste products, or gases may be used to separate the cell-containing culture medium and the cell-free liquid on both sides of the semipermeable membrane. There is a method and apparatus for culturing cells by supplying nutrients, waste products, or gases to a culture solution containing cells by flowing them in parallel, and by diffusion through the semipermeable membrane, or by discharging them from the culture solution (Japanese Patent Application Laid-Open No. 1983-1999). 17
No. 5877, Japanese Unexamined Patent Publication No. 5917E) and No. 878).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、フィルタを用いる細胞分離方法では、長
期間使用すると目詰まりを起こしやすいためこれを防ぐ
工夫が必要であるが、工業レベルの使用に耐えるものは
未だない。また、沈降管を用いる方法では、細胞を沈降
管内に長時間静置しなければならないため、酸欠による
細胞の損傷の問題が生ずる。他に、選択された栄養源、
老廃物または気体について特異的な透過性を有する半透
膜を用いる方法では、分子の選択透過を行うため膜の孔
径が非常に小さく、膜を介しての栄養源または老廃物の
拡散速度が小さい。したがって、高密度大量培養時にこ
れら物質の充分な拡散量を得ることは困難である。また
、上記半透膜は機械的強度が低く、長期間にわたる培養
に適さない。
However, cell separation methods using filters tend to become clogged when used for a long period of time, so it is necessary to devise ways to prevent this, but there is still no method that can withstand industrial-level use. Furthermore, in the method using a sedimentation tube, cells must be left stationary in the sedimentation tube for a long time, resulting in the problem of cell damage due to oxygen deficiency. In addition, selected nutritional sources,
In methods using semipermeable membranes that have specific permeability for waste products or gases, the pore size of the membrane is very small to allow selective permeation of molecules, and the diffusion rate of nutrients or waste products through the membrane is low. . Therefore, it is difficult to obtain a sufficient amount of diffusion of these substances during high-density, large-scale culture. Furthermore, the semipermeable membrane has low mechanical strength and is not suitable for long-term culture.

一 本発明の目的は、上記の問題点をふまえ、細胞に損傷を
与えず、長期間にわたり安定な栄養源供給および老廃物
除去が行え、浮遊状態で増殖できる細胞の高密度大量培
養に好適である培養方法および装置を提供することにあ
る。
In view of the above problems, an object of the present invention is to provide a system that does not damage cells, can stably supply nutrients and remove waste products over a long period of time, and is suitable for high-density, large-scale culture of cells that can grow in suspension. An object of the present invention is to provide a culture method and device.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するための手段を以下に詳細に述べる。 The means for achieving the above objective will be described in detail below.

本発明の第1の特徴は、細胞が通過可能な径の孔を有す
る隔壁により、細胞の浮遊した培養液の存在する第1領
域と生理緩衝液または栄養源を含む液の存在する第2領
域とを分け、隔壁を介して第1領域と第2領域の間で栄
養源、老廃物または生産物の少なくとも一つを移動させ
、さらに、隔壁を介して第1領域から第2領域へ移動す
る細胞の数が、第1−領域で増殖により増加する細胞の
数を超えないよう、隔壁を介した液流を抑える細胞の培
養方法にある。
The first feature of the present invention is that the partition wall has holes with a diameter that allows cells to pass through, so that a first region in which a culture solution with suspended cells exists and a second region in which a solution containing a physiological buffer or a nutrient source exists. and moving at least one of a nutrient source, a waste product, or a product between the first region and the second region via the partition wall, and further moving from the first region to the second region via the partition wall. A method for culturing cells that suppresses liquid flow through a partition wall so that the number of cells does not exceed the number of cells that increases due to proliferation in the first region.

本発明の第2の特徴は、細胞が通過可能な径の孔を有す
る隔壁により、細胞の浮遊した培養液の存在する第1領
域と生理緩衝液または栄養源を含む液の存在する第2領
域とが分けられた培養槽を有し、隔壁を介して第」領域
と第2領域の間で栄養源、老廃物または生産物の少なく
とも一つを移動させる手段、および、隔壁を介して第1
領域から第2領域へ移動する細胞の数が、第1領域で増
殖により増加する細胞の数を超えないよう、隔壁を介し
た液流を抑える手段を有する細胞の培養装置にある。
A second feature of the present invention is that the partition wall has holes with a diameter that allows cells to pass through, so that a first region in which a culture solution with suspended cells exists and a second region in which a solution containing a physiological buffer or a nutrient source exists. means for moving at least one of a nutrient source, a waste product, or a product between the first region and the second region via a partition wall;
The cell culturing device has means for suppressing liquid flow through a partition wall so that the number of cells migrating from the region to the second region does not exceed the number of cells increasing in the first region due to proliferation.

隔壁を介した第1領域と第2領域の間における栄養源、
老廃物または生産物の移動は、第1領域および/または
第2領域に培地を添加し、第2領域から培地を抜き出す
ことで実現できる。
a nutrient source between the first region and the second region via the partition;
Transfer of waste products or products can be achieved by adding a medium to the first region and/or the second region and withdrawing the medium from the second region.

ここで、隔壁を介して第1領域から第2領域へ移動する
細胞の数が、第1領域で増殖により増加する細胞の数を
超えないなら、第1領域の細胞数は増加する。しかしな
がら、効率的な培養を行うには、上記移動する細胞の数
をなるべく少なくすることが望ましい。上記細胞の移動
は隔壁を介した液流による。そこで、第1領域に培地を
添加する場合は、添加流量を制御し、単位面積当りの隔
壁通過培地流速を制御することで、隔壁を介して第1領
域から第2領域へ移動する細胞の数を抑えることができ
る。また、第2領域に培地を添加する場合は、隔壁を介
した第1領域と第2領域の差圧を実質的にゼロにするこ
とで隔壁を介した液流を抑え、隔壁を介して第1領域か
ら第2領域へ移動する細胞の数を抑えることができる。
Here, if the number of cells migrating from the first region to the second region via the septum does not exceed the number of cells increasing in the first region due to proliferation, the number of cells in the first region increases. However, in order to perform efficient culture, it is desirable to reduce the number of migrating cells as much as possible. The movement of the cells is due to liquid flow through the septum. Therefore, when adding a medium to the first region, by controlling the addition flow rate and the flow rate of the medium passing through the septum per unit area, the number of cells that move from the first region to the second region through the septum can be controlled. can be suppressed. In addition, when adding the culture medium to the second region, the pressure difference between the first region and the second region through the partition wall is made substantially zero, thereby suppressing the liquid flow through the partition wall, and adding the medium through the partition wall. The number of cells migrating from one region to the second region can be suppressed.

隔壁を介した第1領域と第2領域の差圧を実質的にゼロ
にするには、第1領域の気相部と第2領域の気相部の圧
力を等しくすることで実現できる。ここで、第2領域に
培地を添加する場合、隔壁を介する物質の移動は主に拡
散による。この拡散のドライビングフォースは第1領域
と第2領域の物質の濃度差である。
The pressure difference between the first region and the second region through the partition wall can be made substantially zero by making the pressures of the gas phase portion of the first region equal to the pressure of the gas phase portion of the second region. Here, when adding a medium to the second region, the movement of substances through the partition wall is mainly due to diffusion. The driving force of this diffusion is the concentration difference between the substances in the first region and the second region.

細胞が通過可能な径の孔を有する隔壁を用いて第1領域
に培地を添加する場合は、小さな径の孔を有する隔壁を
用いた時に比して、隔壁の目詰まりが生じにくく、普通
常時必要となる逆洗も、数週間の培養ではほとんど不要
である。したがって、装置構成が簡素になり、運転操作
が極めて楽になる。また、数カ月に及ぶ培養では、細胞
が通過可能な径の孔を有する隔壁を用いても目詰りが生
じることがあるが、この目詰りは、隔壁を介した第2領
域から第1領域への液流による短時間の逆洗。
If the medium is added to the first region using a septum that has pores that allow cells to pass through, the septum is less likely to become clogged than when a septum that has pores that are small in diameter is used. The required backwashing is also largely unnecessary for several weeks of culture. Therefore, the device configuration becomes simple and operation becomes extremely easy. In addition, during culture for several months, clogging may occur even when using a septum with holes large enough for cells to pass through. Short-term backwashing with liquid flow.

または隔壁を介した第1領域から第2領域への液流によ
る短時間の閉塞物の強制的な押出しにより、容易に回復
可能である。例えば、逆洗操作は、第2領域に培地を急
速に添加し、第1、第2領域間に発生した静水圧差によ
る、隔壁を介した第2領域から第1領域への短時間の液
流を作ることで、特別な装置なしに容易に行うことがで
きる。また、閉塞物の強制的な押出し操作は、第1領域
に培地を急速に添加し、第1、第2領域間に発生した静
水圧差による、隔壁を介した第1領域から第2領域への
短時間の液流を作ることで、特別な装置なしに容易に行
うことができる。さらに、細胞が通過可能な径の孔を有
する隔壁を用いると、細胞の破片や細胞の排出する高分
子の老廃物が容易に通過するため、これによる増殖阻害
を避けることができる。次に、細胞が通過可能な径の孔
を有する隔壁を用いて第2領域に培地を添加する場合は
、小さな径の孔を有する隔壁、例えば半透膜を用いた時
に比して隔壁を介した物質の移動速度が大きいため、高
密度大量培養が容易になる。
Alternatively, the obstruction can be easily recovered by forcibly extruding the obstruction for a short period of time by a liquid flow from the first region to the second region through the partition wall. For example, a backwash operation involves rapidly adding a culture medium to a second region, and causing a short period of liquid flow from the second region to the first region through a partition wall due to the hydrostatic pressure difference generated between the first and second regions. By creating a flow, it can be easily done without any special equipment. In addition, the forced extrusion operation of the occluded material is performed by rapidly adding the culture medium to the first region, and moving from the first region to the second region via the partition wall due to the hydrostatic pressure difference generated between the first and second regions. This can be easily done without special equipment by creating a short-term liquid flow. Furthermore, if a partition wall having pores with a diameter that allows cells to pass through is used, cell debris and polymeric waste products excreted by cells can easily pass through, thereby avoiding inhibition of growth. Next, when adding the medium to the second region using a septum having a diameter that allows cells to pass through, it is easier to add the medium to the second region through the septum than when using a septum having small diameter pores, for example, a semipermeable membrane. The high rate of movement of these substances facilitates high-density, large-scale culture.

上記本発明の特徴により、細胞にとって良好な培養条件
を容易に維持することができ、さらにコンパクトな装置
を作ることが可能となり、細胞の高密度大量培養が容易
となる。
Due to the features of the present invention described above, it is possible to easily maintain culture conditions favorable to cells, and it is also possible to create a compact device, thereby facilitating high-density, large-scale culture of cells.

以下、図面によって、本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to the drawings.

第1図は本発明の培養装置の一例を示す概略図である。FIG. 1 is a schematic diagram showing an example of the culture apparatus of the present invention.

この第1図においては、底部の閉じた円筒形の隔壁10
4によって分けられた細胞を浮遊させる内槽部102と
液を流通させる外槽部103、および培養槽101の温
度を一定に保つため温水を循環させるジャケット105
とにより装置が構成される。隔壁104を底部の閉じた
円筒形にすることによって攪拌のデッドゾーンが無くな
り、穏和な攪拌条件を選ぶことができる。
In this FIG. 1, a cylindrical bulkhead 10 with a closed bottom is shown.
4, an inner tank part 102 in which the cells separated by 4 are suspended, an outer tank part 103 in which the liquid flows, and a jacket 105 in which hot water is circulated to keep the temperature of the culture tank 101 constant.
The device is configured by: By forming the partition wall 104 into a cylindrical shape with a closed bottom, there is no dead zone of stirring, and mild stirring conditions can be selected.

隔壁104は、5US316L製フアイバを加熱圧着し
円筒形に成型した織布状材(商品名SUSファイバーフ
ィルタ 5F−05)で構成され、その孔径は公称5μ
mである。しかしながら、隔壁104を構成する材料は
、特に上記織布状材に限定されるものではなく、細胞の
増殖の阻害にならないものであればよい。ただし、細胞
が付着しにくいものであることが望ましい。例えば、ポ
リテトラフルオロエチレン、セラミックスなども用いる
ことができる。また、隔壁104を、内槽部102の細
胞が持つ静電荷と同じ極性の静電荷を持つ材料より構成
することもできる。この材料を用いると、電気的な斥力
により細胞が隔壁104に近づきにくく、隔壁104を
介して内槽部102から外槽部103へ移動する細胞の
数を少なくすることができる。この材料には、イオン性
の基を主鎖に付加したオレフィンポリマーなどがある。
The partition wall 104 is composed of a woven fabric material (trade name: SUS fiber filter 5F-05) made by heating and pressing 5US316L fibers and molding them into a cylindrical shape, and the pore diameter thereof is nominally 5μ.
It is m. However, the material constituting the partition wall 104 is not particularly limited to the above-mentioned woven material, and may be any material as long as it does not inhibit cell proliferation. However, it is desirable that cells are difficult to adhere to. For example, polytetrafluoroethylene, ceramics, etc. can also be used. Further, the partition wall 104 can also be made of a material having an electrostatic charge of the same polarity as the electrostatic charge held by the cells in the inner tank portion 102. When this material is used, it is difficult for cells to approach the partition wall 104 due to electrical repulsion, and the number of cells that migrate from the inner tank section 102 to the outer tank section 103 via the partition wall 104 can be reduced. These materials include olefin polymers with ionic groups added to their main chains.

さらに、隔壁104に、内槽部102の細胞が持つ静電
荷と同じ極性の電位をかけることで上記と同じ電気的な
斥力の効果を得ることができる。この場合、隔壁104
の印加電圧は、液の電気分解が生じないよう、微弱な電
圧であることが望ましい。また、隔壁104には、孔内
における実際の培地流速をなるべく小さくするため、孔
の数が多いものを用いることが望ましい。より好ましく
は織布状材または多孔質材より成る隔壁を用いることが
望ましい。さらに、隔壁104は成形性が良く機械的強
度が高いものが望ましい。培養装置の容量や形状に合わ
せて隔壁を自由に構成することができ、長期間にわたる
培養にも耐えるからである。また、隔壁104の最適な
孔径は、細胞の種類や隔壁材の性質によって決定される
Furthermore, by applying a potential of the same polarity to the partition wall 104 as the electrostatic charge held by the cells in the inner tank 102, the same electrical repulsion effect as described above can be obtained. In this case, the partition wall 104
The applied voltage is preferably a weak voltage so as not to cause electrolysis of the liquid. Furthermore, it is desirable to use a partition wall 104 with a large number of holes in order to reduce the actual medium flow rate within the holes as much as possible. It is more preferable to use partition walls made of a woven material or a porous material. Further, it is desirable that the partition wall 104 has good moldability and high mechanical strength. This is because the partition wall can be freely configured according to the capacity and shape of the culture device, and it can withstand long-term culture. Further, the optimum pore diameter of the partition wall 104 is determined depending on the type of cell and the properties of the partition material.

ポンプ108を用いて培地供給管124から内槽部10
2へおよび/または培地供給管106から外槽部103
へ液を供給し、ポンプ109を用いて抜き出し管107
から外槽部103より液を抜き出す。これらのポンプ1
08.109の流量は手動または制御用コンピュータの
指示により変えられる。
From the culture medium supply pipe 124 to the inner tank section 10 using the pump 108
2 and/or from the culture medium supply pipe 106 to the outer tank section 103
The liquid is supplied to the extraction pipe 107 using the pump 109.
The liquid is extracted from the outer tank part 103. these pumps 1
08.109 flow rate can be changed manually or by instructions from the control computer.

レベルセンサ121を用いて内槽部液面高さを監視しな
がらポンプ108および109の流量を制御すると、内
槽部液面高さの維持ができる。ポンプ108を用いて内
槽部102へ液を供給し、ポンプ109を用いて外槽部
103より液を抜き出す場合、隔壁の目詰りが生じて隔
壁の通過可能培地流速が小さくなると、内槽部液面が上
昇する。
By controlling the flow rates of the pumps 108 and 109 while monitoring the inner tank liquid level using the level sensor 121, the inner tank liquid level can be maintained. When the pump 108 is used to supply the liquid to the inner tank part 102 and the pump 109 is used to extract the liquid from the outer tank part 103, if the partition wall becomes clogged and the medium flow rate that can pass through the partition wall decreases, the inner tank part The liquid level rises.

この液面上昇をレベルセンサ121で感知したとき、ポ
ンプ108を止め、ポンプ109を逆転させて第2領域
に所定量の培地を急速に添加すれば、第1、第2領域間
に発生した静水圧差により隔壁を介した第2領域から第
1領域への液流が生じ、隔壁の逆洗ができる。逆洗操作
後、ポンプ109を用いて外槽部103より液を抜き出
して平常の内槽部液面高さに戻せば、ポンプ108およ
びポンプ109を用いた平常の液面制御に戻ることがで
きる。
When this liquid level rise is detected by the level sensor 121, if the pump 108 is stopped and the pump 109 is reversed to quickly add a predetermined amount of culture medium to the second area, the static The water pressure difference causes a liquid flow from the second region to the first region through the partition wall, allowing backwashing of the partition wall. After the backwashing operation, if the pump 109 is used to draw out the liquid from the outer tank section 103 and return it to the normal inner tank liquid level, it is possible to return to the normal liquid level control using the pumps 108 and 109. .

培地供給管106より供給される液には、生理緩衝液、
培地などを用いることができる。好ましくは、培地を用
いるのが望ましい。さらに、供給管IQ6より供給され
る液には、新鮮な培地、あるいは抜き出し管]−07か
ら外槽部103より抜き出した培地と新鮮な培地を適当
な割合で混合した液などを用いることができる。培地供
給管124より供給される液には、培地を用いることが
できる。さらに、新鮮な培地、あるいは抜き出し管1.
07から外槽部103より抜き出した培地と新鮮な培地
を適当な割合で混合した液などを用いることができる。
The liquid supplied from the medium supply pipe 106 includes physiological buffer,
A culture medium etc. can be used. Preferably, a medium is used. Furthermore, the liquid supplied from the supply pipe IQ6 may be a fresh culture medium or a mixture of the culture medium extracted from the outer tank 103 from the extraction tube ]-07 and a fresh culture medium in an appropriate ratio. . A culture medium can be used as the liquid supplied from the culture medium supply pipe 124. In addition, fresh medium or extraction tube 1.
A liquid obtained by mixing the culture medium extracted from the outer tank 103 with a fresh culture medium in an appropriate ratio can be used.

