JPH02135111A - High purity gas purification method and equipment - Google Patents
High purity gas purification method and equipmentInfo
- Publication number
- JPH02135111A JPH02135111A JP63286745A JP28674588A JPH02135111A JP H02135111 A JPH02135111 A JP H02135111A JP 63286745 A JP63286745 A JP 63286745A JP 28674588 A JP28674588 A JP 28674588A JP H02135111 A JPH02135111 A JP H02135111A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- purified
- purification
- purge
- purified gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Of Gases By Adsorption (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は高純度ガスの精製方法および装置に関し、さら
に詳細には配管系に存在するガスの滞留空間からの不純
ガスの混入を防止しうる高純度ガスの精製方法および装
置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method and apparatus for purifying high-purity gas, and more particularly, to a method and apparatus for purifying high-purity gas, and more specifically, a method for preventing contamination of impure gas from a gas retention space existing in a piping system. The present invention relates to a method and apparatus for purifying high-purity gas.
半導体製造工業などの発展にともない、これらの分野で
使用されるガスの種類および量が増加するとともにその
高純度化に対する要望が益々高まりつつある。BACKGROUND OF THE INVENTION With the development of the semiconductor manufacturing industry, the types and amounts of gases used in these fields are increasing, and the demand for higher purity gases is increasing.
ガス中に含有される不純物を除去し、精製ガスを得る方
法としては膜分離方式、触媒やゲッターなどによる反応
方式、物理吸着、化学吸着などによる吸着方式およびこ
れらを組合わせたものなど種々なものが知られている9
例えば、Pd合金水素透過膜を用いた高純度水素精製装
置、 Ni、 Cuなどの触媒および合成ゼオライトな
どの吸着剤を組合わせた不活性ガスまたは水素の精製装
置、Pt、 Pdなど不純物の転換触媒と合成ゼオライ
トなどを組合わせた酸素の精製装置、金属ゲッターを用
いた希ガスの精製装置ならびに深冷吸着法による水素、
不活性ガスおよび酸素の精製装置などが比較的多く使用
されている。There are various methods for removing impurities contained in gas and obtaining purified gas, including membrane separation methods, reaction methods using catalysts and getters, adsorption methods using physical adsorption, chemical adsorption, etc., and combinations of these methods. is known9
For example, high-purity hydrogen purification equipment using a Pd alloy hydrogen permeable membrane, inert gas or hydrogen purification equipment that combines catalysts such as Ni and Cu and adsorbents such as synthetic zeolite, and conversion catalysts for impurities such as Pt and Pd. Oxygen purification equipment that combines zeolite and synthetic zeolite, rare gas purification equipment that uses metal getters, and hydrogen that uses cryogenic adsorption.
Relatively many inert gas and oxygen purification devices are used.
これらの装置はいずれも透過分lIl膜、触媒、ゲッタ
ーおよび吸着剤を内蔵した反応筒、精製筒などガスの精
製部、原料ガスの供給路および精製ガスの抜出路を基本
構成とし、これに装置の種類に応じて再生ガスおよび再
生自己ガスなどの供給路、再生排ガスまたは濃縮不純ガ
スの排出路、ガスの循環路など種々の流路を形成した配
管が設けられている。このため配管系には分岐または接
続部が多く存在するとともに各種弁類、計器類および分
析計なども介在している。All of these devices basically consist of a permeate membrane, a reaction column containing a catalyst, a getter, and an adsorbent, a gas purification section such as a purification column, a raw material gas supply path, and a purified gas extraction path. Depending on the type of gas, piping is provided with various flow paths such as a supply path for regenerated gas and regenerated self-gas, a discharge path for regenerated exhaust gas or concentrated impure gas, and a gas circulation path. For this reason, piping systems have many branches or connections, as well as various valves, instruments, analyzers, and the like.
このような精製装置を用いて例えば不純物濃度が1pp
b以下というような高純度ガスを得るためには、ガスの
精製部がこれに対応しうる不純物除去性能を有する必要
があるばかりでなく、ガスの精製部から装置の出口に至
る精製ガスの配管系で不純物の混入があってはならない
、配管系における不純物混入の原因としては継手類、弁
類、計器類などでの外気とのシール部において拡散、透
過などによる大気成分の侵入や各弁類のシートリークな
どにより再生系列側からの脱着ガスの侵入などがある。Using such a purification device, for example, the impurity concentration can be reduced to 1pp.
In order to obtain high-purity gas with a purity of less than B, it is not only necessary that the gas purification section has a corresponding impurity removal performance, but also the purified gas piping from the gas purification section to the outlet of the equipment. There must be no contamination of impurities in the piping system.The causes of contamination of impurities in the piping system are the intrusion of atmospheric components through diffusion and permeation at seals with the outside air such as fittings, valves, and instruments, and the intrusion of atmospheric components through various valves. Desorption gas may enter from the regeneration system side due to seat leaks, etc.
さらには、装置の組立時に封じ込まれる大気成分の影響
も無視できないことがあり、通常はこれらを除去するた
めに真空排気や精製対象ガスによる置換などがおこなわ
れるが筒および配管内面の金属表面に吸着した大気成分
などは容易に除去されず、その影響は装置の使用開始後
数百時間にまで及ぶこともある。Furthermore, the influence of atmospheric components that are trapped during equipment assembly cannot be ignored, and although vacuum evacuation and replacement with gas to be purified are normally performed to remove these components, the metal surfaces of the inner surfaces of cylinders and piping Adsorbed atmospheric components are not easily removed, and their effects can last up to several hundred hours after the device is used.
このような不純物の混入による悪影響を防止するなめ継
手部の溶接化や気密度の優れた高級な継手、弁類および
計器類が使用され、また、不純物の吸着面積を少なくす
るために配管を極力短くする試みや接ガス部となる金属
表面を研壇処理して滑らかにする試みなどがおこなわれ
ているが未だ不純物の混入を完全に防止しうるに至って
いない。To prevent the negative effects of contamination with such impurities, welded joints and high-quality joints, valves, and instruments with excellent airtightness are used, and piping is minimized to minimize the area where impurities can be absorbed. Attempts have been made to shorten the length and to smoothen the metal surface that comes into contact with the gas by abrasive treatment, but it has not yet been possible to completely prevent the incorporation of impurities.
本発明者らは、長期にわたってこれらの装置に及ぼす純
度低下の原因の究明を続けた結果、精製ガス流路と交わ
る分岐路などガスの滞留部に残留する不純ガスが精製ガ
スの純度に影響していることを見いだし、これらの残留
ガスが精製ガスの流路に入らないよう対策を構すること
により本発明を完成した。The inventors of the present invention continued to investigate the cause of purity deterioration in these devices over a long period of time, and as a result, we found that impure gas remaining in gas retention areas such as branch paths that intersect with purified gas flow paths affects the purity of purified gas. The present invention was completed by taking measures to prevent these residual gases from entering the purified gas flow path.
すなわち本発明は、(1)ガスを精製部に通すことによ
って該ガス中に含有される不純物を除去し該精製部より
精製ガス流路を経由して精製ガスを抜出す高純度ガスの
精製方法において、該精製ガス流路に存在するガスの滞
留部から精製ガスの一部をパージせしめることを特徴と
する高純度ガスの精製方法、および
(2原料ガスの入口および精製ガスの出口を有するガス
の精製部と、該原料ガスの入口に接続された原料ガス供
給側の配管系と、該精製ガスの出口に接続された精製ガ
ス抜出し側の配管系とを有する高純度ガスの精製装置に
おいて、該精製ガス抜出し側の配管系の精製ガス流路に
おけるガスの滞留部に精製ガスのパージ機構を設けてな
ることを特徴とする高純度ガスの精製装置である。That is, the present invention provides (1) a method for purifying high-purity gas, in which impurities contained in the gas are removed by passing the gas through a purification section, and purified gas is extracted from the purification section via a purified gas flow path; A method for purifying a high-purity gas, characterized in that a part of the purified gas is purged from a gas retention section existing in the purified gas flow path, and (a gas having two source gas inlets and a purified gas outlet). A high-purity gas purification device having a purification section, a piping system on the raw material gas supply side connected to the inlet of the raw gas, and a piping system on the purified gas extraction side connected to the outlet of the purified gas, This is a high-purity gas purification apparatus characterized in that a purified gas purge mechanism is provided in a gas retention section in a purified gas flow path of a piping system on the purified gas extraction side.
本発明はガスの滞留部のある精製装置、特に触媒、吸着
剤の再生工程を伴う装置のように分岐部など滞留部の多
いガスの精製装置に適用される。The present invention is applied to a gas purification apparatus having a gas retention part, particularly a gas purification apparatus having many retention parts such as a branch part, such as an apparatus involving a regeneration process of a catalyst or an adsorbent.
本発明を不活性ガスの精製装置を例に取り、図面によっ
て具体的に説明する。The present invention will be specifically explained with reference to the drawings, taking an inert gas purification device as an example.
第1図は不活性ガスの高純度精製装置のフローシートで
ある。FIG. 1 is a flow sheet of a high-purity inert gas purification device.
第1図においてNi、 Cuなとの触媒が充填された触
媒筒1と合成ゼオライトなどの吸着剤が充填された吸着
筒2とが直列に接続され、かつ、それぞれの筒にヒータ
ーが配設されてなる2系列のガスの精製部AおよびBそ
れぞれの触媒筒1および1は流路3aおよび3bと接続
され、流路3aおよび3bの他端は弁ViaおよびVl
bを介して原料ガスの供給路4に接続され、かつ、流路
3aおよび3bから分岐した流路はそれぞれ弁V2aお
よびV2bを介してそれぞれ再生排ガスの排出路5に接
続されている。また、ガスの精製部AおよびBそれぞれ
の吸着筒2および2は流路6aおよび6bと接続され、
流路6aおよび6bは弁V3aおよびV3bを介してフ
ィルターS、流量計F1および流量調節弁CVtを備え
た精製ガスの抜出し路7にそれぞれ接続され、かつ、流
路6aおよび6bから分岐した流路8aおよび8bは弁
V4aおよびv4bを介して再生用ガスの供給路9にそ
れぞれ接続されている。さらに、再生用ガスの供給路9
の他端は分岐してその一方は弁■5を介して流量調節弁
CV2および流量計F2が設けられた再生用水素ガスの
供給路IOに、他方は、精製ガスの抜出し路7から分岐
し、かつ、圧力計P、流量調節弁CV3および流量計F
3が設けられた精製自己ガスの供給路11に弁■6を介
して接続されている。In Fig. 1, a catalyst cylinder 1 filled with a catalyst such as Ni or Cu and an adsorption cylinder 2 filled with an adsorbent such as synthetic zeolite are connected in series, and a heater is provided in each cylinder. Catalyst cylinders 1 and 1 of two series gas purification sections A and B are connected to channels 3a and 3b, and the other ends of channels 3a and 3b are connected to valves Via and Vl.
The flow paths branched from the flow paths 3a and 3b are connected to the regeneration exhaust gas discharge path 5 via valves V2a and V2b, respectively. Further, the adsorption cylinders 2 and 2 of the gas purification sections A and B are connected to the flow paths 6a and 6b,
The channels 6a and 6b are connected via valves V3a and V3b to a purified gas extraction channel 7 equipped with a filter S, a flow meter F1, and a flow rate control valve CVt, and are branched from the channels 6a and 6b. 8a and 8b are connected to a regeneration gas supply path 9 via valves V4a and v4b, respectively. Furthermore, the regeneration gas supply path 9
The other end is branched, one of which is connected to a regeneration hydrogen gas supply path IO provided with a flow rate control valve CV2 and a flow meter F2 via a valve 5, and the other is branched from a purified gas extraction path 7. , and a pressure gauge P, a flow rate control valve CV3, and a flow meter F.
It is connected to a purified self-gas supply line 11 provided with a valve 3 through a valve 6.
精製ガス抜出系の流路から分岐する各流路、すなわち、
流路6aと6bとの分岐部から弁V4aおよびV4bま
での間(RlaおよびRlb)、弁V3aおよびV3b
から精製ガスの抜出し路7との接続部までの間(R2a
およびR2b )ならびに再生用自己ガスの供給路11
(R3)の5箇所がそれぞれ滞留部となっている。Each flow path branching from the flow path of the purified gas extraction system, that is,
Between the branching part of flow paths 6a and 6b and valves V4a and V4b (Rla and Rlb), valves V3a and V3b
to the connection with the purified gas extraction path 7 (R2a
and R2b) and regeneration self-gas supply path 11
Each of the five locations (R3) serves as a retention portion.
ガスの滞留部R1aならびにRlbのそれぞれには流量
調節弁CV4aおよび弁V7aならびに流量調節弁CV
4 bおよび弁V7bを備えたパージ管Llaならびに
Llbがそれぞれ接続されている。また滞留部R2a
、 R2bおよびR3のそれぞれには流量調節弁CV5
a、 CV5bおよびCV6を備えタハージ管L2a
、 L2bおよびL3がそれぞれ接続され、それぞれの
パージ管の他端は水分計Wおよび弁v8を備えたパージ
主管りの一端に接続され、パージ主管りの他端は再生排
ガスの排出路5に接続されている。さらにパージ管Ll
aおよびLlbのそれぞれの他端もパージ主管しに接続
されている。Flow control valves CV4a and V7a and flow control valves CV are provided in the gas retention portions R1a and Rlb, respectively.
Purge pipes Lla and Llb with valve V7b and valve V7b are respectively connected. Also, the retention part R2a
, R2b and R3 each have a flow rate control valve CV5.
a, Tahaj tube L2a with CV5b and CV6
, L2b and L3 are connected to each other, the other end of each purge pipe is connected to one end of the purge main pipe equipped with a moisture meter W and valve v8, and the other end of the purge main pipe is connected to the discharge path 5 of the regenerated exhaust gas. has been done. Furthermore, purge pipe Ll
The other ends of a and Llb are also connected to the main purge pipe.
ガスの精製は精製部AおよびBを交互に切替えて使用す
ることにより連続的におこなわれる。例えば精製部Aが
精製工程のときには弁ViaおよびV3aが開かれるこ
とによって窒素ガスなどの原料ガスは供給路4から流路
3aを経て触媒筒1に入り、Niなとの触媒と接触して
主にガス中に含有される酸素が捕捉され、次いで吸着筒
2に入り、合成ゼオライトなどの吸着剤と接触して炭酸
ガスおよび水分などが吸着除去され、高純度に精製され
る。精製部Aから出た精製ガスは流路6a、弁V3a
、フィルターSおよび精製ガスの抜出し路7を経由して
流量調節弁CVIで流量を調節しながら抜出され半導体
製造装置などに供給される。この間、精製ガスの流路か
ら分岐した流路のガスの滞留部R1a 、R2bおよび
R3には再生時の残留水素ガスや管壁などから徐々に離
脱する不純ガスが滞留し、これらが拡散して精製ガスの
流路に侵入するので、これを防止するため滞留部から精
製ガスの一部がパージされる。パージ管Llaの弁V7
aおよびパージ主管りの弁v8を開くことにより、滞留
部R1aについてはパージ管Lla 、滞留部R2bに
ついてはパージ管L2b 、滞留部R3についてはパー
ジ管L3を経てそれぞれ精製ガスが抜出されるが、この
場合にはパージ管L2aにもガスが滞留するためL2a
内のパージも同時におこなわれ、それぞれパージ主管り
を経由して排出路5から排出される、パージ量は流量調
節弁CV4a、 CV5a、 CV5bおよびCV6に
よってそれぞれ調節される。Gas purification is carried out continuously by alternately using purification sections A and B. For example, when the refining section A is in the refining process, the valves Via and V3a are opened, so that raw material gas such as nitrogen gas enters the catalyst cylinder 1 from the supply path 4 through the flow path 3a, contacts the catalyst such as Ni, and enters the main gas. The oxygen contained in the gas is captured, and then enters the adsorption column 2, where it comes into contact with an adsorbent such as synthetic zeolite, where carbon dioxide, water, etc. are adsorbed and removed, and the gas is purified to a high degree of purity. The purified gas coming out of the purification section A flows through the flow path 6a and the valve V3a.
, the purified gas is extracted through the filter S and the purified gas extraction path 7 while adjusting the flow rate with the flow rate control valve CVI, and is supplied to semiconductor manufacturing equipment and the like. During this time, residual hydrogen gas during regeneration and impurity gas gradually released from the pipe wall, etc., remain in the gas retention parts R1a, R2b, and R3 of the flow path branched from the purified gas flow path, and these are diffused. In order to prevent this from entering the purified gas flow path, a portion of the purified gas is purged from the retention section. Purge pipe Lla valve V7
By opening valve v8 of purge main pipe a and purge main pipe, purified gas is extracted through purge pipe Lla from retention part R1a, purge pipe L2b from retention part R2b, and purge pipe L3 from retention part R3. In this case, gas also remains in the purge pipe L2a, so L2a
Purging is also performed at the same time, and the purge amounts are respectively regulated by flow control valves CV4a, CV5a, CV5b and CV6, which are discharged from the discharge passage 5 via the main purge pipes.
このようにパージをおこなうことによって各滞留部の不
純ガスは系外に排出され、精製ガス流路への不純ガスの
侵入が確実に防止される。By performing purging in this manner, impure gas in each retention section is discharged to the outside of the system, and intrusion of impure gas into the purified gas flow path is reliably prevented.
精製部Aでガスの精製がおこなわれる間に精製部Bでは
触媒および吸着剤の再生が行われる。While the gas is purified in the purification section A, the catalyst and adsorbent are regenerated in the purification section B.
精製部Bの触媒筒1および吸着筒2をし一ターで加熱し
ながら再生排ガスの排出路5に通ずる弁V2b 、流路
8bの弁V4b 、再生用水素ガスの供給路10の弁v
5および再生用精製自己ガスのの供給路11の弁v6を
開き、流量調節弁CV2およびCv3によって流量を調
節することにより水素ガスおよび精製自己ガスは供給路
9から流路6b、精製部Bの吸着筒2、触媒筒1、流路
3bおよび弁2bを経由して流し、排出路5かへ排出す
ることにより吸着剤および触媒に吸着または捕捉されて
いた不純ガスが脱着除去され吸着剤および触媒は再生さ
れる。A valve V2b communicates with the regenerated exhaust gas discharge path 5 while heating the catalyst cylinder 1 and adsorption cylinder 2 of the refining section B, a valve V4b of the flow path 8b, and a valve v of the regeneration hydrogen gas supply path 10.
5 and purified self-gas supply path 11 for regeneration is opened, and the flow rate is adjusted by flow rate adjustment valves CV2 and Cv3, whereby hydrogen gas and purified self-gas are supplied from the supply path 9 to the flow path 6b and purification section B. By flowing through the adsorption cylinder 2, catalyst cylinder 1, flow path 3b and valve 2b and discharging into the discharge path 5, impurity gases adsorbed or captured by the adsorbent and catalyst are desorbed and removed. is played.
次に精製部Bで精製がおこなわれるときには弁Vlbお
よびV3bを開くことによりガスは精製部B、流路6b
および精製ガスの抜出し路7を経由して精製されるが、
この場合には精製部Aにおける精製でパージ管Llaか
らパージをおこなう代わりにパージ管Llbからパージ
をおこなう他は精製部Aでの精製におけると同様のパー
ジ管から精製ガスのパージをおこなう。Next, when purification is performed in the purification section B, the gas is transferred to the purification section B by opening the valves Vlb and V3b.
and is purified via the purified gas extraction passage 7,
In this case, the purified gas is purged from the same purge pipe as in the purification in the purification part A, except that purging is performed from the purge pipe Llb instead of purge from the purge pipe Lla during purification in the purification part A.
本発明において精製ガスのパージ方法としては、連続的
パージであってもよく、また、間欠的パージであっても
よいが、滞留部からの不純ガスの拡散などによる精製ガ
ス中への混入を確実に防止する観点からは連続的パージ
が好ましい、パージ量は滞留部となる分岐配管の口径な
どその大きさおよび形状などによって異なり一概に特定
はできないが、滞留部からの不純ガスの精製ガス流路へ
の拡散速度よりも大きいことが必要であり、例えば滞留
部となる配管の内径が5cm以下で、かつ、連続的パー
ジをおこなう場合のパージ量は線速度で0.5〜200
cm / sec、好ましくは5〜80CIl /
see程度である。また、パージガス量を低減するため
パージ管の精製ガス流路への接続部付近で分岐配管の口
径を絞ることによってガスの線速度を大きくすることも
有効である。In the present invention, the method for purging the purified gas may be continuous purging or intermittent purging, but it is ensured that impurity gas from the retention section is not mixed into the purified gas due to diffusion etc. Continuous purging is preferable from the viewpoint of preventing impurity gas from accumulating.The amount of purge varies depending on the size and shape of the branch piping that serves as the retention section, and cannot be unconditionally determined, but it is important to keep in mind that the amount of purging depends on the diameter and shape of the branch pipe that serves as the retention section. For example, if the inner diameter of the piping serving as the retention section is 5 cm or less and continuous purging is performed, the purge amount is 0.5 to 200 in linear velocity.
cm/sec, preferably 5-80CIl/
It is about .see. Furthermore, in order to reduce the amount of purge gas, it is also effective to increase the linear velocity of the gas by narrowing the diameter of the branch pipe near the connection part of the purge pipe to the purified gas flow path.
本発明において精製ガス流路からの分岐路などガスの滞
留部に設けられるパージ機構としては通常はパージ管お
よびパージ用の弁類またはオリフィスなどを組合わせた
ものであり、パージ用の弁には各種の開閉弁、流量調節
弁およびニードル弁などが一般的に使用される。パージ
機構はそれぞれの滞留部毎に設けてパージガスをそれぞ
れ個々に外部に排出させる形態でもよいが、水素ガスや
有害ガスが存在するような場合には、これらのパージ管
は例えば第1図で示したようにパージ主管に集約し、再
生排ガスのなどとともに合わせて排出させるような形態
とすることが好ましい。In the present invention, the purge mechanism provided in a gas retention area such as a branch path from a purified gas flow path is usually a combination of a purge pipe and a purge valve or orifice. Various on-off valves, flow control valves, needle valves, etc. are commonly used. A purge mechanism may be provided for each retention section to discharge the purge gas to the outside individually, but if hydrogen gas or harmful gases are present, these purge pipes may be installed as shown in Figure 1, for example. It is preferable to use a configuration in which the gas is collected in the main purge pipe and discharged together with the regenerated exhaust gas, etc., as described above.
また、ガスの種類などによってはパージによるガスのロ
スをより減少させるためにポンプなどを介してパージガ
スを原料ガスの供給系にリサイクルすることもできる。Further, depending on the type of gas, the purge gas may be recycled to the raw material gas supply system via a pump or the like in order to further reduce gas loss due to purge.
さらに、定常状態で連続的にパージされているガス中の
水分などは精製ガスと実質的に変わりはないなめ、これ
らをサンプルガスとして水分計に導き、露点の監視に利
用することもできる。Furthermore, since the moisture contained in the gas that is continuously purged in a steady state is not substantially different from the purified gas, it can also be introduced to the moisture meter as a sample gas and used for monitoring the dew point.
本発明はガスの滞留部から少址の精製ガスをパージせし
めるものであり、これによって従来排除し得なかったf
l!微量の不純物の精製ガス中への混入を確実に防止す
ることができる。従ってサブミクロン級のような集積度
の高い半導体製造用などとして要求される種々の高純度
ガスを得ることが可能となった。The present invention purges a small amount of refined gas from the gas retention area, thereby eliminating f.
l! It is possible to reliably prevent trace amounts of impurities from being mixed into the purified gas. Therefore, it has become possible to obtain various high-purity gases required for manufacturing semiconductors with a high degree of integration such as submicron scale.
第1図で示したと同様の構成の不活性ガスの精製装置で
Nu系触媒600cc (充填長410mm)、吸着剤
としてモレキュラーシーブ5A 600cc (充填長
410mm)が充填された精製部と、ステンレス製で精
製ガスの流路が内径6 mm、再生用ガスの供給路が内
径4■およびパージ管が内径2開のチューブでそれぞれ
配管された装置を用いて窒素ガスの精製をおこなった。The inert gas purification device has the same configuration as shown in Fig. 1, with a purification section filled with 600cc of Nu-based catalyst (filling length 410mm) and 600cc of molecular sieve 5A (filling length 410mm) as an adsorbent, and a stainless steel purification unit. Nitrogen gas was purified using an apparatus in which the purified gas flow path had an inner diameter of 6 mm, the regeneration gas supply path had an inner diameter of 4 mm, and the purge pipe had an inner diameter of 2 mm.
先ず、装置の系内を精製窒素ガスで置換した後、各系列
の精製部についてそれぞれ一回づつ再生処理をおこなっ
た。また、原料ガスとしては液化窒素ガスを蒸発させて
室温としたものにマスフトコントトラーを用いて酸素、
−酸化炭素および二酸化炭素の各不純成分を添加し、酸
素2.7ppm、−酸化炭素1.lppm、二酸化炭素
0.9ppmで露点が−71〜−73°Cのものを用い
た。First, after replacing the inside of the system with purified nitrogen gas, regeneration treatment was performed once for each purification section of each series. In addition, as a raw material gas, liquefied nitrogen gas is evaporated to room temperature, and then oxygen is added using a mast controller.
- each impurity component of carbon oxide and carbon dioxide is added, oxygen 2.7 ppm, - carbon oxide 1. lppm, carbon dioxide 0.9 ppm, and a dew point of -71 to -73°C was used.
圧力5 Kgf / ctd−Gで原料窒素ガスを精製
部Aに供給し、精製ガスの抜出し路から精製ガスを15
0ONl/hで抜出すと同時にパージ管LlaおよびL
3からはそれぞれ13.5NI/h 、パージ管L2a
およびL2bからはそれぞれ31.2NI/hで精製ガ
スをパージしながら精製をおこない、精製ガス中の不純
物および露点の測定をおこなった。露点については第1
図のパージ主管りのW部にセットした静電容量式水分分
析計(パナメトリックス社製)で測定し、不純物につい
ては生成ガスの抜出し路7から出たガスの一部を分析計
に導き、酸素についてはハーシェIR量酸素分析計(大
阪酸素工業■製)、その他の成分についてはFIDガス
クロマトグラフを用い、−酸化炭素、炭酸ガスは水素の
存在下に600℃でNi触媒と接触させてメタンに転換
したf&FID(水素炎イオン化検出器)に導いて分析
した。The raw material nitrogen gas is supplied to the purification section A at a pressure of 5 Kgf/ctd-G, and the purified gas is supplied from the purified gas outlet passage at 15 kgf/ctd-G.
Purge pipes Lla and L are removed at the same time as 0ONl/h.
13.5 NI/h each from 3, purge pipe L2a
Purification was performed while purging purified gas from L2b and L2b at a rate of 31.2 NI/h, and the impurities and dew point in the purified gas were measured. Regarding the dew point,
Measurement was carried out using a capacitive moisture analyzer (manufactured by Panametrics) set in the W part of the purge main pipe shown in the figure, and for impurities, a part of the gas discharged from the produced gas extraction path 7 was guided to the analyzer. For oxygen, a Hershe IR oxygen analyzer (manufactured by Osaka Sanso Kogyo ■) was used, and for other components, an FID gas chromatograph was used. - Carbon oxide and carbon dioxide gas were extracted with methane by contacting with a Ni catalyst at 600°C in the presence of hydrogen. The sample was introduced into an f&FID (Flame Ionization Detector), which had been converted to a hydrogen flame ionization detector.
精製部AおよびBの切替えは24時間毎とし、精製と再
生とを交互に繰返しながら80時間窒素ガスの精製を続
けるとともに精製ガスの分析をおこなった。結果を第1
表に示す。Purification sections A and B were switched every 24 hours, and while purification and regeneration were repeated alternately, purification of nitrogen gas was continued for 80 hours, and the purified gas was analyzed. Results first
Shown in the table.
第1表
〔比較例〕
パージ機構が全く設けられていない他は実施例における
と同じ装置を用い、がっ、パージを全くおこなわない他
は実施例と同様にして窒素ガスの精製をおこなった。な
お、この場合にはパージ管がないなめ、水分計は精製ガ
スの抜出し路に改めて設けたサンプリング管にセットし
な、得られた結果を第2表に示す。Table 1 [Comparative Example] Nitrogen gas was purified in the same manner as in the example except that no purge mechanism was provided, using the same equipment as in the example. In this case, since there was no purge pipe, the moisture meter was set in the sampling pipe newly installed in the purified gas extraction path, and the results obtained are shown in Table 2.
第2表Table 2
第1図は本発明の高純度ガスの精製装置の一例を示すフ
ローシートである。
図面の各番号は以下の通りである。
1、触媒筒 2.吸着筒
3a、 3b、 6a、 6b、 8aおよび8b、流
路4.9.10および11.供給路 5.排出路7、抜
出し路 AおよびB、精製部
Lla 、 Llb 、 L2a 、 L2bおよびL
3、パージ管り、パージ主管
特許出願人 日本バイオニクス株式会社代理人 弁理士
小 堀 貞 文FIG. 1 is a flow sheet showing an example of the high purity gas purification apparatus of the present invention. The drawing numbers are as follows. 1. Catalyst tube 2. Adsorption cylinders 3a, 3b, 6a, 6b, 8a and 8b, channels 4.9.10 and 11. Supply route 5. Discharge path 7, extraction paths A and B, purification sections Lla, Llb, L2a, L2b and L
3. Purge control, Purge control patent applicant: Japan Bionics Co., Ltd. Representative Patent attorney: Sadafumi Kobori
Claims (2)
される不純物を除去し該精製部より精製ガス流路を経由
して精製ガスを抜出す高純度ガスの精製方法において、
該精製ガス流路に存在するガスの滞留部から精製ガスの
一部をパージせしめることを特徴とする高純度ガスの精
製方法。(1) In a high-purity gas purification method, the impurities contained in the gas are removed by passing the gas through a purification section, and the purified gas is extracted from the purification section via a purified gas flow path,
A method for purifying high-purity gas, comprising purging a part of the purified gas from a gas retention section existing in the purified gas flow path.
スの精製部と、該原料ガスの入口に接続された原料ガス
供給側の配管系と、該精製ガスの出口に接続された精製
ガス抜出し側の配管系とを有する高純度ガスの精製装置
において、該精製ガス抜出し側の配管系の精製ガス流路
におけるガスの滞留部に精製ガスのパージ機構を設けて
なることを特徴とする高純度ガスの精製装置。(2) A gas purification section having a source gas inlet and a purified gas outlet, a piping system on the source gas supply side connected to the source gas inlet, and a purified gas extraction connected to the purified gas outlet A high-purity gas purification apparatus having a side piping system, characterized in that a purified gas purge mechanism is provided in a gas retention section in a purified gas flow path of the purified gas extraction side piping system. Gas purification equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63286745A JP2651610B2 (en) | 1988-11-15 | 1988-11-15 | High-purity gas purification method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63286745A JP2651610B2 (en) | 1988-11-15 | 1988-11-15 | High-purity gas purification method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02135111A true JPH02135111A (en) | 1990-05-24 |
JP2651610B2 JP2651610B2 (en) | 1997-09-10 |
Family
ID=17708481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63286745A Expired - Fee Related JP2651610B2 (en) | 1988-11-15 | 1988-11-15 | High-purity gas purification method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2651610B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102247315B1 (en) * | 2020-12-14 | 2021-05-04 | 주식회사 하이퓨리티 | High pressure carbon dioxide gas purification device |
-
1988
- 1988-11-15 JP JP63286745A patent/JP2651610B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2651610B2 (en) | 1997-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8529674B2 (en) | Pressure swing adsorption method and system with multiple-vessel beds | |
JPS62241524A (en) | Separation and purification for carbon monoxide excellent in stabilization of purity | |
JP2572612B2 (en) | Hydrogen purification method | |
JP2015140281A (en) | Method for recovering and purifying argon gas from silicon single crystal production apparatus, and apparatus for recovering and purifying argon gas | |
JP2596767B2 (en) | Method and apparatus for purifying hydrogen | |
JPH0481650A (en) | Apparatus for preparing standard gas | |
US6461410B1 (en) | Method and apparatus for separating, removing, and recovering gas components | |
KR100531174B1 (en) | Method for analyzing impurities in a gas stream | |
US20100115994A1 (en) | Adsorbent for carbon monoxide, gas purification method, and gas purification apparatus | |
EP0482863B1 (en) | PSA Employing high purity purging | |
Mohammadi et al. | Design and construction of gas permeation system for the measurement of low permeation rates and permeate compositions | |
JP2651610B2 (en) | High-purity gas purification method and apparatus | |
JP2858143B2 (en) | Concentration analysis method and apparatus therefor | |
JP3273641B2 (en) | Hydrogen gas purification equipment | |
GB2160439A (en) | Purification of gases | |
JPS62273028A (en) | Gas dehumidifier | |
JPH0624604B2 (en) | Light gas purification equipment | |
US9643845B2 (en) | Nitrous oxide regenerable room temperature purifier and method | |
JPS61127609A (en) | Purification device for helium | |
JP6142152B2 (en) | Oil content measuring apparatus and oil content measuring method | |
JPH07223802A (en) | Hydrogen gas purifier | |
JP2002308605A (en) | Hydrogen gas purification method | |
JP2002188982A (en) | Highly purifying system for hydrogen gas and helium gas for analyzer | |
CN117241874A (en) | Methods for regenerating prepurification vessels | |
JPH02141404A (en) | Hydrogen gas purification equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |