JPH02133520A - Manufacturing method for welded structural steel plates with excellent toughness - Google Patents
Manufacturing method for welded structural steel plates with excellent toughnessInfo
- Publication number
- JPH02133520A JPH02133520A JP24557988A JP24557988A JPH02133520A JP H02133520 A JPH02133520 A JP H02133520A JP 24557988 A JP24557988 A JP 24557988A JP 24557988 A JP24557988 A JP 24557988A JP H02133520 A JPH02133520 A JP H02133520A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- solidified
- toughness
- temperature
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は母材部及び溶接熱影響部(以上HAZと侮ず)
の靭性が優れたζ容接構造用崎材の製凸方法に関するも
のである。[Detailed Description of the Invention] <Industrial Application Field> The present invention applies to base metal parts and weld heat affected zones (hereinafter simply referred to as HAZ).
The present invention relates to a method for manufacturing saki timber for zeta-contact structures with excellent toughness.
〈従来の技術〉
近年、海洋構造物、船舶、貯槽等の大型溶接構造用鋼の
材質特性に対する要望は厳しさを増しており、特に溶接
部における低温靭性は抜本的改善の検討が続けられてい
るが、需要量の増大と共に供給量の増大、供給価格の低
減が望まれる様になり、該大型溶接構造用鋼材製造時の
生産性、経済性の改善が必要になって来ている。<Conventional technology> In recent years, demands on the material properties of large welded structural steels for offshore structures, ships, storage tanks, etc. have become more severe, and studies have been ongoing to fundamentally improve the low-temperature toughness of welded parts in particular. However, as the demand increases, it becomes desirable to increase the supply and reduce the supply price, and it has become necessary to improve the productivity and economic efficiency when manufacturing steel materials for large welded structures.
一般に、鋼材をサブマージアーク溶接、エレクトロガス
溶接、エレクトロスラグ溶接等の大人熱自動溶接を行う
どオーステナイト結晶粒の粗大化により、14AZの靭
性が著しく低下する。Generally, when steel materials are subjected to automatic thermal welding such as submerged arc welding, electrogas welding, and electroslag welding, the toughness of 14AZ is significantly reduced due to coarsening of austenite crystal grains.
この)IAZ靭性の低下防止対策の最も代表的な提案と
しては特開昭61−117213号公報がある。The most typical proposal for preventing a decrease in IAZ toughness is Japanese Patent Application Laid-Open No. 117213/1983.
この提案は2つの要件で構成している。This proposal consists of two requirements.
その要件の1つは、成分を限定した鋼を凝固時の冷却過
程における950℃〜700 ℃の温度範囲において、
冷却速度2℃/sec以下で緩冷却し、I(AZに粒内
フェライト(以下IFPと慣す)を生成せしめる核とし
て、径が0.1μI以上のTi、 Zr、 Ta窒化物
(芯) +MnS (外殻)の複合体を形成せしめる事
にある。One of the requirements is that steel with limited ingredients should be cooled in the temperature range of 950°C to 700°C during solidification.
Slow cooling is performed at a cooling rate of 2°C/sec or less, and Ti, Zr, Ta nitrides (core) with a diameter of 0.1 μI or more are used as cores to generate intragranular ferrite (hereinafter referred to as IFP) in I (AZ) + MnS (outer shell) complex.
残る要件は、上記の凝固鋼片を1150℃以上の温度に
加熱し、5時間以上保定して溶接時にミクロ偏析帯から
上記のIFP生成用核の作用により活発にIFPを生成
せしめるため、樹枝に比してIFPの生成の妨げとなる
C5Mn、P及び、その他の合金元素が濃化している樹
間の合金元素を出来るだけ拡散してその合金濃度を低下
せしめる事である。The remaining requirements are to heat the above-mentioned solidified steel piece to a temperature of 1150°C or higher and hold it for 5 hours or more to actively generate IFP from the micro-segregation zone during welding by the action of the above-mentioned IFP generation nuclei. In contrast, the purpose is to diffuse as much as possible the alloying elements in the trees where C5Mn, P, and other alloying elements that hinder the formation of IFP are concentrated, thereby lowering the alloy concentration.
この2つの要件によって前記提案は、綱板内にIFPを
90ケ/ma+ ”以上生成せしめるものである。With these two requirements, the above proposal allows more than 90 IFPs/ma+'' to be generated within the steel plate.
その結果、得られる母材は、YS (kgf/m+a”
)が30〜50、TS (kgf/IIIB”)カ44
〜64、El(Z)が37〜42、vTrs(℃)が−
80−−100で、入熱100kj/cm時のHAZ靭
性はVE−6+1 ”C(kgf ・m)が16〜20
であって、入熱200kj/cm時のIIAZ靭性はV
E−ho ”C(kgf 、at)が17〜21を示し
ており、HAZ部の靭性は要望に答える迄に改善されて
いる。As a result, the obtained base material is YS (kgf/m+a”
) is 30-50, TS (kgf/IIIB”) is 44
~64, El (Z) is 37-42, vTrs (℃) is -
80--100, the HAZ toughness at a heat input of 100kj/cm is VE-6+1"C (kgf m) is 16-20
The IIAZ toughness at a heat input of 200 kj/cm is V
The E-ho''C (kgf, at) is 17 to 21, and the toughness of the HAZ portion has been improved to meet the requirements.
又特開昭60−169516号公報による提案は、WA
X靭性のみならず、母材の低温靭性も優れた鋼板を製造
するため、成分限定した鋼を温度1250〜1350℃
で60分以上加熱し、放冷もしくは圧延してAr3変態
点以下の温度に冷却し、温度900〜1150’cに再
加熱して800℃以下の圧下率30%以上の圧延の後、
制御冷却焼き戻しを行う方法である。Also, the proposal in Japanese Patent Application Laid-open No. 169516/1983 was proposed by WA
In order to manufacture steel sheets with excellent not only X-toughness but also low-temperature toughness of the base metal, steel with limited ingredients is heated at a temperature of 1250 to 1350°C.
After heating for 60 minutes or more, cooling or rolling to a temperature below the Ar3 transformation point, reheating to a temperature of 900 to 1150'C and rolling at a reduction rate of 30% or more at 800 °C or less,
This method performs controlled cooling and tempering.
この結果母材の低温靭性はvTrs−90〜−110℃
を示し、且つl(Azu性は−48〜−60゛Cを示す
優れた鋼(反を得ている。As a result, the low temperature toughness of the base material is vTrs -90 to -110℃
It is an excellent steel that exhibits 1 (Azure resistance of -48 to -60°C).
〈発明が解決しようとする課題〉
しかしながら、前記特開昭61−117213号公報の
提案の如く、鋼の凝固過程の950〜700 ℃領域に
おいて2°(/secの緩冷却を必須とする事は、凝固
鋼片を少なく共700℃迄降温する必要を意味しており
、時には常温迄の降温もあり得るので、次に行う≧l+
50’c、≧5hrの加熱保定には多大の時間にわたっ
て新たに膨大なエネルギーの投入が必要となる。<Problems to be Solved by the Invention> However, as proposed in JP-A-61-117213, it is not possible to require slow cooling of 2°/sec in the 950-700°C region during the solidification process of steel. , it means that it is necessary to lower the temperature of the solidified steel slab to at least 700℃, and sometimes it is possible to lower the temperature to room temperature, so the next step ≧l+
To maintain heating for 50'c, ≧5 hr, it is necessary to newly input a huge amount of energy over a long period of time.
その間f!記凝固崎鋼片有する多大の熱エネルギーは単
に消失するのみで利用されない侭となり、生産性の低下
はもとより、熱経済性に基づく経済性の悪化は大きい。Meanwhile f! A large amount of thermal energy possessed by solidified steel slabs is simply dissipated and remains unused, resulting in not only a decrease in productivity but also a significant deterioration in economic efficiency based on thermoeconomic efficiency.
又、凝固鋼片に21150℃1≧5hrの加熱保定を必
須とする事は、少なくとも凝固鋼片が5時間にわたって
高温な製造工程に滞留する事を意味し、換言すると単一
凝固鋼片に5時間にわたる高温な製造工程を独占的に提
供する事を意味し、これは更に生産性を低下し、経済性
を悪化する事を意味する。In addition, requiring the solidified steel billet to be heated at 21,150°C for 1≧5 hours means that the solidified steel billet remains in the high-temperature manufacturing process for at least 5 hours. This means exclusively providing a long and high temperature manufacturing process, which further reduces productivity and worsens economic efficiency.
こら、、!題を解消するために、本発明者等は特願昭6
3−1(i5389号により鋳造温度及び凝固末端部の
凝固収縮の補(iを行った鋼片に圧下率30%以上の圧
延を行って後、1250℃以上で2時間以上(5時間以
下)保定する事により入熱75kj/c+iの時(両面
多層溶接)のl+AZ靭性vE−16’c (kgf−
e+)を16〜22に、入熱230kj/amの時(片
面−層溶接)のHAZu性VE−60℃(kgf−m)
を10〜14にし、て前記特開昭61−117213号
公報の提案の課題を解決して生産住良(、経済的にII
AZ部の靭性要望に応える第1の発明を提案した。Hey,,! In order to solve the problem, the inventors filed a patent application in 1983.
3-1 (Compensation for casting temperature and solidification shrinkage at the end of solidification according to No. i5389 (after rolling the steel slab subjected to step i at a reduction rate of 30% or more, at 1250°C or more for 2 hours or more (5 hours or less) By holding the l+AZ toughness vE-16'c (kgf-
HAZu property VE-60℃ (kgf-m) when e+) is 16 to 22 and heat input is 230kj/am (single side-layer welding)
10 to 14, solving the problem proposed in the above-mentioned Japanese Patent Application Laid-Open No. 117213/1982, and making it economically possible
We have proposed a first invention that meets the demands for toughness in the AZ section.
しかしながら、温度1250℃以上の保定温度を必須要
件としているため、加熱時の1粒径が粗大となり、加熱
後直ちに圧延する場合は母材靭性は高くなく、全ての要
望を満たさない。However, since a holding temperature of 1250° C. or higher is an essential requirement, the grain size during heating becomes coarse, and when rolling is performed immediately after heating, the base material toughness is not high and does not meet all requirements.
このため、l4AZに加えて母材の低温靭性を保証する
必要がある時は、前述の特開昭60−169516号公
報に記載されている様に、−旦Arx変態点温度以下に
冷却し、再び900〜1150’cに加熱後800℃以
下の圧下率30%以上の圧延をする方法が採られている
。For this reason, when it is necessary to guarantee the low-temperature toughness of the base metal in addition to l4AZ, as described in the above-mentioned Japanese Patent Application Laid-Open No. 60-169516, it is necessary to cool the base metal to below the Arx transformation point temperature, A method is adopted in which the material is heated again to 900-1150'c and then rolled at 800°C or less with a rolling reduction of 30% or more.
かかる方法では、−度高温に加熱した鋼片を一旦冷却し
再び加熱するので、生産性の低下はもとより、熱経済性
及び設備費に基づく経済性の悪化を招き、不可避的に製
造費が増大する。In this method, a steel billet heated to a -degree high temperature is once cooled and then heated again, which not only leads to a decrease in productivity but also to a deterioration in economic efficiency based on thermoeconomic efficiency and equipment costs, which inevitably increases manufacturing costs. do.
本発明は、上記本発明者等の第1の提案発明を基礎とし
、該第1の提案発明がもたらした良好な生産性及び経済
性の下に保証したHAZ靭性に加えて、母材の低温靭性
も同様に、生産性及び経済性の悪化をもたらす再加熱を
用いる事なく保証する溶接構造用鋼板の製造方法を第2
の提案発明として桿供する事を課題とするものである。The present invention is based on the first proposed invention of the present inventors, and in addition to the HAZ toughness guaranteed under the good productivity and economic efficiency brought about by the first proposed invention, Similarly, we have developed a second manufacturing method for welded structural steel plates that guarantees toughness without using reheating, which deteriorates productivity and economic efficiency.
The objective is to provide the invention as a proposed invention.
く課題を解決するだめの手段〉
本発明は一ヒ記課題を達成するために、(1)溶接構造
用網を凝固点温度+5 ℃以上の温度で鋳型に注入して
鋳造凝固を開始し、該凝固中鋼片の凝固末端部を凝固収
縮量に応じて実質的に面を構成する部材を用いて該凝固
口片の厚み方向に圧下しつつ凝固し、該凝固完了鋼片を
圧下4−30%以」二の圧延後、1250℃以上で2時
間以上保定する事を基本的な第1の手段とし、
(2)溶接構造用鋼を凝固点温度+5 ℃以上の温度で
鋳型に注入して鋳造凝固を開始し、該凝固中鋼片の凝固
末端部を凝固収1i!itに応じて実質的に面を構成す
る部材を用いて該凝固鋼片の厚み方向に圧下しつつ凝固
し、該凝固完了鋼片を圧下率30%以上の1次圧延後、
1250℃以上で2時間以上保定して後800℃以下の
圧下率60%以上の2次圧延を行う事を第2の手段とす
るものである。Means for Solving the Problems> In order to achieve the problems mentioned above, the present invention (1) starts casting solidification by injecting a welded structural mesh into a mold at a temperature of freezing point temperature + 5 °C or higher, and The solidified end portion of the solidified steel piece is solidified while being rolled down in the thickness direction of the solidified piece using a member that substantially forms a surface according to the amount of solidification shrinkage, and the solidified steel piece is rolled down 4-30 mm. The basic first method is to hold the steel at 1250°C or higher for 2 hours or more after rolling to a temperature of 1250°C or higher. Solidification is started, and the solidified end portion of the solidified steel slab is solidified 1i! Solidify the solidified steel piece while rolling it down in the thickness direction using a member that substantially forms a surface according to it, and after primary rolling the solidified steel piece at a reduction rate of 30% or more,
The second method is to maintain the temperature at 1250° C. or higher for 2 hours or more and then perform secondary rolling at 800° C. or lower with a reduction rate of 60% or higher.
通常溶接構造用鋼板は、所要の材質を得るために従来か
ら当業分野での活用で確認されている作用・効果の関係
を基に、所要材質を得るため、例えば前記特開昭61−
117213号公報にも記載されている様に、鉄及び不
可避的な成分に、後述する理由に基づいて定められた各
元素を付記した量を添加して構成している。Normally, welded structural steel plates are manufactured in order to obtain the required material quality based on the relationship between functions and effects that have been confirmed in the past in the field of art.
As described in Japanese Patent No. 117213, each element is added in an additional amount to iron and other unavoidable components based on the reasons described below.
つまり一般的には基本成分として、
C: 0.02〜0.18Z Al : 0.00
7〜0.lXSi : ≦0.5Z S :
0.001〜0.005zOn : 0.4〜1.8
Z B : 0.0002〜0.0032P :
≦0.015t N : ≦0.004Zと
、
Ti : 0.003〜0.02Z Ta : 0.
003〜0.02zZr : 0.003〜0.02Z
の1種又は2種以上を含み、
Ni : ≦2.0Z No : ≦0.
5ZCr;≦0 、5Z Ceq ≦0.
45Zを選)R添加している。In other words, generally the basic components are: C: 0.02~0.18Z Al: 0.00
7-0. lXSi: ≦0.5ZS:
0.001~0.005zOn: 0.4~1.8
ZB: 0.0002-0.0032P:
≦0.015t N: ≦0.004Z, Ti: 0.003 to 0.02Z Ta: 0.
003-0.02ZZr: Contains one or more of 0.003-0.02Z, Ni: ≦2.0Z No: ≦0.
5ZCr;≦0, 5ZCeq≦0.
45Z) R is added.
又これ等の成分の添加理由及び添加量の限定理由は、−
Cには次の通りである。Also, the reason for adding these ingredients and the reason for limiting the amount added are as follows:-
C is as follows.
Cは鋼の強度を向上するために使用し、用途上の必要強
度から0.02Zを下限量とし、耐溶接割れ性の劣化か
ら0.18Zを上限としている。C is used to improve the strength of steel, and the lower limit is set at 0.02Z in view of the required strength for the purpose, and the upper limit is set at 0.18Z in view of deterioration in weld cracking resistance.
又S1は母材の強度維持、溶鋼の予備脱酸のために必要
としているが、I(AXに高炭素マルテンサイトを生成
して靭性が低下するのを防止するために0.5χを上限
としている。In addition, S1 is necessary for maintaining the strength of the base metal and preliminary deoxidation of molten steel, but I There is.
14rlは母材強度、靭性の確保と併せて外殻となるM
nSを形成のため0.4zを下限とし、HAZの靭性、
HAZの耐溶接割れ性の劣化防止から1,87を上限と
している。14rl is M that serves as the outer shell in addition to ensuring base material strength and toughness.
For the formation of nS, the lower limit is 0.4z, and the toughness of HAZ,
The upper limit is set at 1.87 in order to prevent deterioration of the weld cracking resistance of HAZ.
Pはミクロ偏析による)IAZ靭性、I(AZ耐割れ性
の劣化を防止するため0.0i5Zを上限としている。The upper limit of P is 0.0i5Z to prevent deterioration of IAZ toughness (due to micro-segregation) and I (AZ cracking resistance).
AIは脱酸、母材組織の細粒化、固溶Nの固定等のため
に0.007%以上で使用されるが、綱の清浄度の低下
防止からO,Izを上限としている。AI is used in an amount of 0.007% or more for deoxidation, grain refinement of the matrix structure, fixation of solid solution N, etc., but the upper limit is set at O and Iz to prevent deterioration of the cleanliness of the steel.
Sは通常IFP生成の核となる複合体の外殻を形成する
MnSの生成に0.001Z以上を必要とするが、粗大
なA系介在物を形成して母材の靭性、異方性の悪化を防
止するため0.005Zを上限としている。S usually requires a concentration of 0.001Z or higher to form MnS, which forms the outer shell of the composite that is the core of IFP formation, but it forms coarse A-based inclusions and deteriorates the toughness and anisotropy of the base material. In order to prevent deterioration, the upper limit is set at 0.005Z.
Bは一般に大入熱溶接時の)IAZ靭性にを害な粒界フ
ェライト、フェライト・サイドプレートの抑制、8Nの
析出によるHAZ固溶Nの固定等から少なくともO,0
O02Xを添加しているが、多量の添加はFe2x(C
B)hの析出による靭性低下、及びフリーBによる)I
AZの硬化性の増加を招くので、これ等を防止するため
0.003Zを上限としている。B is generally at least O, 0 due to the suppression of grain boundary ferrite, ferrite side plates that are harmful to IAZ toughness (during high heat input welding), and fixation of HAZ solid solution N due to precipitation of 8N.
O02X is added, but a large amount of Fe2x (C
B) Decrease in toughness due to precipitation of h and free B) I
Since this leads to an increase in the hardenability of AZ, the upper limit is set at 0.003Z to prevent this.
NもS、Bと同様に複合体の芯となるT1、Zr。Like S and B, N is also T1 and Zr, which are the core of the complex.
Ta、等の窒化物の析出のため添加するが、マトリック
スの靭性低下、IIAZにおける高炭素マルテンサイト
の生成促進等を防止するため0.004zを上限として
いる。It is added to precipitate nitrides such as Ta, but the upper limit is set at 0.004z to prevent deterioration of matrix toughness and promotion of high carbon martensite formation in IIAZ.
Ti、 Zr、 Ta、は1種又は2種以上を選択添加
して前記した複合体の芯となる窒化吻合生成し、粒内フ
1.う・イトの生成核とじて作用せしめるため、0.0
03Z以上の添加量が必要であるが、鋼の清浄度の低下
を防止するためo、o2xを上限としている。One or more of Ti, Zr, and Ta are selectively added to form a nitriding anastomosis that becomes the core of the composite described above, and form an intragranular fluoride. 0.0 in order to act as a generation nucleus of U-ite.
Although it is necessary to add more than 03Z, the upper limit is set to o and o2x to prevent a decrease in the cleanliness of the steel.
以ヒが当業分野で溶接構造用鋼の基本成分とする元素と
各元素の添加量及び添加理由である。The following are the elements used as basic components of welded structural steel in the field, the amount of each element added, and the reasons for addition.
これに当業分野では■母材強度の上昇、及び母材、HA
Zの靭性向上の目的で、Ni、 Cu、 Cr、 No
、Nb、■の1種又は2種以上、或いは、■+iAZの
結晶粒粗大化防止と母材の異方性の軽減を目的として、
REH、Ca、 Hgの1種又は2種以上の何れか一方
又は両方を添加している。In this field of the art, ■ Increase in base material strength and base material, HA
For the purpose of improving the toughness of Z, Ni, Cu, Cr, No
, Nb, one or more of ■, or ■+iAZ for the purpose of preventing crystal grain coarsening and reducing the anisotropy of the base material.
One or both of REH, Ca, and Hg are added.
しかしながら0群のN1は母材の強度と靭性及びtlA
Z ljl性を同時に高めるために添加するが、焼き入
れ性の増加により)IAZにおけるIFPの形成が抑制
される事があるやこれを防止するため2.Ozの添加量
を1−限としている。However, N1 of group 0 depends on the strength and toughness of the base material and tlA.
Although it is added to simultaneously improve the hardenability, the formation of IFP in IAZ may be suppressed due to the increase in hardenability.2. The amount of Oz added is limited to 1.
又Cuは母材の強度を高める割にHAZの硬さ上昇が少
ないが、応力除去焼鈍により1(AZの硬化性が増加す
るので1.Olを上限としている。Further, although Cu increases the strength of the base material, the increase in HAZ hardness is small, but stress relief annealing increases the hardenability of AZ, so the upper limit is set at 1.Ol.
Nb、■、Cr、 Moは、焼き入れ性の向上と析出硬
化とにより母材強度を高め、母材の低温靭性を向上する
事が知られているが、HA Z靭性及び硬化性への悪影
響を防止するためそれぞれ0.05Z 、0.1Z及び
1.Ol、0.5zを各々の北限としている。Nb, ■, Cr, and Mo are known to increase the strength of the base metal by improving hardenability and precipitation hardening, and improve the low-temperature toughness of the base metal, but they have an adverse effect on HAZ toughness and hardenability. 0.05Z, 0.1Z and 1. Ol, 0.5z is the northern limit of each.
又■の群の成分として前記の通りHAZのオーステナイ
ト結晶粒粗大化防止のため、酸化物及び硫化物生成元素
である原子番号57〜71のランタノイド系元素及びY
の1種又は2種以北から選ばわた希土類元素(REM)
とCa及びHgの三者の中1種又は2種以上を添加して
いる。In addition, as the components of the group (2), in order to prevent coarsening of austenite crystal grains in HAZ, as mentioned above, lanthanoid elements with atomic numbers 57 to 71, which are oxide and sulfide forming elements, and Y
Rare earth elements (REM) selected from 1 or 2 species of
One or more of the following three types are added: Ca, and Hg.
これ等の元素は酸化物、硫化物もしくは酸硫化物を形成
し、l(AZの結晶粒II大化、母(Aの異方性を軽減
する事を目的に添加されるが、IFPの生成核となるM
nSの形成が困難になるのを防止す−るために、これ等
の元素の1種又は2種以上の合計の0.005Zを上限
としており、各り単独添加の場合は0.0032を上限
としている。These elements form oxides, sulfides, or oxysulfides, and are added for the purpose of increasing the crystal grain size of l (AZ) and reducing the anisotropy of mother (A). The core M
In order to prevent the formation of nS from becoming difficult, the upper limit is set at 0.005Z for the sum of one or more of these elements, and when each element is added individually, the upper limit is set at 0.0032. It is said that
又Ceqは0.45X以下とするのが一般的であり、そ
の理由は焼き入れ性の増大によって粒内フェライトの生
成を極めて困難にし、HAZ靭性を低ドせしめるとされ
ている。In addition, Ceq is generally set to 0.45X or less, and the reason for this is said to be that the increase in hardenability makes it extremely difficult to generate intragranular ferrite, thereby lowering the HAZ toughness.
通常前記Ceqは次式で算出される値である。Usually, the Ceq is a value calculated by the following formula.
Ceq=C% +SiZ/24+Hrb%/6 トN
i:W/40+CrZ15 十No/4 + V2:/
14
本発明が対象とする溶接構造用鋼は、」二記した通常の
溶接構造用鋼と変わるところはなく、上記各元素を上記
した理由の丁に上記し7た範囲で同様に使用しており、
本発明特有の成分構成を有するものではない。Ceq=C% +SiZ/24+Hrb%/6 ToN
i:W/40+CrZ15 10 No/4 + V2:/
14 The welded structural steel to which the present invention is directed is the same as the ordinary welded structural steel described in 2. It uses the above elements in the same manner as described in 7. Ori,
It does not have a component structure unique to the present invention.
く作用〉
本発明者等は前記従来技術が有する課題を解消するため
に、前記凝固片を凝固温度未満、特に室温程度に迄冷却
する事なく、IFP生成用核を形成し、且つ加熱を省略
し、保定時間を短縮しても所要量の[FPが生成出来る
IFP生成前処理の実験検討を繰り返した結果、
(1) HAZ部の靭性は第2図に示す如く、IFPの
面積率が増加すると向上し、該面積率が30%程度あれ
ば前記要望を満たし得る事。In order to solve the problems of the prior art, the present inventors formed IFP generation nuclei without cooling the solidified pieces below the solidification temperature, particularly to about room temperature, and omitted heating. However, as a result of repeated experimental studies of IFP generation pretreatment that can generate the required amount of [FP] even if the retention time is shortened, we found that (1) The toughness of the HAZ area increases as the area ratio of IFP increases, as shown in Figure 2. This improves the area ratio, and if the area ratio is about 30%, the above requirements can be met.
(2)脆化組織である島状マルテンサイ[のサイズは偏
析量の増加によって大きくなり、該サイズが大きくなっ
て6μm以上になると、第3図に示ず如<HAZ部の靭
性低下が著しくなる事。(2) The size of the island-like martensia, which is a brittle structure, increases as the amount of segregation increases, and when the size increases to 6 μm or more, the toughness of the HAZ decreases significantly, as shown in Figure 3. case.
を見出した。I found out.
そこで本発明者等は、従来技術乙こ内在する課題を解i
i’iすると共に、更にHAZ部の靭性を抜本的に改善
する溶接構造用鋼板の製造方法を確立するため、■IF
Pの面積率を増加する手段と、■島状マルテンサイトの
サイズを小さくする手段の個々の探究実験と、■■の各
手段を連携した方法の実験を行った。Therefore, the present inventors have solved the problems inherent in the prior art.
IF
We carried out individual exploration experiments on means for increasing the area ratio of P, (1) means for reducing the size of island-shaped martensite, and (2) experiments on a method in which each of the means in conjunction with each other was combined.
その結果、溶鋼を凝固点lハ度→−5℃以上の温度で鋳
型に注入して冷却凝固を開始すると凝固組織は柱状晶を
形成し、その鋳造凝固過程において前記したTi、 Z
r、 Ta窒化物(芯)+HnS(外殻)の複合体等か
らなるIFP生成用核が該凝固鋼片の柱状晶組織内に生
成し、更に該凝固完了時に未凝固末端部を実質的に面を
構成する部材、例えば特公昭44−2441 号公報に
記載されている無端ベルト、大型プレス、及び特開昭5
9−163064号公報、特開昭59202145号公
報、特開昭61−49761号公報に記載され、例えば
第6図に正面図を示す如く、外l内2の2組のウオーキ
ングバーをそれぞれ上下対に設け、鋳片Sを挟持、搬送
する装置等の面部材を用いて前記凝固に基づく凝固収j
jh量に応じて前記凝固鋼片の厚み方向に圧下を加えて
Φ1記凝固を完了し、少なくとも30%の圧下率で圧延
を行ってから、少なくとも1250”Cで2時間保定す
ると、第4図及び第5図に示す様に柱状晶を形成する樹
枝状晶の樹間に形成されるミクロ偏析が軽減され、IF
P組織が30%以上生成されると共に、凝固中心部に形
成される中心マクロ偏析の偏析量が更に効果的に低減し
、靭性に有害な島状マルテンサイトの量のみならずサイ
ズも小さくなり、11^2月性の低下をより一層効果的
に防止する事を見出した。As a result, when molten steel is injected into a mold at a temperature higher than the freezing point 1°C → -5°C and cooling solidification is started, the solidified structure forms columnar crystals, and during the casting solidification process, the above-mentioned Ti and Z
r, IFP generation nuclei consisting of a composite of Ta nitride (core) + HnS (outer shell), etc. are generated within the columnar crystal structure of the solidified steel slab, and furthermore, when the solidification is completed, the unsolidified end portions are substantially removed. Members constituting the surface, such as the endless belt described in Japanese Patent Publication No. 44-2441, a large press, and
9-163064, JP-A-59202145, and JP-A-61-49761, for example, as shown in the front view in FIG. Solidification control based on the solidification using a surface member such as a device that is installed at
By applying a reduction in the thickness direction of the solidified steel slab according to the amount of jh to complete the solidification of Φ1, rolling with a reduction ratio of at least 30%, and holding at at least 1250"C for 2 hours, as shown in Fig. 4. As shown in Figure 5, the micro-segregation formed between the dendrites forming columnar crystals is reduced, and the
At least 30% of the P structure is generated, and the amount of central macro-segregation formed in the solidified center is further effectively reduced, and not only the amount but also the size of island martensite, which is harmful to toughness, is reduced. It was discovered that the decline in 11^February sexiness can be even more effectively prevented.
面この実験において面部材の幅を厚み方向圧下綱片の幅
方向両端部凝固域を除いた未凝固部に対応する幅とする
と、所要圧下刃が軽残出来且つ、面圧下効率が明確に発
蓮出来て好ましい事を知得した。Surface In this experiment, if the width of the surface member was made to correspond to the unsolidified area excluding the solidified area at both widthwise ends of the thickness direction reduction rope piece, the required reduction edge could be left lightly and the surface reduction efficiency was clearly developed. I learned something good about being able to make a lotus.
この様にして得た鋼片を種々の条件で制御圧延した。そ
の結果を第1図に示す。The steel slabs obtained in this manner were subjected to controlled rolling under various conditions. The results are shown in FIG.
図に明らかな様に、800℃での圧下率を60%で制御
圧延を行うと、50%の圧下率で行ったものに対して、
YP及びTSは変わらないが、母材のvTrsは約−3
0℃好転する事を見出した。As is clear from the figure, when controlled rolling is performed at a rolling reduction of 60% at 800°C, compared to that performed at a rolling reduction of 50%,
YP and TS remain the same, but vTrs of the base material is approximately -3
It was found that the temperature improved by 0°C.
これは50%の圧下率で行ったものは変態後のフェライ
ト粒径が15μm程度であるのに対し60%の圧下率で
行ったものは107711程度に細粒化されている事が
影響していると思われる。本発明はこれ等の知見を基に
なされた物である。This is due to the fact that the ferrite grain size after transformation is approximately 15 μm when the rolling reduction is 50%, whereas the grain size is refined to approximately 107711 when the rolling reduction is 60%. It seems that there are. The present invention is based on these findings.
〈実施例〉
(1) 鋼成分
前記した一般的な溶接構造用鋼の元素と各元素量であれ
ば何れの組み合わせでも良いが、溶接構造用鋼の分野で
特にHAZ Q織の細粒化元素として重視し、且つ本発
明においても同様の理由がら重視するTi、 Ta、
Zr、 REH、Ca、 BSNの含有量が異なる代表
的な実施例の化学成分を比較例と共二二表1に示す。<Example> (1) Steel composition Any combination of the above-mentioned general welded structural steel elements and the amount of each element may be used, but in the field of welded structural steel, HAZ Q-woven grain refining elements are particularly suitable. Ti, Ta, which is also emphasized in the present invention for the same reason
The chemical components of typical examples with different contents of Zr, REH, Ca, and BSN are shown in Table 1 along with comparative examples.
鋳造条件、熱間圧延条件、均熱拡散条件、及び得られた
材質を表2及び表3に示す。Tables 2 and 3 show the casting conditions, hot rolling conditions, soaking diffusion conditions, and obtained materials.
(2)鋳造条件
■佳人温度 凝固点1話度10〜30℃−(ン容崎過熱
度)
(本発明例+比較例)
■凝固鋼片寸法
厚み250/300 mix幅1800mm■冷却速度
1.0 〜2.0℃、’akin■凝固末端部の面圧
下装置
(第6図に示す装置)
型式 ウオーキングバーカ式
構成 内バー(1)3 本
外ハーク2)4 本
シフト量 100IIIl11
・圧下部鋳片長 2500 国m・圧下部人側
鋳片厚み 284 n+m・圧下部用側鋳片厚み 2
81.501111圧下勾配 1.00a
+a+#a(3)第1の発明の1次圧延条件 (表2に
示す)(4)第1の発明の保定条件 (表2に示す
)(5)第1の発明のHAZ靭性 (表2に示す)
(6)第2の発明の1次圧延条件 (表3に示す)(7
)第2の発明の保定条件 (表3に示す)(8)第
2の発明のHAZ靭性 (表3に示す)(9)第2
の発明の母材靭性 (表3に示す)表2に示ず本発
明例のA−1〜A−16がら得た板厚30111I11
の鋼板に、両面多層溶接(入熱75kJ/cm)を実施
してシャルピー試験を行った。その結果Q脆化部におけ
るシャルピー値の最小値は何れの鋼板も格段に高く、v
E−、、o ’cは16.3kgf −ra以上の値
が得られた。(2) Casting conditions ■Good temperature Freezing point 1 degree 10 to 30℃ - (Inventive example + Comparative example) ■Solidified steel billet dimensions Thickness 250/300 mix width 1800mm ■Cooling rate 1.0 ~2.0℃, 'akin■ Surface reduction device at the end of solidification (device shown in Figure 6) Model Walking barker type configuration Inner bar (1) 3 Outer bar 2) 4 Shift amount 100III11 ・Length of slab under reduction 2500 Country m/Thickness of the slab on the side of the rolling part 284 n+m/Thickness of the slab on the side of the rolling part 2
81.501111 Pressure gradient 1.00a
+a+#a (3) Primary rolling conditions of the first invention (shown in Table 2) (4) Retention conditions of the first invention (shown in Table 2) (5) HAZ toughness of the first invention (Table 2 )
(6) Primary rolling conditions of the second invention (shown in Table 3) (7
) Retention conditions of the second invention (shown in Table 3) (8) HAZ toughness of the second invention (shown in Table 3) (9) Second invention
Base material toughness of the invention (shown in Table 3) Plate thickness 30111I11 obtained from invention examples A-1 to A-16 not shown in Table 2
Double-sided multilayer welding (heat input 75 kJ/cm) was performed on the steel plate, and a Charpy test was conducted. As a result, the minimum value of the Charpy value in the Q embrittlement area is extremely high for all steel plates, and
A value of 16.3 kgf-ra or more was obtained for E-, o'c.
又片面−面溶接(入熱230kgf−m)ではvE−6
゜Cは9.8kgf−01以上の高い値が得られた。Also, vE-6 for single-sided welding (heat input 230 kgf-m)
A high value of 9.8 kgf-01 or higher was obtained for °C.
一方、比較例のB−1〜B−16から得た板厚30mm
の鋼板に、上記本発明例と同様に両面多層溶接(入熱7
5kJ/cm)及び片面−面溶接(入熱230kgf
−m)を実施してシャルピー試験を行った。On the other hand, the plate thickness 30 mm obtained from Comparative Examples B-1 to B-16
double-sided multilayer welding (heat input 7
5kJ/cm) and single-side-to-side welding (heat input 230kgf
-m) was carried out to conduct a Charpy test.
最跪化部のシャルピー値の最高値は何れの鋼板も低く、
前者のvE、、s6℃は2.0〜3.8kgf −mで
あり後者のvE−、、℃は1.4kgf −m以下で実
用に供しく)なかった。The maximum Charpy value at the kneeling part is low for all steel plates;
The former's vE,.s6°C was 2.0 to 3.8 kgf-m, and the latter's vE,.°C was 1.4 kgf-m or less, which was not practical.
表3に示す本発明例のA17〜A32は本発明の第2の
発明の実施例である。Examples A17 to A32 of the present invention shown in Table 3 are examples of the second invention of the present invention.
A17〜A32は調香1〜16の鋼片に800℃以下の
圧下率60%以上の2次圧延を施したものである。A17 to A32 are steel pieces of fragrances 1 to 16 subjected to secondary rolling at a temperature of 800°C or less and a rolling reduction of 60% or more.
これにより母材のvTrsは−85〜−107℃の優れ
た値を示した。As a result, the vTrs of the base material showed an excellent value of -85 to -107°C.
一方比較例のB17〜B32は調香1〜16の鋼片に8
00“C以下の圧下率60%未満の2次圧延を施したも
のである。On the other hand, B17 to B32 of comparative examples are 8
It has been subjected to secondary rolling at a rolling reduction of less than 60% at a temperature of 00"C or less.
母材のvT rsは−55〜−73゛Cと本発明例に比
較して一段と低い値を示した。The vTrs of the base material was -55 to -73°C, which was much lower than that of the inventive example.
又第3表の鋼材に両面多層溶接(入熱75kJ/cm)
を実施してシャルピー試験を行った。その結果最脆化部
におけるシャルピー値の最小値は何れの綱板も高く、シ
E−s・は16.0 kgf−m以下の値が得られ、片
面−層溶接(入熱230kJ/cm)ではvE −66
は9.1kgf−m以上の値が得られ、本発明例は母材
及びHAZ共に要望を満足する優れた靭性を示したが、
比較例は満足な母材靭性が得られなかったや〈発明の効
果〉
本発明は、溶鋼を柱状晶組織を有する銅片とすると共に
咳鋼片の凝固中にIFP生成用核を生成せしめ、該凝固
中に未凝固末端部を凝固収縮量に応じて面圧下して偏析
帯の偏析量を低減又は実質的に皆無とし、更に圧下率3
0%以上の圧延及び1250℃以上で2時間以上の保定
を施す事によってIFPを一段と活発に生成せしめると
共に、島状マルテンサイトの生成量を更に低減し、併せ
てそのサイズを5μm以下と小さくしてHAZ靭性のイ
3れた鋼材を得、その後に800”C以下で60%以北
の圧下率を加えてフェライト粒径を@細にして母材の靭
性を格段に向上・安定せしめ、上記各要件の総合的な作
用と効果の組み合わせによって、良好な生産性と経済性
の下に、優れた靭性を存する溶接措造用鋼板を製造する
事を可能としたもので、産業界にもたらす効果は極めて
大きい。Also double-sided multilayer welding to the steel materials listed in Table 3 (heat input 75kJ/cm)
A Charpy test was carried out. As a result, the minimum value of the Charpy value at the most brittle part was high for all steel plates, and a value of less than 16.0 kgf-m was obtained for the steel E-s. So vE -66
A value of 9.1 kgf-m or more was obtained, and the example of the present invention showed excellent toughness that satisfied the requirements for both the base material and the HAZ.
In the comparative example, satisfactory base metal toughness was not obtained. <Effects of the Invention> The present invention makes molten steel into a copper piece having a columnar crystal structure, and generates IFP generation nuclei during solidification of the steel piece, During the solidification, the unsolidified end portion is subjected to surface pressure according to the amount of solidification shrinkage to reduce or substantially eliminate the amount of segregation in the segregation zone, and further reduce the reduction rate to 3.
By rolling at 0% or more and holding at 1250°C or more for 2 hours or more, IFP is generated more actively, the amount of island martensite generated is further reduced, and the size is reduced to 5 μm or less. After that, a steel material with improved HAZ toughness was obtained, and then a reduction rate of 60% or more was applied at 800"C or less to reduce the ferrite grain size and significantly improve and stabilize the toughness of the base metal. By combining the comprehensive actions and effects of each requirement, it has become possible to manufacture steel plates for welding construction with excellent toughness, with good productivity and economy, and the effects it brings to the industry. is extremely large.
第1図は2次圧延開始温度と母材である鋼板のYPST
S、 vTrsの関係図を示す。
第2図はIFP面積率とIIAZ靭性の関係を示す。
第3図は島状マルテンサイトのサイズと1(AZ靭性の
関係を示す。
第4図は凝固鋼片の一次圧延の圧下率とHAz靭性の関
係を示す。
第5図は圧延材の保定温度及び保定時間とILAZ靭性
の関係を示す。
第6図は本発明の実施例に用いた面圧下装置の正面図で
ある。
特許出願人 新日本製鐵株式会社
代 理 人 小児 益(他2名)
第
[
図
第
1スI
第
図
第
図
第
a
第
図
■
■
■
■
■:外バー
2:内バー
S;鋳片
3:未(足固部Figure 1 shows the secondary rolling start temperature and the YPST of the base metal steel plate.
A relationship diagram of S and vTrs is shown. FIG. 2 shows the relationship between IFP area ratio and IIAZ toughness. Figure 3 shows the relationship between the size of island-like martensite and 1 (AZ toughness). Figure 4 shows the relationship between the rolling reduction of the primary rolling of a solidified steel slab and the HAZ toughness. Figure 5 shows the holding temperature of the rolled material. and the relationship between retention time and ILAZ toughness. Fig. 6 is a front view of the surface pressure reduction device used in the embodiment of the present invention. Patent applicant: Nippon Steel Corporation Agent: Masu Kodo (and two others) ) No. [ Fig. 1 S I Fig. Fig. a Fig. ■ ■ ■ ■ ■: Outer bar 2: Inner bar S; Slab 3: Not yet
Claims (2)
型に注入して鋳造凝固を開始し、該凝固中鋼片の凝固末
端部を凝固収縮量に応じて実質的に面を構成する部材を
用いて該凝固鋼片の厚み方向に圧下しつつ凝固し、該凝
固完了鋼片を圧下率30%以上の圧延後、1250℃以
上で2時間以上保定する事を特徴とする靭性の優れた溶
接構造用鋼板の製造方法。(1) Casting and solidifying are started by injecting welded structural steel into a mold at a temperature higher than the freezing point temperature +5°C, and the solidified end portion of the steel slab during solidification substantially forms a surface according to the amount of solidification shrinkage. Excellent toughness, characterized in that the solidified steel slab is solidified while being rolled down in the thickness direction using a member, and the solidified steel slab is held at 1250°C or higher for 2 hours or more after rolling at a reduction rate of 30% or more. A method for producing welded structural steel plates.
型に注入して鋳造凝固を開始し、該凝固中鋼片の凝固末
端部を凝固収縮量に応じて実質的に面を構成する部材を
用いて該凝固鋼片の厚み方向に圧下しつつ凝固し、該凝
固完了鋼片を圧下率30%以上の1次圧延後、1250
℃以上で2時間以上保定して後800℃以下の圧下率6
0%以上の2次圧延を行う事を特徴とする靭性の優れた
溶接構造用鋼板の製造方法。(2) Casting and solidifying are started by injecting welded structural steel into a mold at a temperature higher than the freezing point temperature +5°C, and the solidified end portion of the steel billet during solidification substantially forms a surface according to the amount of solidification shrinkage. The solidified steel slab is solidified while being rolled down in the thickness direction using a member, and the solidified steel slab is subjected to primary rolling at a reduction rate of 30% or more, and then 1250
Reduction rate 6 below 800℃ after holding at temperature above ℃ for 2 hours or more
A method for producing a welded structural steel plate with excellent toughness, characterized by performing secondary rolling of 0% or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24557988A JPH02133520A (en) | 1988-07-02 | 1988-09-28 | Manufacturing method for welded structural steel plates with excellent toughness |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63-165389 | 1988-07-02 | ||
JP16538988 | 1988-07-02 | ||
JP24557988A JPH02133520A (en) | 1988-07-02 | 1988-09-28 | Manufacturing method for welded structural steel plates with excellent toughness |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02133520A true JPH02133520A (en) | 1990-05-22 |
Family
ID=26490147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24557988A Pending JPH02133520A (en) | 1988-07-02 | 1988-09-28 | Manufacturing method for welded structural steel plates with excellent toughness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02133520A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5939225A (en) * | 1982-08-27 | 1984-03-03 | 井関農機株式会社 | Seedling growing device |
JPS60169516A (en) * | 1983-10-07 | 1985-09-03 | Nippon Steel Corp | Production of low-temperature steel having excellent weld zone toughness |
JPS61117213A (en) * | 1984-11-10 | 1986-06-04 | Nippon Steel Corp | Manufacture of structural steel superior in toughness at weld zone |
-
1988
- 1988-09-28 JP JP24557988A patent/JPH02133520A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5939225A (en) * | 1982-08-27 | 1984-03-03 | 井関農機株式会社 | Seedling growing device |
JPS60169516A (en) * | 1983-10-07 | 1985-09-03 | Nippon Steel Corp | Production of low-temperature steel having excellent weld zone toughness |
JPS61117213A (en) * | 1984-11-10 | 1986-06-04 | Nippon Steel Corp | Manufacture of structural steel superior in toughness at weld zone |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101070093B1 (en) | Proccess for producing thick high-strength steel plate excellent in brittle fracture arrestability and toughness of zone affected by heat in large-heat-input welding and thick high-strength steel plate excellent in brittle fracture arrestability and toughness of zone affected by heat in large-heat-input welding | |
KR101253890B1 (en) | Ultra thick steel sheet for pressure vessel having excellent central properties and hydrogen induced cracking resistance, and method for manufacturing the same | |
JP5085364B2 (en) | Manufacturing method of thick high-strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness, and thick high strength steel plate with excellent brittle fracture propagation stop characteristics and high heat input weld heat affected zone toughness | |
KR20160078669A (en) | Steel plate for pressure vessel having excellent strength and toughness after post weld heat treatment and method for manufacturing the same | |
KR100868571B1 (en) | High tensile steel sheet of low acoustical anisotropy excelling in weldability, and process for producing the same | |
JPH04285119A (en) | Production of thick-walled high tensile strength steel plate excellent in toughness at low temperature | |
KR20200032866A (en) | High strength steel having excellent low-temperature fracture toughness and method for manufacturing the same | |
JPH01159356A (en) | High tension steel having superior tougeness at weld heat-affected zone | |
JPS61117213A (en) | Manufacture of structural steel superior in toughness at weld zone | |
KR100360106B1 (en) | Method for manufacturing high strength steel plate having superior toughness in weld heat-affected zone and them made from the method, welding fabric using the same | |
JPH02133520A (en) | Manufacturing method for welded structural steel plates with excellent toughness | |
KR102245227B1 (en) | Clad steel sheet having excellent strength, formability and galvanizability, and method for manufacturing thereof | |
CN117385278B (en) | A 700MPa grade high-strength corrosion-resistant steel plate for marine engineering and its production method | |
CN117363981B (en) | High-strength corrosion-resistant steel plate for 560 MPa-level ocean engineering and production method thereof | |
JPH02175815A (en) | Manufacture of high tensile steel stock for welded construction excellent in toughness | |
CN117305710B (en) | High-strength corrosion-resistant steel plate for 850 MPa-level ocean engineering and production method thereof | |
JP5895780B2 (en) | Steel plate excellent in toughness of heat-affected zone with high heat input welding and manufacturing method thereof | |
JP2529485B2 (en) | Manufacturing method of high heat input welded structural steel sheet with excellent arrest characteristics | |
JP5493557B2 (en) | Steel material for large heat input welding | |
JPH0211652B2 (en) | ||
JPH072967B2 (en) | Large heat input welded joint manufacturing method of structural steel sheet with excellent toughness | |
JPS6350424A (en) | Method for manufacturing thick high-strength steel plates with excellent low-temperature toughness and weldability | |
JPS6362567B2 (en) | ||
JPH0368715A (en) | Production of structural steel plate excellent in strength and toughness | |
JPS63250416A (en) | Manufacturing method for low yield ratio steel with excellent sulfide stress corrosion cracking resistance |