内槽部102の中心軸上にモーター111により即動さ
れる撹拌軸112、撹拌軸112の下部に撹拌翼113
が設けられている。内槽部102の液の撹拌方法は、撹
拌軸112に取付けた撹拌翼113の回転による機械撹
拌方式に特に限定するものではなく、内槽部102の液
中にエアーを吹き込む撹拌方式などを用いることもでき
る。ただし、培地に血清を添加している場合は発泡させ
ない方法を選定することが望ましい。また、機械撹拌方
式を用いる場合は、撹拌翼113の形状を第1図の様な
変形翼に特に限定するものではなく、パドル型、かい型
、リボン型などであってもよい。
A stirring shaft 112 is immediately moved by a motor 111 on the central axis of the inner tank part 102, and a stirring blade 113 is located below the stirring shaft 112.
is provided. The method of stirring the liquid in the inner tank part 102 is not particularly limited to a mechanical stirring method using rotation of the stirring blade 113 attached to the stirring shaft 112, but a stirring method in which air is blown into the liquid in the inner tank part 102, etc. is used. You can also do that. However, if serum is added to the medium, it is desirable to select a method that does not cause foaming. Furthermore, when a mechanical stirring method is used, the shape of the stirring blades 113 is not particularly limited to the modified blade as shown in FIG. 1, and may be paddle-shaped, paddle-shaped, ribbon-shaped, etc.

ただし、細胞が撹拌によるせん断力に比較的弱いため低
速回転でも撹拌効率の良い翼を用いることが望ましい。
However, since cells are relatively weak against the shear force caused by stirring, it is desirable to use blades with good stirring efficiency even at low speed rotation.

撹拌軸]12の回転速度は細胞が充分均一に分散する速
度以上が望ましい。
The rotation speed of the stirring shaft] 12 is preferably at least a speed at which the cells are sufficiently uniformly dispersed.

内槽部102の培養液への酸素供給方法は、培養槽10
1の形状、内槽部102および外槽部103の液量、液
の発泡性などによって選定されるため一概には特定でき
ないが、例えば、リングスパージャ−114を用いるこ
とができる。酸素含有ガスは給気管116よりリングス
パージャ114に導かれ、ノズル115より内槽部1.
02液面に吹き付けられる。液面に生じた窪みの気液界
面から分子状酸素が移動して内槽部102の培養液に酸
素が供給される。内槽部102培養液の溶存酸素濃度は
、このリングスパージャ−114から吹き付けられるガ
ス流量、ガス中の酸素分圧、モーター111の回転速度
などを変えることにより制御することができる。他の酸
素供給方法として、内槽部102の上部気相部分のガス
を交換すの液中に多孔質のスパージャ−を設けて通気す
る液内通気法などを用いることができる。また、隔壁フ
ランジ]19に設けた均圧口120により内槽部1−0
2の気相部と外槽部103の気相部の圧力差を実質的に
ゼロに保つことが可能である。
The method of supplying oxygen to the culture solution in the inner tank section 102 is as follows:
The ring sparger 114 can be used, for example, although it cannot be specified unconditionally because it is selected depending on the shape of the sparger 1, the amount of liquid in the inner tank part 102 and the outer tank part 103, the foamability of the liquid, etc. The oxygen-containing gas is led to the ring sparger 114 through the air supply pipe 116, and is then introduced into the inner tank 1 through the nozzle 115.
02 Sprayed on the liquid surface. Molecular oxygen moves from the air-liquid interface in the depression formed on the liquid surface, and oxygen is supplied to the culture solution in the inner tank section 102. The dissolved oxygen concentration of the culture solution in the inner tank section 102 can be controlled by changing the flow rate of the gas blown from the ring sparger 114, the partial pressure of oxygen in the gas, the rotational speed of the motor 111, etc. As another oxygen supply method, a sub-liquid aeration method may be used in which a porous sparger is provided in the liquid to exchange gas in the upper gas phase portion of the inner tank 102. In addition, the pressure equalizing port 120 provided in the bulkhead flange 19
It is possible to maintain the pressure difference between the gas phase portion of No. 2 and the gas phase portion of the outer tank portion 103 at substantially zero.

培養液のp H制御方法は、培養槽101の形状、培養
液の容量などによって選定されるため一概には特定でき
ないが、例えば、リングスパージャ114より内槽部1
02液面に吹き付けられるガス中の二酸化炭素濃度を変
える方法を用いることができる。他にアルカリあるいは
酸を適宜添加する方法などを用いることができる。
The pH control method of the culture solution is selected depending on the shape of the culture tank 101, the volume of the culture solution, etc., and cannot be determined unconditionally.
02 A method can be used that changes the carbon dioxide concentration in the gas blown onto the liquid surface. In addition, a method of appropriately adding an alkali or acid can be used.

内槽m1.02には、レベルセンサ121、溶存酸素濃
度センサ122、p Hセンサ123および温度センサ
(図示せず)が設置されている。給気管116および排
気管117には除菌フィルタ118が取付けである。除
菌フィルタ118は酸素含有ガス中の雑菌を除き、また
排気管117からの雑菌侵入を防ぐものである。
A level sensor 121, a dissolved oxygen concentration sensor 122, a pH sensor 123, and a temperature sensor (not shown) are installed in the inner tank m1.02. A sterilization filter 118 is attached to the air supply pipe 116 and the exhaust pipe 117. The sterilizing filter 118 removes germs from the oxygen-containing gas and prevents germs from entering through the exhaust pipe 117.

第2図は本発明の培養制御システムの一例を示す概略図
である。この第2図においては、培養装置101、底部
の閉じた円筒形の隔壁104−によって分けられた培養
装置101の細胞を浮遊させる内槽部102と液を流通
させる外槽部103、内槽部]、o2および/または外
槽部103へ供給する液を貯蔵するタンク201、外槽
部103からの回収液を貯蔵するタンク202、タンク
201から内槽部102および/または外槽部103へ
送液するポンプ108、外槽部103からタンク202
へ送液するポンプ109、恒温水槽203、恒温水槽2
03から培養装置101のジャラケット105に温水を
送るポンプ204、空気のマスフローコントローラ20
5、酸素のマスフローコントローラ206、二酸化炭素
のマスフローコントローラ207、内槽部102へ挿入
されているレベルセンサ121、溶存酸素濃度センサ1
22、pHセンサ123、温度センサ(図示せず)、モ
ーター111、および制御用コンピュータ208より構
成される。
FIG. 2 is a schematic diagram showing an example of the culture control system of the present invention. In FIG. 2, a culture device 101, an inner tank portion 102 for suspending the cells of the culture device 101 separated by a cylindrical partition wall 104 with a closed bottom, an outer tank portion 103 for circulating liquid, and an inner tank portion are shown. ], a tank 201 that stores the liquid to be supplied to o2 and/or the outer tank section 103, a tank 202 that stores the liquid recovered from the outer tank section 103, and a tank 202 that stores the liquid recovered from the outer tank section 103, and a tank 201 that is sent from the tank 201 to the inner tank section 102 and/or the outer tank section 103. Liquid pump 108, from the outer tank part 103 to the tank 202
pump 109, constant temperature water tank 203, constant temperature water tank 2
A pump 204 that sends hot water from 03 to the jacket 105 of the culture device 101, and an air mass flow controller 20.
5. Oxygen mass flow controller 206, carbon dioxide mass flow controller 207, level sensor 121 inserted into inner tank 102, dissolved oxygen concentration sensor 1
22, a pH sensor 123, a temperature sensor (not shown), a motor 111, and a control computer 208.

制御用コンピュータ208は上記各センサ1−21.1
22.123からデータを取り込み、このデータに基い
て温水送液ポンプ204の0N10FF、マスフローコ
ントローラ205.206.207の段階的な開閉操作
およびモーター111の回転数制御を行う。また、制御
用コンピュータ208はキーボード209より入力され
る内槽部102の培養液中の細胞濃度、内槽部102お
よび外槽部103の液の栄養源および老廃物の濃度など
のデータに基いて内槽部102および/または外槽部1
03へ添加する液の流量を決め、送液ポンプ108.1
09を制御する。
The control computer 208 controls each of the above sensors 1-21.1.
22 and 123, and based on this data, 0N10FF of the hot water pump 204, stepwise opening/closing operations of the mass flow controllers 205, 206, and 207, and rotation speed control of the motor 111 are performed. The control computer 208 also uses data input from the keyboard 209 such as the cell concentration in the culture solution in the inner tank section 102 and the concentration of nutrients and waste products in the solutions in the inner tank section 102 and the outer tank section 103. Inner tank part 102 and/or outer tank part 1
Decide the flow rate of the liquid to be added to the liquid feed pump 108.1.
Controls 09.

第3図は本発明の培養装置の他の一例を示す概略図であ
る。この第3図においては、中空の管状に成形された隔
壁303によって分けられる培養槽部301と管内部3
02より構成される。培養槽部301で細胞を培養し、
管内部302には液を流通させる。隔壁303は培養槽
部301中に螺旋状に設置されている。このように隔壁
303を構成することにより隔壁303の表面積を大き
くすることができる。
FIG. 3 is a schematic diagram showing another example of the culture apparatus of the present invention. In FIG. 3, a culture tank section 301 and a tube interior 3 are separated by a partition wall 303 formed into a hollow tube shape.
Consists of 02. Cultivating cells in the culture tank section 301,
A liquid is allowed to flow through the inside of the tube 302 . The partition wall 303 is installed in the culture tank section 301 in a spiral shape. By configuring the partition wall 303 in this manner, the surface area of the partition wall 303 can be increased.

第4図は本発明の培養装置の他の一例を示す概略図であ
る。この第4図においては、板状の隔壁403によって
分けられる培養槽部401と外槽部402より構成され
る。細胞は培養槽部401で培養され、外槽部402に
は液を流通させる。
FIG. 4 is a schematic diagram showing another example of the culture apparatus of the present invention. In FIG. 4, it is composed of a culture tank section 401 and an outer tank section 402, which are separated by a plate-shaped partition wall 403. Cells are cultured in a culture tank section 401, and a liquid is passed through an outer tank section 402.

隔壁403は培養槽部4−01中に水平方向の断面が2
つの長方形になるよう組合せて設置されている。ただし
、外槽部402は特に2つの領域である必要はなく、1
つあるいは3つ以上であってもよい。このように隔壁4
03を構成することにより隔壁403の表面積を大きく
することができる。
The partition wall 403 has a horizontal cross section of 2 in the culture tank section 4-01.
They are placed together to form two rectangles. However, the outer tank part 402 does not have to be two areas in particular, but one area.
There may be one or three or more. In this way, the partition wall 4
03, the surface area of the partition wall 403 can be increased.

〔作用〕[Effect]

本発明では、細胞が通過可能であるほど大きい径の孔を
有する隔壁を用いて2つの領域を分け、第1領域および
/または第2領域に連続的に培地を添加することで細胞
の増殖を阻害する物質を除去できるため、浮遊状態で増
殖される細胞の高密度大量培養が容易に可能となる。た
だし、隔壁を介した細胞の移動が余り多くならないよう
にしなければならない。これは、隔壁を介して第1領域
から第2領域へ移動する細胞の数が、第1.領域で増殖
により増加する細胞の数を超えると、培養中筒1領域の
細胞数が減って遂には細胞が無くなる、所謂ウォッシュ
アウトが起こるためである。
In the present invention, two regions are separated using a partition wall having pores large enough to allow cells to pass through, and cell proliferation is achieved by continuously adding a medium to the first region and/or the second region. Since inhibiting substances can be removed, high-density mass culture of cells grown in suspension becomes easily possible. However, it is necessary to prevent cell migration through the septum from becoming too large. This means that the number of cells migrating from the first region to the second region via the septum is the first. This is because when the number of cells in the area exceeds the increase in the number of cells due to proliferation, the number of cells in the culture tube 1 area decreases and eventually there are no cells, a so-called washout.

実施例 1 双子管タッピングフラスコを用いて細胞の培養を行った
Example 1 Cells were cultured using a twin tube tapping flask.

双子管タッピングフラスコとは、高岡らの開発したタッ
ピング培養法;インビトロ(InVjtro、15 (
12) 、949 (1979)に使用するタッピング
フラスコを2個用いて、間に隔壁材をはさみ込める様に
加工したものである。
The twin-tube tapping flask is a tapping culture method developed by Takaoka et al.; in vitro (InVjtro, 15 (
12), 949 (1979) were used, and were processed so that a partition material could be sandwiched between them.

隔壁利により第1槽と第2槽とが分けられる。槽内の攪
拌は攪拌子をスターターで上下運動させて行う。
A first tank and a second tank are separated by a partition wall. The inside of the tank is stirred by moving the stirrer up and down with a starter.

各々の容量200mQの双子管タッピングフラスコに、
孔径5μm(公称)、厚さ400μmの5US316L
製織布状材(東京製網製SUSファイバーフィルタ 5
F−05)より成る、有効面積2.1cm2の隔壁を設
置した。DM−160AU培地(10%新生仔牛血清、
0.3g/Qグルタミンおよび0.1gIQカナマイシ
ン添加、グルコース2.8gハ補強)を第1槽、第2槽
ともに80mQ添加し、第1槽にJTC1株細胞を接種
した。この時の細胞濃度は5.9X 10’cells
/m Qである。撹拌子回転速度を40Orpm、培養
温度を37℃に設定した。
In each twin-tube tapping flask with a capacity of 200 mQ,
5US316L with 5μm pore diameter (nominal) and 400μm thickness
Woven cloth material (Tokyo Seimi SUS fiber filter 5
F-05) with an effective area of 2.1 cm2 was installed. DM-160AU medium (10% newborn calf serum,
80 mQ of 0.3 g/Q glutamine and 0.1 g IQ kanamycin supplemented with 2.8 g glucose (reinforced with glucose) were added to both the first and second tanks, and JTC1 strain cells were inoculated into the first tank. The cell concentration at this time is 5.9X 10'cells
/m Q. The stirring bar rotation speed was set at 40 rpm, and the culture temperature was set at 37°C.

第1槽に培地を160m℃/dayの流量で添加し、第
2槽より160mQ/dayの流量で抜き出した。接種
後1日目、2日目の第1槽、第2槽の細胞濃度を測定し
た結果を第1表に示す。
The medium was added to the first tank at a flow rate of 160 mQ/day, and extracted from the second tank at a flow rate of 160 mQ/day. Table 1 shows the results of measuring cell concentrations in the first and second tanks on the first and second day after inoculation.

第  1  表 第1表より、第1槽の細胞濃度はほぼ一定であった。こ
れは、隔壁を介して第1槽から第2槽へ移動する細胞の
数が、第1槽で増殖により増加する細胞の数とほぼ等し
かったためである。この時の単位面積当りの隔壁通過培
地流速は75mQ/Cm2°dayである。
Table 1 From Table 1, the cell concentration in the first tank was almost constant. This is because the number of cells migrating from the first tank to the second tank via the septum was approximately equal to the number of cells increasing in the first tank due to proliferation. At this time, the flow rate of the medium passing through the partition wall per unit area was 75 mQ/Cm2°day.

ここで、細胞の大きさは約10μmで、5US316L
製織布状材の公称孔径5μmより大きいが、細胞は変形
可能であるため、単位面積当りの隔壁通過培地流速が大
きい場合、変形して隔壁を通過すると考えられる。
Here, the cell size is approximately 10 μm, and 5US316L
Although the nominal pore diameter of the woven cloth-like material is larger than 5 μm, since the cells are deformable, if the flow rate of the medium passing through the septum per unit area is large, it is considered that the cells deform and pass through the septum.

以上より、孔径5μmのSUS 316 L製織布状隔
壁を用いてJTC−1株細胞を培養する場合、単位面積
当りの隔壁通過培地流速を75mu/am”・day以
下にすれば第1槽の細胞数を増やすことが可能であるこ
とが分かった。
From the above, when culturing JTC-1 cell lines using SUS 316 L woven fabric-like septums with a pore size of 5 μm, if the flow rate of the medium passing through the septum per unit area is set to 75 mu/am”・day or less, the first tank It was found that it is possible to increase the number of cells.

実施例2 第1図の装置を用いて培地供給管124より内槽部(第
1領域に相当)に培地を添加しながら細胞の培養を行っ
た。
Example 2 Using the apparatus shown in FIG. 1, cells were cultured while adding a medium to the inner tank portion (corresponding to the first region) from the medium supply pipe 124.

全容量8.0Qのガラス製培養槽中に全容量3、Opの
底部の閉じた円筒形の壁を有する、上記5US316L
製織布状材より成る隔壁を第1図に示すように設けた。
The above 5US316L with a closed cylindrical wall at the bottom of the total volume 3, Op in a glass culture tank with a total volume of 8.0Q
A partition made of a woven cloth-like material was provided as shown in FIG.

内槽部に浸漬した変形撹拌翼を上部よりモーターで回転
させた。外槽部には底部に磁気撹拌子を入れスターシー
により回転させた。撹拌翼回転数は1100pp、磁気
撹拌子回転数は180rpmに設定した。
A modified stirring blade immersed in the inner tank was rotated by a motor from above. A magnetic stirrer was placed in the bottom of the outer tank and rotated by Starcy. The stirring blade rotation speed was set to 1100 pp, and the magnetic stirrer rotation speed was set to 180 rpm.

実施例1と同じ培地を用い、内槽部培地容量2.5Q、
外槽部培地容量2.7Ωになる様に培地を加えた。この
ときの隔壁の有効面積は800cm2である。内槽部に
JTC−1株細胞を接種したところ1 、2 X 10
6cells/m Qとなった。
Using the same medium as in Example 1, the inner tank medium volume was 2.5Q,
A medium was added so that the outer tank medium volume was 2.7Ω. The effective area of the partition wall at this time is 800 cm2. When JTC-1 strain cells were inoculated into the inner tank, 1,2 x 10
6 cells/mQ.

ペリスタポンプを用いて内槽部に培地を添加し、液面が
一定になるようにしなから外槽部より培地を抜き出した
。内槽部に添加した培地流量は、単位面積当りの隔壁の
通過培地流速で表すと2.7−6.3mQ/cm2・d
 a yである。また、培養全期間に渡って隔壁の逆洗
は1回も行わなかった。
A culture medium was added to the inner tank using a peristaltic pump, and the culture medium was extracted from the outer tank while keeping the liquid level constant. The flow rate of the medium added to the inner tank is 2.7-6.3 mQ/cm2・d when expressed as the flow rate of the medium passing through the partition wall per unit area.
It is ay. Furthermore, the septum was not backwashed even once during the entire culture period.

培養温度は37℃である。溶存酸素濃度およびpH制御
はスパージャ−による液面吹き付は方法により、溶存酸
素濃度2Ppm、pH7,2になる様に空気、酸素およ
び二酸化炭素の流量を制御した。
The culture temperature is 37°C. Dissolved oxygen concentration and pH were controlled by spraying on the liquid surface using a sparger, and the flow rates of air, oxygen, and carbon dioxide were controlled so that the dissolved oxygen concentration was 2 Ppm and the pH was 7.2.

内槽部および外槽部の細胞濃度経時変化を第5図にそれ
ぞれ実線、−点鎖線で示す。内槽部の細胞濃度は培養開
始後15日目に2.5X107cells/m Qに達
し、その時の細胞生存率は91−%、外槽部の細胞濃度
は8 、5 X 1.04ce11.s/m Qであっ
た。外槽部の細胞濃度は内槽部の1/300であるため
、隔壁を通過して培養系外に流出する細胞数は無視でき
る範囲にある。
Changes in cell concentration in the inner tank and outer tank over time are shown in FIG. 5 by solid lines and dashed-dotted lines, respectively. The cell concentration in the inner tank reached 2.5 x 107 cells/mQ on the 15th day after the start of culture, the cell survival rate at that time was 91-%, and the cell concentration in the outer tank reached 8.5 x 1.04 cells/mQ. s/m Q. Since the cell concentration in the outer tank is 1/300 of that in the inner tank, the number of cells passing through the partition and flowing out of the culture system is within a negligible range.

これより、本発明の培養槽を用いると容易に細胞の高密
度大量培養が達成できることが確認された。
From this, it was confirmed that high-density, large-scale culture of cells can be easily achieved using the culture tank of the present invention.

実施例3 第1図の装置を用いて培地供給管124より内槽部(第
1−領域に相当)に培地を添加しながら細胞を培養し、
上記5US316L製織布状材における目詰りおよび逆
洗による回復の試験を行った。
Example 3 Using the apparatus shown in FIG. 1, cells were cultured while adding a medium to the inner tank part (corresponding to the first region) from the medium supply pipe 124,
A test was conducted on clogging and recovery by backwashing in the 5US316L woven fabric material.

全容量1.7Ωのガラス製培養槽中に全容量0.7Qの
底部の閉じた円筒形の壁を有する、上記5US316L
製織布状材より成る隔壁を第1−図に示すように設けた
The above 5US316L with a closed cylindrical wall at the bottom of a total volume of 0.7Q in a glass culture tank with a total volume of 1.7Ω
A partition made of a woven cloth-like material was provided as shown in FIG.

内槽部に浸漬した変形撹拌翼を上部よりモーターで回転
させた。外槽部には底部に磁気撹拌子を入れスターシー
により回転させた。撹拌翼回転数は1100rp、磁気
撹拌子回転数は250rpmに設定した。
A modified stirring blade immersed in the inner tank was rotated by a motor from above. A magnetic stirrer was placed in the bottom of the outer tank and rotated by Starcy. The stirring blade rotation speed was set to 1100 rpm, and the magnetic stirrer rotation speed was set to 250 rpm.

実施例1と同じ培地を用い、内槽部培地容量0.5Q、
外槽部培地容量0.23Qになる様に培地を加えた。こ
のときの隔壁の有効面積は220cm2である。内槽部
にJTC−1株細胞を接種した。ペリスタポンプを用い
て内槽部に培地を添加し、液面が一定になるよう外槽部
より培地を抜き出した。内槽部に添加した培地流量は、
単位面積当りの隔壁通過培地流速で表すと4.7−12
.8mQ/cm”dayである。
Using the same medium as in Example 1, the inner tank medium volume was 0.5Q,
A medium was added so that the outer tank medium volume was 0.23Q. The effective area of the partition wall at this time is 220 cm2. JTC-1 strain cells were inoculated into the inner tank. A culture medium was added to the inner tank using a peristaltic pump, and the culture medium was extracted from the outer tank so that the liquid level remained constant. The flow rate of the medium added to the inner tank is
Expressed as medium flow rate through septum per unit area: 4.7-12
.. 8mQ/cm"day.

培養温度は37℃である。溶存酸素濃度およびpH制御
はスパージャ−による液面吹き付は方法により、溶存酸
素濃度2ppm、pH7,2になる様に空気、酸素およ
び二酸化炭素の流量を制御した。
The culture temperature is 37°C. Dissolved oxygen concentration and pH were controlled by spraying on the liquid surface using a sparger, and the flow rates of air, oxygen, and carbon dioxide were controlled so that the dissolved oxygen concentration was 2 ppm and the pH was 7.2.

培養開始後28日目まで培養を行ったところ、若干の隔
壁の目詰りが生じた。このときの、内槽部液面が変化し
ない最大培地流量、即ち隔壁の最大通過可能培地流速は
、5.1mQ/cm2・dayであった。ここで、外槽
部に100mQの培地を急速に加え、内外槽部液面の静
水圧差により、160mQ/cm2・d a yの流速
で4分間の逆洗を行った。すると、最大通過可能培地流
速は6.1.mQ/cm2・dayまで回復し、この流
速が3日間維持された。再び、培養開始後31日目に外
槽部に180mQ、の培地を急速に加え、170m Q
/am2・d a yの流速で7分間の逆洗を行ったと
ころ、最大通過可能培地流速はさらに7.0mL/cm
2・dayまで回復した。この逆洗操作を3日毎に行っ
たところ、さらに1力月間培養ができた。
When the culture was continued until the 28th day after the start of the culture, some clogging of the septum occurred. At this time, the maximum medium flow rate at which the inner tank liquid level did not change, that is, the maximum medium flow rate that could pass through the partition wall, was 5.1 mQ/cm2·day. Here, 100 mQ of culture medium was rapidly added to the outer tank, and backwashing was performed for 4 minutes at a flow rate of 160 mQ/cm2·day due to the difference in hydrostatic pressure between the liquid levels of the inner and outer tank parts. Then, the maximum allowable medium flow rate is 6.1. The flow rate recovered to mQ/cm2·day, and this flow rate was maintained for 3 days. Again, on the 31st day after the start of culture, 180 mQ of medium was rapidly added to the outer tank, and 170 mQ of medium was added to the outer tank.
When backwashing was performed for 7 minutes at a flow rate of /am2・day, the maximum flow rate of the medium that could pass was 7.0 mL/cm.
The patient recovered by 2 days. When this backwashing operation was performed every 3 days, culture could be continued for an additional month.

以上より、本発明の培養槽を用いると、目詰りにより隔
壁の通過可能培地流速の低下が生じても、簡単な操作の
逆洗を行うことで目詰りを回復させることが可能であり
、しかも回復した状態を数日間維持できることが分かっ
た。
From the above, when using the culture tank of the present invention, even if the flow rate of the medium that can pass through the partition wall decreases due to clogging, it is possible to recover from the clogging by performing a simple backwashing operation. It was found that the recovered state could be maintained for several days.

実施例4 双子管タッピングフラスコを用いて、5US316L製
織布状材および半透膜におけるグルコースおよび乳酸の
拡散係数を測定により求めた。
Example 4 Using a twin-tube tapping flask, the diffusion coefficients of glucose and lactic acid in a 5US316L woven fabric material and a semipermeable membrane were determined by measurement.

双子管タッピングフラスコに、上記5US316L製織
布状材より成る、有効面積2.1cm”の隔壁を設置し
た。第1槽にはグルコースを含まないDM−160AU
培地(10%新生仔牛血清、0.3gIQグルタミンお
よびQ、1g/Qカナマイシン添加)に乳酸を0.5g
IQになるよう添加した液を、第2槽にはDM−160
AU培地(10%新生仔牛血清、0.3g/12グルタ
ミンおよび0.1g/flカナマイシン添加)を、それ
ぞれ80mQ加えた。DM−160AU培地はグルコー
スが1.0g/[になるよう調製されている。攪拌子回
転速度を40 Or p m、温度を37℃に設定した
。2時間毎に第1槽、第2槽のグルコース、乳酸濃度を
測定した。
A septum with an effective area of 2.1 cm, made of the above-mentioned 5US316L woven fabric material, was installed in a twin-tube tapping flask.The first tank contained DM-160AU, which does not contain glucose.
Add 0.5 g of lactic acid to the medium (10% newborn calf serum, 0.3 g IQ glutamine and Q, supplemented with 1 g/Q kanamycin).
DM-160 is added to the second tank to adjust the IQ.
80 mQ each of AU medium (10% newborn calf serum, supplemented with 0.3 g/12 glutamine and 0.1 g/fl kanamycin) was added. DM-160AU medium is prepared to have glucose of 1.0 g/[. The stirrer rotation speed was set at 40 Or p m, and the temperature was set at 37°C. Glucose and lactic acid concentrations in the first tank and second tank were measured every 2 hours.

次に、双子管タッピングフラスコに、分画分子量300
00、厚さ200μmの半透膜より成る、有効面積1.
5cm2の隔壁を設置した。第1槽にはグルコースを含
まないDM−160AU培地(10%新生仔牛血清、0
.3g/Qグルタミンおよび0.1g/Ilカナマイシ
ン添加)に乳酸を0.5g/Ωになるよう添加した液を
、第2槽にはDM−7160AU培地(10%新生仔牛
血清、0.3g/Ωグルタミンおよび0.1g/flカ
ナマイシン添加)を、それぞれ80 m Q加えた。攪
拌子回転速度を40Orpm、温度を37℃に設定した
。6時間毎に第1槽、第2槽のグルコース、乳酸濃度を
測定した。
Next, in a twin-tube tapping flask,
00, effective area consisting of a semipermeable membrane with a thickness of 200 μm1.
A 5 cm2 partition wall was installed. The first tank contained glucose-free DM-160AU medium (10% newborn calf serum, 0
.. A solution containing 3g/Q glutamine and 0.1g/Il kanamycin) with lactic acid added to 0.5g/Ω was added to the second tank, and DM-7160AU medium (10% newborn calf serum, 0.3g/Ω) was added to the second tank. glutamine and 0.1 g/fl kanamycin addition) were added at 80 mQ each. The stirrer rotation speed was set at 40 rpm, and the temperature was set at 37°C. Glucose and lactic acid concentrations in the first tank and second tank were measured every 6 hours.

第1槽、第2槽のグルコースおよび乳酸濃度の経時変化
より、5US316L製織布状材および半透膜における
グルコースおよび乳酸の拡散係数を求めた。結果を第2
表に示す。
The diffusion coefficients of glucose and lactic acid in the 5US316L woven fabric material and the semipermeable membrane were determined from the changes over time in the glucose and lactic acid concentrations in the first tank and the second tank. Second result
Shown in the table.

=31− 第  2  表 第2表より、5US316L製織布状材におけるグルコ
ースおよび乳酸の拡散係数は、半透膜におけるグルコー
スおよび乳酸の拡散係数に比して、それぞれ11倍、7
倍大きいことが分かった。
=31- Table 2 From Table 2, the diffusion coefficients of glucose and lactic acid in the 5US316L woven fabric material are 11 times and 7 times higher than those in the semipermeable membrane, respectively.
It turned out to be twice as big.

実施例5 第1図の装置を用いて培地供給管106より外槽部(第
2領域に相当)に培地を添加しながら細胞の培養を行っ
た。
Example 5 Using the apparatus shown in FIG. 1, cells were cultured while adding a medium to the outer tank portion (corresponding to the second region) from the medium supply pipe 106.

全容量8.0Qのガラス製培養槽中に全容量3.0ρの
底部の閉じた円筒形の壁を有する、上記5US316L
製織布状材より成る隔壁を第1図に示すように設けた。
The above 5US316L having a bottom closed cylindrical wall with a total volume of 3.0ρ in a glass culture tank with a total volume of 8.0Q.
A partition made of a woven cloth-like material was provided as shown in FIG.

隔壁フランジには直径1.5mmΦの均圧口が4個設け
である。この均圧口により内槽部と外槽部の圧力差が実
質的にゼロに保たれている。
The partition flange is provided with four pressure equalizing ports each having a diameter of 1.5 mmΦ. This pressure equalization port maintains the pressure difference between the inner tank and the outer tank at substantially zero.

内槽部に浸漬した変形撹拌翼を上部よりモーターで回転
させた。外槽部には底部に磁気撹拌子を入れスターシー
により回転させた。撹拌翼回転数は1100rp、磁気
撹拌子回転数は180rpmに設定した。
A modified stirring blade immersed in the inner tank was rotated by a motor from above. A magnetic stirrer was placed in the bottom of the outer tank and rotated by Starcy. The stirring blade rotation speed was set to 1100 rpm, and the magnetic stirrer rotation speed was set to 180 rpm.

実施例1と同じ培地を用い、内槽部培地容量2.5Il
、外槽部培地容量2.7Ωになる様に培地を加えた。こ
のときの隔壁の有効面積は800cm”である。内槽部
にJTC−1株細胞を接種したところ4 X 105c
ells/m nになった。ペリスタポンプを用いて外
槽部に培地を添加し、液面が一定になるようにしなから
外槽部より培地を抜き出した。外槽部に添加した培地流
量は1.2〜6.712/dayである。
Using the same medium as in Example 1, the inner tank medium volume was 2.5 Il.
A culture medium was added to the outer tank so that the volume of the culture medium was 2.7Ω. The effective area of the septum at this time is 800cm''.When JTC-1 strain cells were inoculated into the inner tank, 4 x 105cm.
It became ells/m n. A culture medium was added to the outer tank using a peristaltic pump, and the culture medium was extracted from the outer tank while keeping the liquid level constant. The flow rate of the medium added to the outer tank was 1.2 to 6.712/day.

培養温度は37°Cである。溶存酸素濃度およびp H
制御はスパージャ−による液面吹き付は方法により、溶
存酸素濃度2 p p m 、 pH7、2になる様に
空気、酸素および二酸化炭素の流量を制御した。
The culture temperature is 37°C. Dissolved oxygen concentration and pH
The flow rate of air, oxygen and carbon dioxide was controlled by spraying the liquid surface with a sparger so that the dissolved oxygen concentration was 2 ppm and the pH was 7.2.

内槽部の細胞濃度経時変化を第6図に示す。内槽部の細
胞濃度は培養開始5日日に5.2X:]−0″cell
s/m Qに達し、その時の細胞生存率は96%であっ
た。また、培養全期間にねたって外槽部への細胞の流出
は認められなかった。
Figure 6 shows the change in cell concentration in the inner tank over time. The cell concentration in the inner tank was 5.2X:]-0″cell on the 5th day after the start of culture.
s/m Q was reached, and the cell survival rate at that time was 96%. Furthermore, no outflow of cells to the outer tank was observed during the entire culture period.

これより、本発明の培養槽を用いると容易に5X 10
’cells/m f2レベルの細胞の高密度大量培養
が達成できることが確認された。
From this, when using the culture tank of the present invention, it is easy to grow 5X 10
It was confirmed that high-density mass culture of cells at the 'cells/m f2 level can be achieved.

比較例1 実施例5と比較するため、隔壁に半透膜を用い、実施例
5と同じ装置、方法、培地、種細胞で培養を行った。
Comparative Example 1 For comparison with Example 5, a semipermeable membrane was used as the partition wall, and culture was performed using the same apparatus, method, medium, and seed cells as in Example 5.

全容量8.OQのガラス製培養槽中に全容量3、Cll
の底部の閉じた円筒形の枠および金網により支持された
、分画分子量30000、厚さ200μmの半透膜より
成る隔壁を第1図に示すように設けた。隔壁フランジに
は直径15mmΦの均圧口が4側設けである。この均圧
口により内槽部と外槽部の圧力差が実質的にゼロに保た
れている。
Total capacity8. Total volume 3, Cl in a glass culture tank of OQ
A partition wall consisting of a semipermeable membrane with a molecular weight cutoff of 30,000 and a thickness of 200 μm, supported by a closed cylindrical frame at the bottom and a wire mesh, was provided as shown in FIG. The partition flange has pressure equalizing ports with a diameter of 15 mm on four sides. This pressure equalization port maintains the pressure difference between the inner tank and the outer tank at substantially zero.

実施例1と同じ培地を用い、内槽部培地容量2.5Ω、
外槽部培地容量2.7Qになる様に培地を加えた。この
ときの隔壁の有効面積は800cm2である。内槽部に
JTC−1株細胞を接種したところ4 X 1. O’
cells/m Qとなった。ペリスタポンプを用いて
外槽部に培地を添加し、液面が一定に6なるようにしな
から外槽部より培地を抜き出した。外槽部に添加した培
地流量は1.2〜6.7ρ/d a yである。
Using the same medium as in Example 1, the inner tank medium volume was 2.5Ω,
A medium was added so that the outer tank medium volume was 2.7Q. The effective area of the partition wall at this time is 800 cm2. When JTC-1 strain cells were inoculated into the inner tank, 4 x 1. O'
cells/m Q. A culture medium was added to the outer tank using a peristaltic pump, and the culture medium was drawn out from the outer tank while keeping the liquid level at a constant level. The flow rate of the medium added to the outer tank is 1.2 to 6.7 ρ/day.

培養温度は37℃である。溶存酸素濃度およびpH制御
はスパージャ−による液面吹き付は方法により、溶存酸
素濃度2ppm、pH7,2になる様に空気、酸素およ
び二酸化炭素の流量を制御した。
The culture temperature is 37°C. Dissolved oxygen concentration and pH were controlled by spraying on the liquid surface using a sparger, and the flow rates of air, oxygen, and carbon dioxide were controlled so that the dissolved oxygen concentration was 2 ppm and the pH was 7.2.

内槽部の細胞濃度経時変化を第7図に示す。内槽部の細
胞濃度は培養開始40目に2.1.X106cells
/m Qに達したが、これ以−に増殖しなかった。
Figure 7 shows the change in cell concentration in the inner tank over time. The cell concentration in the inner tank was 2.1 at the 40th day after the start of culture. X106cells
/m Q was reached, but no further growth occurred.

また、培養全M間にわたって外槽部への細胞の流出は認
められなかった。
Further, no outflow of cells to the outer tank was observed during the entire culture period.

これより、半透膜の隔壁を用いるた場合、細胞の高密度
大量培養は困難であることが確認された。
From this, it was confirmed that high-density, large-scale culture of cells is difficult when a semipermeable membrane partition wall is used.

〔発明の効果〕〔Effect of the invention〕

本発明により、細胞に損傷を与えず、長期間にわたり安
定に、連続的な栄養源供給および老廃物除去が行えるの
で細胞の高密度大量培養ができる。
According to the present invention, it is possible to stably and continuously supply a nutrient source and remove waste products over a long period of time without damaging the cells, thereby enabling high-density, large-scale culture of cells.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は底部の閉じた円筒形の隔壁を有する培養槽の一
例を示す図、第2図は培養システムの一例を示す図、第
3図は管状螺旋形の隔壁を有する培養槽の一例を示す図
、第4図は板状の隔壁により囲まれた水平方向の断面が
長方形の外槽部を有する培養槽の一例を示す図、第5図
は実施例2における細胞濃度の経時変化を示す線図、第
6図は実施例5における細胞濃度の経時変化を示す線図
、第7図は比較例1における細胞濃度の経時変化を示す
線図である。 101  ・・・1培養槽、102 ・・ 内槽部、1
03  ・・・外槽部、1.04  ・・・隔壁、10
5 ・・・ジャケット、106 ・・外槽部への培地供
給管、107 ・・・抜き出し管、108 ・・ 内槽
部102および/または外槽部103へ液を供給するポ
ンプ、 109  ・ 外槽部103から液を抜き出すポンプ、
110 ・・磁気攪拌子、111 ・・・モータ112
・・・攪拌軸、113 ・・・攪拌翼、114 ・・・
 リングスパージャ 115 ・ ノズル、116 ・・・給気管、117・
・・排気管、118 ・・・除菌フィルタ、11−9 
・・・隔壁フランジ、120 ・・均圧口、121 ・
・・ レベルセンサ、122・・・溶存酸素濃度センサ
、123 ・・ p Hセンサ、1−24 ・・・内槽
部への培地供給管201− ・ 供給液貯蔵タンク、 202 ・回収液貯蔵タンク、203 ・・・恒温水槽
、204・・・恒温水槽203からジャケット105へ
温水を送るポンプ、205 ・・・空気のマス?ローコ
ントローラ、206  ・・・酸素のマスフロノ コントローラ、207 ・・・二酸化炭素のマスフロー
コントローラ、208 ・・・制御用コンピュタ、20
9  ・・ キーボード、 301 ・・・培養槽部、302・・・管内部、303
  ・・・隔壁、 401 ・・・培養槽部、402 ・ 外槽部、403
  ・・・隔壁。
Fig. 1 shows an example of a culture tank having a cylindrical partition with a closed bottom, Fig. 2 shows an example of a culture system, and Fig. 3 shows an example of a culture tank with a tubular spiral partition. FIG. 4 is a diagram showing an example of a culture tank having a rectangular outer tank section surrounded by plate-shaped partition walls, and FIG. 5 is a diagram showing changes in cell concentration over time in Example 2. 6 is a diagram showing the change in cell concentration over time in Example 5, and FIG. 7 is a diagram showing the change in cell concentration over time in Comparative Example 1. 101...1 culture tank, 102...inner tank part, 1
03 ... Outer tank part, 1.04 ... Partition wall, 10
5...jacket, 106...culture medium supply pipe to the outer tank section, 107...extraction pipe, 108...pump that supplies liquid to the inner tank section 102 and/or the outer tank section 103, 109. Outer tank a pump for extracting liquid from part 103;
110...Magnetic stirrer, 111...Motor 112
... Stirring shaft, 113 ... Stirring blade, 114 ...
Ring sparger 115・Nozzle, 116...Air supply pipe, 117・
...Exhaust pipe, 118 ...Bacterial filter, 11-9
...Bulkhead flange, 120 ...Pressure equalization port, 121 ・
... Level sensor, 122 ... Dissolved oxygen concentration sensor, 123 ... pH sensor, 1-24 ... Culture medium supply pipe to the inner tank section 201 - - Supply liquid storage tank, 202 - Recovery liquid storage tank, 203... Constant temperature water tank, 204... Pump that sends hot water from the constant temperature water tank 203 to the jacket 105, 205... Air mass? Low controller, 206 ... Oxygen mass flow controller, 207 ... Carbon dioxide mass flow controller, 208 ... Control computer, 20
9... Keyboard, 301... Culture tank section, 302... Inside the tube, 303
...Partition wall, 401 ...Culture tank part, 402 - Outer tank part, 403
...Bulkhead.

Claims (1)

【特許請求の範囲】 1、細胞が通過可能な径の孔を有する隔壁により、細胞
が浮遊した培養液の存在する第1領域と生理緩衝液また
は栄養源を含む液の存在する第2領域とを分け、隔壁を
介して第1領域と第2領域の間で栄養源、老廃物または
生産物の少なくとも一つを移動させ、さらに、隔壁を介
して第1領域から第2領域へ移動する細胞の数が、第1
領域で増殖により増加する細胞の数を超えないよう、隔
壁を介した液流を抑えることを特徴とする細胞の培養方
法。 2、上記隔壁に織布状材または多孔質材より成る隔壁を
用いることを特徴とする請求項1記載の細胞の培養方法
。 3、上記隔壁を介して第1領域と第2領域の間で栄養源
、老廃物または生産物の少なくとも一つを移動させる方
法として、第1領域および/または第2領域に培地を添
加し、第2領域から培養液を抜き出すことを特徴とする
請求項1記載の細胞の培養方法。 4、上記第1領域に培地を添加しつつ第2領域から培地
を抜き出す場合において、上記隔壁を介して第1領域か
ら第2領域へ移動する細胞の数が、上記第1領域で増殖
により増加する細胞の数を超えないようにする方法とし
て、添加培地流量を制御することを特徴とする請求項1
記載の細胞の培養方法。 5、上記第1領域に培地を添加しつつ第2領域から培地
を抜き出す場合において、間欠的に、隔壁を介した第2
領域から第1領域への液流を作ることを特徴とする請求
項1記載の細胞の培養方法。 6、上記第2領域に培地を添加しつつ第2領域から培地
を抜き出す場合における、上記隔壁を介した第1領域と
第2領域の間で栄養源、老廃物または生産物の少なくと
も一つを移動させる量を制御する方法として、添加培地
流量を制御することを特徴とする請求項1記載の細胞の
培養方法。 7、上記隔壁を介した液流を抑える方法として、隔壁を
介した第1領域と第2領域の圧力差を実質的にゼロにす
ることを特徴とする請求項1記載の細胞の培養方法。 8、上記隔壁を介して第1領域から第2領域へ移動する
細胞の数が、上記第1領域で増殖により増加する細胞の
数を超えないようにする方法として、第1領域に浮遊す
る細胞が持つ静電荷と同じ極性の静電荷を持つ材料より
成る隔壁を用いることを特徴とする特許請求の範囲第1
項記載の細胞の培養方法。 9、上記隔壁を介して第1領域から第2領域へ移動する
細胞の数が、上記第1領域で増殖により増加する細胞の
数を超えないようにする方法として、隔壁に第1領域に
浮遊する細胞が持つ静電荷と同じ極性の電位をかけるこ
とを特徴とする請求項1記載の細胞の培養方法。 10、細胞が通過可能な径の孔を有する隔壁により、細
胞が浮遊した培養液の存在する第1領域と生理緩衝液ま
たは栄養源を含む液の存在する第2領域とが分けられた
培養槽を有し、隔壁を介して第1領域と第2領域の間で
栄養源、老廃物または生産物の少なくとも一つを移動さ
せる手段、および隔壁を介して第1領域から第2領域へ
移動する細胞の数が、第1領域で増殖により増加する細
胞の数を超えないよう、隔壁を介した液流を抑える手段
を有することを特徴とする細胞の培養装置。 11、上記隔壁に織布状材または多孔質材より成る隔壁
を用いることを特徴とする請求項10記載の細胞の培養
装置。 12、上記隔壁を介して第1領域と第2領域の間で栄養
源、老廃物または生産物の少なくとも一つを移動させる
手段として、第1領域および/または第2領域に培地を
添加し、第2領域から培養液を抜き出す手段を有するこ
とを特徴とする請求項10記載の細胞の培養装置。 13、上記第1領域に培地を添加しつつ第2領域から培
地を抜き出す場合において、上記隔壁を介して第1領域
から第2領域へ移動する細胞の数が、上記第1領域で増
殖により増加する細胞の数を超えないようにする手段と
して、添加培地流量を制御する手段を有することを特徴
とする請求項10記載の細胞の培養装置。 14、上記第1領域に培地を添加しつつ第2領域から培
地を抜き出す場合において、間欠的に、隔壁を介した第
2領域から第1領域への液流を作る手段を有することを
特徴とする請求項10記載の細胞装置。 15、上記第2領域に培地を添加しつつ第2領域から培
地を抜き出す場合において、上記隔壁を介した第1領域
と第2領域の間で栄養源、老廃物または生産物の少なく
とも一つを移動させる量を制御する手段として、添加培
地流量を制御する手段を有することを特徴とする請求項
10記載の細胞の培養装置。 16、上記隔壁を介した液流を抑える手段として、隔壁
を介した第1領域と第2領域の圧力差を実質的にゼロに
する手段を有することを特徴とする請求項10記載の細
胞の培養装置。 17、上記隔壁を介して第1領域から第2領域へ移動す
る細胞の数が、上記第1領域で増殖により増加する細胞
の数を超えないようにする手段として、第1領域に浮遊
する細胞が持つ静電荷と同じ極性の静電荷を持つ材料よ
り成る隔壁を用いることを特徴とする請求項10記載の
細胞の培養装置。 18、上記隔壁を介して第1領域から第2領域へ移動す
る細胞の数が、上記第1領域で増殖により増加する細胞
の数を超えないようにする手段として、隔壁に第1領域
に浮遊する細胞が持つ静電荷と同じ極性の電位をかける
ことを特徴とする請求項10記載の細胞の培養装置。
[Scope of Claims] 1. A partition wall having pores with a diameter that allows cells to pass through allows a first area in which a culture medium in which cells are suspended to exist and a second area in which a physiological buffer or a liquid containing a nutrient source exists to be separated. cells that separate the cells, move at least one of nutrients, waste products, or products between the first region and the second region via the septum, and further move from the first region to the second region via the septum. The number of
A cell culture method characterized by suppressing liquid flow through a septum so as not to exceed the number of cells that increase in a region due to proliferation. 2. The method for culturing cells according to claim 1, characterized in that the partition wall is made of a woven material or a porous material. 3. Adding a medium to the first region and/or the second region as a method for moving at least one of nutrients, waste products, or products between the first region and the second region via the partition wall, The method for culturing cells according to claim 1, characterized in that the culture medium is extracted from the second region. 4. When the culture medium is added to the first region and the culture medium is extracted from the second region, the number of cells migrating from the first region to the second region through the partition increases due to proliferation in the first region. Claim 1, characterized in that the method for preventing the number of cells from exceeding the number of cells to be added includes controlling the flow rate of the added medium.
Method for culturing the described cells. 5. In the case where the culture medium is added to the first region and the culture medium is extracted from the second region, the second region is intermittently added to the second region through the partition wall.
The method for culturing cells according to claim 1, characterized in that a liquid flow is created from the region to the first region. 6. At least one of a nutrient source, a waste product, or a product is removed between the first region and the second region via the partition wall when the culture medium is added to the second region and the culture medium is extracted from the second region. 2. The method for culturing cells according to claim 1, wherein the method for controlling the amount of transferred medium includes controlling the flow rate of the added medium. 7. The method for culturing cells according to claim 1, wherein the method for suppressing the liquid flow through the partition wall is to reduce the pressure difference between the first region and the second region through the partition wall to substantially zero. 8. As a method for preventing the number of cells migrating from the first region to the second region via the partition wall from exceeding the number of cells increasing due to proliferation in the first region, cells floating in the first region Claim 1, characterized in that the partition wall is made of a material having an electrostatic charge of the same polarity as the electrostatic charge possessed by the
Method for culturing cells described in Section 1. 9. As a method for preventing the number of cells migrating from the first region to the second region via the septum from exceeding the number of cells increasing due to proliferation in the first region, the septum may be suspended in the first region. 2. The method for culturing cells according to claim 1, wherein a potential having the same polarity as an electrostatic charge possessed by the cells is applied. 10. A culture tank in which a first region in which a culture solution with suspended cells exists and a second region in which a solution containing a physiological buffer or a nutrient source exists are separated by a partition wall having pores with a diameter that allows the cells to pass through. means for moving at least one of a nutrient source, a waste product, or a product between the first region and the second region via the partition; A cell culturing device comprising means for suppressing liquid flow through a partition so that the number of cells does not exceed the number of cells that increases due to proliferation in the first region. 11. The cell culturing device according to claim 10, wherein the partition wall is made of a woven material or a porous material. 12. Adding a medium to the first region and/or the second region as a means for transferring at least one of nutrients, waste products, or products between the first region and the second region via the partition; 11. The cell culturing device according to claim 10, further comprising means for extracting the culture medium from the second region. 13. When the culture medium is added to the first region and the culture medium is extracted from the second region, the number of cells migrating from the first region to the second region via the partition increases due to proliferation in the first region. 11. The cell culturing apparatus according to claim 10, further comprising means for controlling the flow rate of the added medium as a means for preventing the number of cells from exceeding the number of cells. 14. In the case where the culture medium is added to the first region and the culture medium is extracted from the second region, the method is characterized by having means for intermittently creating a liquid flow from the second region to the first region via the partition wall. The cell device according to claim 10. 15. When removing the medium from the second area while adding the medium to the second area, at least one of a nutrient source, a waste product, or a product is transferred between the first area and the second area via the partition wall. 11. The cell culturing device according to claim 10, further comprising means for controlling the flow rate of the added medium as the means for controlling the amount of transferred medium. 16. The cell according to claim 10, characterized in that the means for suppressing the liquid flow through the partition wall includes means for substantially zeroing the pressure difference between the first region and the second region through the partition wall. Culture device. 17. Cells floating in the first region as a means to prevent the number of cells migrating from the first region to the second region via the partition wall from exceeding the number of cells increasing in the first region due to proliferation. 11. The cell culturing device according to claim 10, wherein the partition wall is made of a material having an electrostatic charge of the same polarity as that of the cell culture device. 18. As a means to prevent the number of cells migrating from the first region to the second region via the septum from exceeding the number of cells increasing due to proliferation in the first region, the septum is suspended in the first region. 11. The cell culturing device according to claim 10, wherein a potential having the same polarity as an electrostatic charge possessed by the cell is applied.
JP1217338A 1988-08-26 1989-08-25 Cell culture method and device Expired - Fee Related JP2810140B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1217338A JP2810140B2 (en) 1988-08-26 1989-08-25 Cell culture method and device
US07/505,326 US5151362A (en) 1989-08-25 1990-04-05 Apparatus containing a septum which impedes cell permeation for cell culture and method of use

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21071688 1988-08-26
JP63-210716 1988-08-26
JP1217338A JP2810140B2 (en) 1988-08-26 1989-08-25 Cell culture method and device

Publications (2)

Publication Number Publication Date
JPH02138963A true JPH02138963A (en) 1990-05-28
JP2810140B2 JP2810140B2 (en) 1998-10-15

Family

ID=26518236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1217338A Expired - Fee Related JP2810140B2 (en) 1988-08-26 1989-08-25 Cell culture method and device

Country Status (1)

Country Link
JP (1) JP2810140B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235544A (en) * 2002-02-20 2003-08-26 Hitachi Ltd Biological cell culture control method, culture device control device, and culture device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235544A (en) * 2002-02-20 2003-08-26 Hitachi Ltd Biological cell culture control method, culture device control device, and culture device

Also Published As

Publication number Publication date
JP2810140B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
Feder et al. The large-scale cultivation of mammalian cells
US6544788B2 (en) Disposable perfusion bioreactor for cell culture
US5166067A (en) Culturing method, system and apparatus for cell culture
CA2008585C (en) Apparatus for oxygenating medium
US4751003A (en) Crossflow microfiltration process for the separation of biotechnologically produced materials
US20030054544A1 (en) Oxygen enriched bioreactor and method of culturing cells
JPH03502891A (en) Bioreactors and equipment for culturing animal cells
JP2004504023A (en) Cell culture room and bioreactor for in vitro culture of animal cells
US9101857B2 (en) Gas scrubbed perfusion filter
JPS5937945B2 (en) Fermentation equipment for aerated cultivation of microorganisms with simultaneous separation and removal of the metabolic products produced
JPS61257181A (en) Culture of animal cell
JP2017038589A (en) Organism reaction apparatus and organism reaction method using the same
JPWO2019004478A1 (en) Method and apparatus for manufacturing chemical products by continuous fermentation
JP2021048776A (en) Culture method and culture device
JP2003510042A (en) Cell culture method, membrane module, use of membrane module and reaction system for cell culture
JPH06102013B2 (en) Bioreactor
US5151362A (en) Apparatus containing a septum which impedes cell permeation for cell culture and method of use
JPH02138963A (en) Cell culture method and device
KR100575461B1 (en) Biological culture apparatus and method
JPH0659206B2 (en) Bioreactor
JP2021045100A (en) Cell separation device and cell separation method
JPH06269274A (en) Culture device of cell of organism and method of culture
JPH0257174A (en) Device for culturing suspended cell
JPH0584429A (en) Membrane separator
WO2001058501A1 (en) Apparatus and process for removal of carbon dioxide in a bioreactor system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees