JPH02133188A - Laser beam machining robot - Google Patents
Laser beam machining robotInfo
- Publication number
- JPH02133188A JPH02133188A JP63282486A JP28248688A JPH02133188A JP H02133188 A JPH02133188 A JP H02133188A JP 63282486 A JP63282486 A JP 63282486A JP 28248688 A JP28248688 A JP 28248688A JP H02133188 A JPH02133188 A JP H02133188A
- Authority
- JP
- Japan
- Prior art keywords
- arm
- axis
- tip
- robot
- column
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003754 machining Methods 0.000 title abstract 2
- 230000003287 optical effect Effects 0.000 claims abstract description 35
- 230000005540 biological transmission Effects 0.000 claims description 29
- 230000033001 locomotion Effects 0.000 claims description 9
- 230000007246 mechanism Effects 0.000 claims description 7
- 238000012423 maintenance Methods 0.000 abstract description 4
- 238000003466 welding Methods 0.000 description 8
- 210000000707 wrist Anatomy 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 5
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 238000005553 drilling Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/0869—Devices involving movement of the laser head in at least one axial direction
- B23K26/0876—Devices involving movement of the laser head in at least one axial direction in at least two axial directions
- B23K26/0884—Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Robotics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明はレーザ加工ロボットに係り、特にレーザ発振器
から伝送されたレーザ光をアームの先端に導いてワーク
を加工するレーザ加工ロボットに関する。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a laser processing robot, and particularly to laser processing in which a workpiece is processed by guiding a laser beam transmitted from a laser oscillator to the tip of an arm. About robots.
(従来の技vfr)
レーザと産業用ロボットを組合せて溶接・切断作業など
をするレーザ加工ロボットは、レーザ加工に一般的に使
われるガントリ形のNC加工機と比べて、設置面積が小
さく、据付・移動が容易でラインの生産形態への適用も
容易なので、レーザとロボットの新しい応用分野となっ
ている。そして、このレーザ加工ロボットには、第4図
のように、垂直多関節形ロボット1の手首2に集光系3
を設け、上腕4に取付たミラーとパイプなどの多関節形
のレーザ光伝送系5で旋回軸1軸の軸心上方の光学系6
から下方に曲げられたレーザ光7を手首2の先端の集光
系3へ導く構成が多い。また。(Conventional technique VFR) Laser processing robots, which combine lasers and industrial robots to perform welding, cutting, etc., require a smaller footprint and are easier to install than the gantry-type NC processing machines commonly used for laser processing. - It is a new field of application for lasers and robots because it is easy to move and can be easily applied to line production formats. As shown in FIG.
An optical system 6 is provided above the axis of one rotation axis using an articulated laser beam transmission system 5 such as a mirror and a pipe attached to the upper arm 4.
There are many configurations in which the laser beam 7 bent downward from the wrist is guided to a condensing system 3 at the tip of the wrist 2. Also.
中空のアームをレーザ光の伝送路としたものもある。Some devices use a hollow arm as a transmission path for laser light.
ところで、このレーザ加工ロボットの適用分野は、プレ
ス成形された3次元形状ワークの穴明けと切断や、溶接
などが主で、特に熱歪を抑えることができるレーザ加工
の特徴を活かして、複雑且つ高精度のワークを対象とし
たものが多い。By the way, the field of application of this laser processing robot is mainly drilling and cutting of press-formed three-dimensional shaped workpieces, welding, etc. In particular, by taking advantage of the characteristic of laser processing that can suppress thermal distortion, it is possible to perform complicated and Many are intended for high-precision workpieces.
(発明が解決しようとする[1)
ところで、このような三次元ワークの穴明け・切断や溶
接では、ワークに直接アクセスする手首、ノズルやアー
ムの先端は小形でなければならない。(To be solved by the invention [1]) By the way, in drilling, cutting, and welding such three-dimensional workpieces, the wrist, nozzle, and arm tip that directly accesses the workpiece must be small.
しかし第4図では、レーザ光伝送系5がアーム4と手首
2の外にあるので大形になる。一方、アームの中空部を
レーザ光の伝送路とすると、手首とアーム先端はコンパ
クトとなるが、アームの関節部の軸心にレーザ光を伝送
する伝送機構と軸心回りに取付られる関節駆動用の伝動
機構とが錯綜して1組立と保守がやりにくい。次に、肉
厚部品の溶接は、一般に下向きで行なわれるが、第4図
の従来のロボット1では、先端に手首2のあるアーム4
の姿勢がアクセスする位置で変り、しかもロボット1側
の斜め上からだけに限られるので、例えばワークに長い
部品を立ててこの周りを溶接する単純な作業でも、ポジ
ショナなどの周辺装置なしではできない。However, in FIG. 4, the laser beam transmission system 5 is located outside the arm 4 and wrist 2, so it is large in size. On the other hand, if the hollow part of the arm is used as the transmission path for the laser beam, the wrist and the tip of the arm will be compact. The transmission mechanism is complicated, making assembly and maintenance difficult. Next, welding of thick parts is generally performed downward, but in the conventional robot 1 shown in FIG. 4, an arm 4 with a wrist 2 at the tip
The position of the robot changes depending on the access position, and is limited to accessing only from diagonally above the robot 1 side. For example, even a simple task of standing a long part on a workpiece and welding around it cannot be done without peripheral equipment such as a positioner.
更にレーザ加工装置が要求される安全性、特にビームハ
ンドリング時の周辺への放射防止に対して、周囲の遮へ
いの状況により水平に対し集光系のノズル方向角の俯角
を制限することでできるが、第4図では集光系3のノズ
ル方向角はアーム4の姿勢でも変るので、計算機の演算
でしかできず、ハードリミットやメカニカルストッパな
どの信頼性の高い確実な対策がとれない。Furthermore, in order to ensure the safety that laser processing equipment requires, especially to prevent radiation to the surrounding area during beam handling, it is possible to limit the depression angle of the nozzle direction of the condensing system with respect to the horizontal depending on the surrounding shielding situation. In FIG. 4, the nozzle direction angle of the condensing system 3 changes depending on the attitude of the arm 4, so it can only be calculated by a computer, and reliable and reliable measures such as hard limits and mechanical stoppers cannot be taken.
そこで本発明の目的は、組立性・保守性がよく、切断・
溶接作業をワークと干渉せずに常に上からでき、更に集
光系のノズル方向角の俯角を機械的に制限できる安全性
の優れたレーザ加工ロボットを得ることである。Therefore, the purpose of the present invention is to provide easy assembly and maintenance, and to provide easy cutting and maintenance.
To obtain a laser processing robot with excellent safety, which can always perform welding work from above without interfering with a workpiece, and furthermore, can mechanically limit the depression angle of the nozzle direction angle of a condensing system.
(課題を解決するための手段)
本発明は、垂直軸周りに旋回するコラム上部に旋回軸と
直交する軸回りに揺動する第1アームを設け、この第1
7−11の先端に揺動軸と平行な軸回りに揺動する第2
アームを設けて3自由度のアーム機構を構成し、更にそ
の先端に、内部にレーザ光伝送路を備え長手方向の軸回
りの回転と集光系のノズルの回転と直交した軸回りの揺
動の自由度のある第3アームを第1アームと第2アーム
の揺動の軸と平行な軸回りに揺動自在に支持し、第3ア
ームとコラムとの間をロンド、L形すンクで構成された
2連の平行リンクで連結するとともに、ロボット旋回中
心とほぼ一致する上方に設けられ九
だ光学系からレーザを伝送系で第2アームV端まで導き
、第3アームを支持する関節部から第37−ムの軸心を
経て先端の集光系へ導いたレーザ加工ロボットである。(Means for Solving the Problems) The present invention provides a first arm that swings about an axis perpendicular to the pivot axis at the top of a column that pivots about a vertical axis, and the first arm that swings about an axis perpendicular to the pivot axis.
At the tip of 7-11, there is a second shaft that swings around an axis parallel to the swing axis.
An arm is provided to configure an arm mechanism with 3 degrees of freedom, and the tip of the arm is equipped with an internal laser beam transmission path that allows for rotation around a longitudinal axis and swinging around an axis perpendicular to the rotation of the nozzle of the focusing system. A third arm, which has a degree of freedom, is supported so as to be able to swing freely around an axis parallel to the swing axes of the first and second arms, and a Rondo or L-shaped link is provided between the third arm and the column. A joint section that is connected by two parallel links configured, and that guides the laser from the nine-dimensional optical system to the V end of the second arm through a transmission system, which is installed above almost coinciding with the robot's rotation center, and supports the third arm. This is a laser processing robot that is guided from the center to the focusing system at the tip via the axis of the 37th arm.
(作用)
この結果、コラムの旋回、第1アームの揺動、第2アー
ムの揺動の3自由度で第2アームの先端は3次元的に動
作範囲内の任意の位置へ位置決めされ、2連の平行リン
クでコラムに連結され先端に集光系のある第3アームは
、常にコラムに対して一定の姿勢(即ちこの場合は鉛直
下方)となり、集光系の基準姿勢も常に一定となる。一
方、発振器からロボット旋回中心とほぼ一致して上方に
設けられた光学系へ送られたレーザ光は、第3アーム後
端部ヘロボット外部に設けられた伝送系を経て伝送され
、第3アームの軸心へ入り、更に第3アーム先端に設け
られた集光系を経て加工対象ワークに照射されることに
なる。(Function) As a result, the tip of the second arm is three-dimensionally positioned at an arbitrary position within the operating range with three degrees of freedom: rotation of the column, swinging of the first arm, and swinging of the second arm. The third arm, which is connected to the column by a series of parallel links and has a condensing system at its tip, always has a constant attitude with respect to the column (that is, vertically downward in this case), and the reference posture of the condensing system is also always constant. . On the other hand, the laser beam sent from the oscillator to the optical system installed above almost coincident with the rotation center of the robot is transmitted to the rear end of the third arm via a transmission system installed outside the robot. The light enters the axis, and then passes through a condensing system provided at the tip of the third arm, and is then irradiated onto the workpiece to be processed.
(実施例)
以下、本発明のレーザ加工ロボットの一実施例を図面を
参照して説明する。(Example) Hereinafter, an example of the laser processing robot of the present invention will be described with reference to the drawings.
第1図と第2図において、ロボット1のベース8にはコ
ラム9が垂直軸回りに回動自在に支持されて、図示しな
いモータと減速機で構成した駆動部と連動している。コ
ラム9上部のフレーム10の両側面には、各々モータと
減速機で構成する駆動部11.12が対向して同心状に
設けられ、駆動部11の出力軸には第1アーム13が固
定され、rlA動部12の出力軸にはレバー14が固定
され、各々コラム9の回動軸と直交する軸回りに揺動す
る0次に、第1アーム13の先端には、第1アーム13
の揺動軸と平行な軸15が設けられ、L形すンク16.
第2アーム17が各々揺動自在に支持され、この第2ア
ーム17の先端には、軸15と平行な軸18が設けられ
て第3アーム19が揺動自在に支持されている。この第
3アーム19はフレーム19aと、下端にその軸心と直
交した軸回りに揺動自在の集光系3を備えその軸心回り
に回動自在にフレーム19aに支持された中空軸19b
で構成され、それぞれを独立に駆動するモータと減速機
とでなる駆動部20.21を備えている。1 and 2, a column 9 is supported on the base 8 of the robot 1 so as to be rotatable about a vertical axis, and is linked to a drive section comprising a motor and a speed reducer (not shown). On both sides of the frame 10 at the top of the column 9, drive units 11 and 12, each consisting of a motor and a speed reducer, are provided facing each other and concentrically, and a first arm 13 is fixed to the output shaft of the drive unit 11. , a lever 14 is fixed to the output shaft of the rlA moving part 12, and the lever 14 swings around an axis perpendicular to the rotation axis of the column 9.
An L-shaped sunk 16.
Each of the second arms 17 is swingably supported, and a shaft 18 parallel to the shaft 15 is provided at the tip of each second arm 17, and a third arm 19 is swingably supported. The third arm 19 includes a frame 19a and a hollow shaft 19b which is supported by the frame 19a and has a light collecting system 3 at its lower end that is swingable about an axis perpendicular to the axis thereof, and is supported by the frame 19a so as to be able to swing about the axis.
The drive unit 20.21 includes a motor and a speed reducer that drive each independently.
一方、第2アーム17の後端部の突起端には、後端がレ
バー14の先端に軸受22bで連結されたロッド23の
先端が軸受22aで連結され、第1アーム13、レバー
14、第2アーム17後端部とで平行四辺形リンクを構
成している。また、フレーム10に後端を軸受24aで
後端を連結されたロッド25の先端は。On the other hand, the tip of a rod 23 whose rear end is connected to the tip of the lever 14 with a bearing 22b is connected to the protruding end of the rear end of the second arm 17 with a bearing 22a. The rear end portions of the two arms 17 constitute a parallelogram link. Further, the tip of the rod 25 is connected at its rear end to the frame 10 by a bearing 24a.
軸受24bでL形すンク16の一端に連結され、L形す
ンク16の他端には軸受26aでロッド27の基端が連
結され、ロッド27の先端は軸受26bで第3アーム1
9から突き出たレバー28に揺動自在に連結されている
。しかもフレーム10、ロッド25、L形すンク16の
一辺と第1アーム13とL形すンク16の他辺、ロッド
27、レバー28と第2アーム17は各々平行四辺形リ
ンクを構成している。It is connected to one end of the L-shaped sink 16 by a bearing 24b, the base end of a rod 27 is connected to the other end of the L-shaped sink 16 by a bearing 26a, and the tip of the rod 27 is connected to the third arm 1 by the bearing 26b.
It is swingably connected to a lever 28 protruding from 9. Moreover, the frame 10, the rod 25, one side of the L-shaped sink 16, the other sides of the first arm 13, the L-shaped sink 16, the rod 27, the lever 28, and the second arm 17 each constitute a parallelogram link. .
次に、第1図と第3図でレーザ光伝送系の一実施例を詳
細に説明する。ロボット旋回軸心にほぼ一致して上方に
取付られた図示しない架台上の光学系6は、図示しない
レーザ発振器から導かれた光軸と下に45″傾いた反射
面のミラー阿0と、伝送パイプP、を図中矢印iのよう
に回動自在に支持する軸受8□とで構成される。伝送パ
イプP1の下部には、光軸と45@の傾斜で対向するミ
ラー町とX、が軸受B2で図中矢印■のように揺動自在
に連結された光学関節E□が設けられ、出力側光軸と同
心状に伝送パイプP2が接続されている。この伝送パイ
プP2の他端には、同じくミラーM、、M、と軸受B、
からなり図中矢印■のように揺動自在の光学関節E2が
設けられ、出力側光軸と同心状の伝送パイプP、は光軸
口りに図中矢印ivのように回動自在に軸受B4を介し
て支持されている。更にこの伝送パイプP。Next, an embodiment of a laser beam transmission system will be described in detail with reference to FIGS. 1 and 3. An optical system 6 on a pedestal (not shown) mounted above almost coincident with the robot's rotation axis is connected to an optical axis guided from a laser oscillator (not shown), a mirror A0 with a reflective surface tilted downward by 45 inches, and a transmission beam. It consists of a bearing 8□ which supports the pipe P rotatably as shown by the arrow i in the figure.At the bottom of the transmission pipe P1, there is a mirror town and X facing the optical axis at an angle of 45@. An optical joint E□ is provided which is swingably connected to the bearing B2 as shown by the arrow ■ in the figure, and a transmission pipe P2 is connected concentrically to the output side optical axis.The other end of this transmission pipe P2 Similarly, mirrors M, , M, and bearings B,
There is an optical joint E2 that can swing freely as shown by arrow ■ in the figure, and a transmission pipe P that is concentric with the output side optical axis has a bearing that can swing freely as shown by arrow iv in the figure at the optical axis opening. It is supported via B4. Furthermore, this transmission pipe P.
の先端には、同じくミラーM、、M、と軸受B5からな
り図中矢印Vのように揺動自在の光学関節E3が設けら
れ、出力側光軸と同心状の伝送パイプP4は光軸口りに
図中矢印Viのように回動自在に軸受BGを介して支持
されており、第2アーム17の側面に固定されたサポー
ト29に外径を支持されている。−方、第3アーム19
を構成するフレーム19aの上端には、先の伝送パイプ
P4下端に連結されたミラーM、、M、軸受B7で構成
される光学関節E4の一端が固定されている。また、フ
レーム19aに対し軸受B。An optical joint E3, which is also made of mirrors M, , M, and a bearing B5 and is swingable as shown by arrow V in the figure, is provided at the tip of the optical joint E3, and a transmission pipe P4 concentric with the output optical axis is connected to the optical axis opening. The second arm 17 is rotatably supported via a bearing BG as indicated by an arrow Vi in the figure, and its outer diameter is supported by a support 29 fixed to the side surface of the second arm 17. - direction, third arm 19
One end of an optical joint E4 consisting of a mirror M connected to the lower end of the transmission pipe P4 and a bearing B7 is fixed to the upper end of the frame 19a constituting the frame 19a. Also, a bearing B is provided for the frame 19a.
を介して回動自在な中空軸19bの上端外周には、平歯
車30が取付られて、駆動部20の出力軸に設けられた
平歯車31と噛合う、一方、中空軸19bの下端には、
光軸と451の傾斜で交わるミラーM、が設けられ、中
空軸19bの側壁には軸受B、を介してミラーM8、レ
ンズQe等からなる集光系3が揺動自在に支持され、こ
の集光系3の外周に設けられた平歯車32は、モータと
減速機からなる駆動部21の出力軸に固定された平歯車
33と噛み合う。A spur gear 30 is attached to the outer periphery of the upper end of the hollow shaft 19b, which is rotatable through ,
A mirror M is provided which intersects the optical axis at an angle of 451, and a condensing system 3 consisting of a mirror M8, a lens Qe, etc. is swingably supported on the side wall of the hollow shaft 19b via a bearing B. A spur gear 32 provided on the outer periphery of the optical system 3 meshes with a spur gear 33 fixed to the output shaft of a drive unit 21 consisting of a motor and a speed reducer.
次に、本実施例の作用について説明する。Next, the operation of this embodiment will be explained.
第1図において、まず、図示しない駆動部でコラム9は
工の旋回動作をする0次に、駆動部11を駆動すると、
第1アーム13は■の揺動動作を行ない、駆動部12を
駆動すると第2アーム17はレバー14、ロッド23で
図中矢印■の動作を行ない、以上の3自由度で第2アー
ム17の先端部は動作範囲内の任意の位置へ3次元的に
位置決めされる。第1アーム13と第2アーム17の揺
動で得られる第3アーム19先端の縦断面上の動作範囲
Sを第2図に示す、このとき、第3アーム19はロッド
25、L形すンク16、ロッド27などで構成する2対
の平行四辺形リンクでフレームlOに連結されているの
で、軸18を軸に図中矢印■′のように揺動し、第2図
の鎖線のように、縦断面内の動作範囲S内のどの点でも
同じ姿勢となる。また、第3アーム19に設けられた駆
動部20.21 を駆動すると先端の集光系3は各々図
中矢印■と■の動作をする。In FIG. 1, first, the column 9 is rotated by a drive unit (not shown). Next, when the drive unit 11 is driven,
The first arm 13 performs the swinging motion of ■, and when the drive unit 12 is driven, the second arm 17 performs the motion of the arrow ■ in the figure with the lever 14 and rod 23, and the second arm 17 moves with the above three degrees of freedom. The tip can be three-dimensionally positioned at any position within the operating range. FIG. 2 shows the operating range S on the longitudinal section of the tip of the third arm 19 obtained by the swinging of the first arm 13 and the second arm 17. Since it is connected to the frame IO by two pairs of parallelogram links consisting of 16 and rods 27, it swings about the shaft 18 as shown by the arrow ■' in the figure, and as shown by the chain line in Fig. 2. , the posture is the same at any point within the motion range S in the longitudinal section. Furthermore, when the driving portions 20, 21 provided on the third arm 19 are driven, the condensing system 3 at the tip moves as indicated by the arrows ``■'' and ``■'' in the figure, respectively.
一方、レーザ光伝送系は、これらロボットの各自由度の
動きに従って受動的に動作する。即ち。On the other hand, the laser beam transmission system passively operates according to the movement of each degree of freedom of the robot. That is.
第2アーム17にサポート29を介して支持されたパイ
プP、に至る伝送系は、ロボット上方の光学系6直下の
同軸回転i、光学間1yiu、の揺動ii、光学関節E
2の揺動■、伝送パイプP3の同軸回転iV、光学関節
E、の揺動V、伝送パイプP4の同軸回転Viの都合6
自由度を備えていて、サポート29の3次元的な動き、
姿勢に応じて追従する。The transmission system leading to the pipe P supported by the second arm 17 via the support 29 includes a coaxial rotation i directly below the optical system 6 above the robot, a rocking movement ii of the optical system 1yiu, and an optical joint E.
2 swing ■, coaxial rotation iV of transmission pipe P3, swing V of optical joint E, and coaxial rotation Vi of transmission pipe P4 6
It has a degree of freedom and supports 29 three-dimensional movements,
Follows your posture.
従って、このように構成された本発明のレーザ加工ロボ
ットでは、
■ 3次元的に先端の位れが変わる第1アーム13、第
2アーム17で構成されたアーム機構に、更に2連の平
行リンクを介してコラム9上部のフレームlOと連結さ
れた第3アーム19を設けたことで。Therefore, in the laser processing robot of the present invention configured as described above, (1) the arm mechanism consisting of the first arm 13 and the second arm 17 whose tip positions change three-dimensionally is further provided with two parallel links; By providing the third arm 19 connected to the frame lO on the upper part of the column 9 via.
集光系3はワークに対し常に上からアクセスすることが
でき、第3アーム19の長さを変えることで立てられた
ワークなどを逃げて切断・溶接などをすることができる
。The condensing system 3 can always access the workpiece from above, and by changing the length of the third arm 19, it is possible to cut, weld, etc., while escaping the workpiece that is erected.
■ しかも、このとき、集光系3の自由度のうち水平に
対する俯角を決める集光系の揺動Vの基準姿勢は、動作
範囲内の全ての位置で静止座標系(即ちワーク)に対し
て一定に保たれるので、この軸のハードリミットやメニ
カルストッパで集光系3のノズル方向を制限できる。■ Moreover, at this time, the reference posture of the oscillation V of the focusing system, which determines the angle of depression with respect to the horizontal among the degrees of freedom of the focusing system 3, is relative to the stationary coordinate system (i.e., the workpiece) at all positions within the operating range. Since it is kept constant, the nozzle direction of the condensing system 3 can be restricted by a hard limit or a mechanical stopper on this axis.
■ 一方、レーザ光伝送系では、ロボット上方の固定光
学系6から第2アームに固定された伝送パイプP4に至
る伝送系を光学関節などで6自由度の構成としたので、
ロボットのどんな動きにも追従できるだけでなく、光学
系6の光軸とロボット旋回軸のアライメントの誤差を吸
収でき、据付・移動などが容易となる。■ On the other hand, in the laser beam transmission system, the transmission system from the fixed optical system 6 above the robot to the transmission pipe P4 fixed to the second arm is configured with 6 degrees of freedom using optical joints, etc.
Not only can it follow any movement of the robot, but it can also absorb errors in alignment between the optical axis of the optical system 6 and the robot rotation axis, making installation and movement easier.
(へ) 更に、第3アーム19の揺動軸18と同軸状に
第37−A19軸心ヘレーザ光を導いたので、アーム先
端と集光系3近傍が小形となるだけでなく、第3アーム
19の揺動軸回りには駆動機構がなく、突起28先端で
ロッド27で駆動されるので、アーム内部にレーザ光路
がありながら駆動機構とレーザ光伝送系との錯綜を防ぐ
ことができる。(v) Furthermore, since the laser beam is guided to the 37th-A19 axis coaxially with the swing axis 18 of the third arm 19, not only the tip of the arm and the vicinity of the condensing system 3 are made small, but also the third arm Since there is no drive mechanism around the swing axis of the arm 19 and the tip of the protrusion 28 is driven by the rod 27, it is possible to prevent the drive mechanism from intertwining with the laser light transmission system even though there is a laser light path inside the arm.
なお本実施例では、ロボット外部の伝送系を6自由度の
多関節形としたが、両端に2から3の揺動の自由度のあ
る伸縮形の伝送パイプを用いてもよい。In this embodiment, the transmission system outside the robot is a multi-joint type with six degrees of freedom, but a telescopic transmission pipe with two to three degrees of freedom of swing may be used at both ends.
なお、上記実施例では、第3アーム19は常に下向きに
なるように構成されているが、第3アーム19を90″
前方に曲げて常に水平前方に向けてもよい、このときは
、第3アーム19は、円筒座標形ロボットのアームのよ
うに水平状態で動くので、例えば旋回工の軸周りの縦の
面にワークを溶接するとき等に適する利点がある。In the above embodiment, the third arm 19 is configured to always face downward, but the third arm 19 is
It may also be bent forward and always directed horizontally forward. In this case, the third arm 19 moves in a horizontal state like the arm of a cylindrical coordinate robot, so for example, the third arm 19 moves in a horizontal state around the axis of a turning machine. It has the advantage of being suitable for welding.
以上1本発明によれば、動作範囲のどの位置でも先端の
集光系の基準姿勢が一定で、溶接・切断作業を常にワー
ク
と干渉せず、アーム先端部では光路をアーム内部に設け
たので小形となり、しかも、光学系と駆動機構が分離さ
れて組立性・保守性がよく、更に集光系のノズル方向角
の俯角を機械的に制限できる安全性の優れたレーザ加工
ロボットを得ることができる。According to the present invention, the reference posture of the condensing system at the tip is constant at any position in the operating range, the welding/cutting work does not always interfere with the workpiece, and the optical path is provided inside the arm at the tip of the arm. It is possible to obtain a laser processing robot that is compact, has an optical system and a drive mechanism separated, and is easy to assemble and maintain, and is also highly safe because it can mechanically limit the depression angle of the nozzle direction of the light focusing system. can.
第1図は本発明のレーザ加工ロボットの一実施例を示す
斜視図、第2図は第1図の側面図、第3図は本発明のレ
ーザ加工ロボットの作用を示す説明図、第4図は従来の
レーザ加工ロボットの一例を示す斜視図である。
1・・・ロボット
2・・・手首
3・・・集光系
9・・・コラム
!1,12,20.21・・・駆動部
14・・・レバー
16・・・L形リンク
13・・・第1アーム
l7・・・第2アーム
19・・・第3アーム
■・・・第1の軸
■・・・第2の軸
■・・・第3の軸
■′・・・第4の軸
E1〜E、・・・光学関節
P1〜P、・・・伝送パイプFIG. 1 is a perspective view showing an embodiment of the laser processing robot of the present invention, FIG. 2 is a side view of FIG. 1, FIG. 3 is an explanatory view showing the operation of the laser processing robot of the present invention, and FIG. 4 1 is a perspective view showing an example of a conventional laser processing robot. 1...Robot 2...Wrist 3...Condensing system 9...Column! 1, 12, 20. 21... Drive unit 14... Lever 16... L-shaped link 13... First arm l7... Second arm 19... Third arm ■... No. 1st axis■...Second axis■...Third axis■'...Fourth axis E1~E,...Optical joint P1~P,...Transmission pipe
Claims (1)
ムに支持され前記第1の軸と直交する第2の軸回りに揺
動する第1アームと、この第1アームの先端に支持され
前記第2の軸と平行な第3の軸回りに揺動する第2アー
ムと、この第2アームの先端の前記第3の軸と平行な第
4の軸回りに揺動自在に支持され前記第4の軸と直交す
る軸回りに回動しこの直交軸と直交する軸回りに揺動す
る集光系を先端に備えた第3アームと、この第3アーム
と前記コラムの間に設けられ前記第3の軸に揺動自在に
支持されたレバーで連結された二対の平行リンク機構と
、前記コラムの回転、前記第1アームと前記第2アーム
の揺動、前記第3アームの回動、前記集光系の揺動の自
由度を各々独立に駆動する複数の駆動手段と、前記第1
の軸心の上方近傍に設けられた光学系に伝送された レーザ光を折曲げて前記第2アームの先端へ導くレーザ
伝送路と、前記第3アーム後端に設けられ前記レーザ光
を前記第3アーム内へ導く光学系と、前記第3アームの
先端に設けられ前記レーザ光を集光系へと導く光学系と
を備えたことを特徴とするレーザ加工ロボット。[Scope of Claims] A column that is erected and rotates around a first axis, a first arm that is supported by the column and swings around a second axis that is orthogonal to the first axis, and a second arm that is supported at the tip of the first arm and swings around a third axis that is parallel to the second axis; and a fourth axis that is supported at the tip of the second arm and that is parallel to the third axis. a third arm that is swingably supported by the fourth axis and has a condensing system at its tip that pivots about an axis perpendicular to the fourth axis and swings about an axis perpendicular to the orthogonal axis; and two pairs of parallel link mechanisms connected by levers provided between the column and the third shaft and swingably supported by the third shaft. a plurality of driving means each independently driving degrees of freedom for movement, rotation of the third arm, and swinging of the light focusing system;
a laser transmission path provided near the upper end of the axis of the third arm to bend the laser light transmitted to the optical system and guide it to the tip of the second arm; A laser processing robot comprising: an optical system that guides the laser beam into the third arm; and an optical system that is provided at the tip of the third arm and guides the laser beam to a condensing system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63282486A JPH02133188A (en) | 1988-11-10 | 1988-11-10 | Laser beam machining robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63282486A JPH02133188A (en) | 1988-11-10 | 1988-11-10 | Laser beam machining robot |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02133188A true JPH02133188A (en) | 1990-05-22 |
Family
ID=17653066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63282486A Pending JPH02133188A (en) | 1988-11-10 | 1988-11-10 | Laser beam machining robot |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02133188A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100675786B1 (en) * | 2005-07-15 | 2007-01-30 | 김석조 | Articulated Arm for Pipe Welding |
WO2010103357A1 (en) * | 2009-03-13 | 2010-09-16 | Nissan Motor Co., Ltd. | Laser welding apparatus |
JP2013121612A (en) * | 2011-12-12 | 2013-06-20 | Star Techno Co Ltd | Laser beam processing apparatus for resin molded product |
CN104175008A (en) * | 2014-08-19 | 2014-12-03 | 深圳雷柏科技股份有限公司 | Laser method and laser equipment adopting robot |
KR20180045304A (en) * | 2016-10-25 | 2018-05-04 | 대우조선해양 주식회사 | Light weight robor for welding curved block in narrow area |
WO2020065386A1 (en) * | 2018-09-25 | 2020-04-02 | Saudi Arabian Oil Company | Laser tool for removing scaling |
WO2023084716A1 (en) * | 2021-11-11 | 2023-05-19 | 株式会社ニコン | Optical processing device |
-
1988
- 1988-11-10 JP JP63282486A patent/JPH02133188A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100675786B1 (en) * | 2005-07-15 | 2007-01-30 | 김석조 | Articulated Arm for Pipe Welding |
WO2010103357A1 (en) * | 2009-03-13 | 2010-09-16 | Nissan Motor Co., Ltd. | Laser welding apparatus |
JP2010214393A (en) * | 2009-03-13 | 2010-09-30 | Nissan Motor Co Ltd | Laser beam welding apparatus |
JP2013121612A (en) * | 2011-12-12 | 2013-06-20 | Star Techno Co Ltd | Laser beam processing apparatus for resin molded product |
CN104175008A (en) * | 2014-08-19 | 2014-12-03 | 深圳雷柏科技股份有限公司 | Laser method and laser equipment adopting robot |
KR20180045304A (en) * | 2016-10-25 | 2018-05-04 | 대우조선해양 주식회사 | Light weight robor for welding curved block in narrow area |
WO2020065386A1 (en) * | 2018-09-25 | 2020-04-02 | Saudi Arabian Oil Company | Laser tool for removing scaling |
US11090765B2 (en) | 2018-09-25 | 2021-08-17 | Saudi Arabian Oil Company | Laser tool for removing scaling |
US12226852B2 (en) | 2018-09-25 | 2025-02-18 | Saudi Arabian Oil Company | Laser tool for removing scaling |
WO2023084716A1 (en) * | 2021-11-11 | 2023-05-19 | 株式会社ニコン | Optical processing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4539462A (en) | Robotic laser beam delivery apparatus | |
US4563567A (en) | Apparatus for transmitting a laser beam | |
US4662815A (en) | Manipulator head assembly | |
US4542278A (en) | Laser material processor | |
US4892992A (en) | Industrial laser robot system | |
JPH03492A (en) | Laser device | |
AU2020333886B2 (en) | A parallel-kinematic machine with versatile tool orientation | |
JPH0352791A (en) | Articulated arm type industrial laser robot | |
US4657472A (en) | Manipulator head assembly | |
JPH02133188A (en) | Laser beam machining robot | |
US4967053A (en) | Laser system | |
JPH0782154B2 (en) | Device for delivering parallel beams such as laser beams | |
JP3457120B2 (en) | Work machine | |
JPH10216981A (en) | Optical axis moving type laser bean machine | |
JP2662679B2 (en) | Articulated laser machining robot | |
JPS61147988A (en) | Laser beam processing device | |
JPS62134192A (en) | Laser beam machining robot | |
JPH02229689A (en) | Laser beam machining robot | |
EP0413826A1 (en) | Method and apparatus for laser machining using non-axisymmetric parabolic reflector | |
JP3974353B2 (en) | Gimbal mechanism and joint mechanism | |
US20230286178A1 (en) | Work device | |
JPS62197289A (en) | Laser beam machining device | |
JPH0530599B2 (en) | ||
JPH0746475Y2 (en) | Rotation / swivel arm drive | |
JPH036875B2 (en) |