JPH02131584A - Method and device for electrically boring cell - Google Patents
Method and device for electrically boring cellInfo
- Publication number
- JPH02131584A JPH02131584A JP63284177A JP28417788A JPH02131584A JP H02131584 A JPH02131584 A JP H02131584A JP 63284177 A JP63284177 A JP 63284177A JP 28417788 A JP28417788 A JP 28417788A JP H02131584 A JPH02131584 A JP H02131584A
- Authority
- JP
- Japan
- Prior art keywords
- electric field
- cell
- cells
- medium
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 10
- 210000004027 cell Anatomy 0.000 claims abstract description 82
- 230000005684 electric field Effects 0.000 claims abstract description 57
- 210000000170 cell membrane Anatomy 0.000 claims abstract description 18
- 239000011148 porous material Substances 0.000 claims description 23
- 238000004520 electroporation Methods 0.000 claims description 15
- 239000000126 substance Substances 0.000 claims description 2
- 230000005611 electricity Effects 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 8
- 239000007788 liquid Substances 0.000 abstract 4
- 241000257465 Echinoidea Species 0.000 description 6
- 235000013601 eggs Nutrition 0.000 description 6
- 210000003743 erythrocyte Anatomy 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000012488 sample solution Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M35/00—Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
- C12M35/02—Electrical or electromagnetic means, e.g. for electroporation or for cell fusion
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Microbiology (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Cell Biology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は細胞膜に直流パルス電界によって小孔を形成す
る細胞電気穿孔法と、そのために用いられる装置に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cell electroporation method in which small pores are formed in a cell membrane using a DC pulsed electric field, and an apparatus used for the method.
バイオテクノロジーの進歩に伴ない、細胞の有する細胞
膜に小孔を形成してDNAなどを取り込ませることが重
要になっている。With the progress of biotechnology, it has become important to form small pores in the cell membrane of cells and allow DNA and the like to be taken in therein.
細胞を含む媒液に交流電場を印加すると、細胞が電界方
向に一列に並ぶ現象が知られている(パールチェーン現
象)。第4図(a)のように、細胞1を含む媒液2に対
して電場を印加するための電極3A,3Bを配設する。It is known that when an alternating current electric field is applied to a medium containing cells, the cells line up in a line in the direction of the electric field (pearl chain phenomenon). As shown in FIG. 4(a), electrodes 3A and 3B are provided for applying an electric field to the medium 2 containing the cells 1.
そして、電極3A,3Bの間に交流電圧v1を印加する
と、細胞1はその電界方向にバールチェーン状に配列す
る。そこで、スイッチSlをONすることにより電極3
A,3B間に直流パルス電圧■2を印加すると、第4図
(b)のように細胞1に小孔4が形成されることになる
。Then, when an AC voltage v1 is applied between the electrodes 3A and 3B, the cells 1 are arranged in a crowbar chain shape in the direction of the electric field. Therefore, by turning on the switch Sl, the electrode 3
When a DC pulse voltage 2 is applied between A and 3B, a small hole 4 is formed in the cell 1 as shown in FIG. 4(b).
ところが、細胞1の細胞膜に形成される小孔4は電界方
向に位置しているために、直流パルス電圧v2の印加が
解除された後には隣り合う細胞1が小孔4を介して互い
に融合し、巨大細胞になってしまう。このため、個々の
細胞1を分離した状態で電気穿孔し、細胞1中にDNA
を取り込ませることが難しい。そこで、DNAなどを取
り込ませる場合には、第5図のようにして細胞1に小孔
を形成することが行なわれている。However, since the small holes 4 formed in the cell membrane of the cells 1 are located in the direction of the electric field, the adjacent cells 1 fuse with each other through the small holes 4 after the application of the DC pulse voltage v2 is removed. , resulting in giant cells. For this purpose, individual cells 1 are electroporated in a separated state, and DNA is injected into the cells 1.
difficult to incorporate. Therefore, when DNA or the like is to be taken in, a small pore is formed in the cell 1 as shown in FIG. 5.
第5図(a)に示すように、細胞1を含ませた媒液2に
一対の電極3A,3Bを配設しておく。As shown in FIG. 5(a), a pair of electrodes 3A and 3B are placed in a medium 2 containing cells 1.
そして、同図(b)のようにスイッチSlをONにして
直流パルス電圧V2を印加すると、細胞1の細胞膜が電
気穿孔される。このとき、媒液2中にDNAを含ませて
おけば、電気的に形成された小孔4を介してDNAを細
胞1中に取り込ませることができる。そして、スイッチ
SlをOFFにして直流パルス電圧■2の印加を解除す
れば、細胞1に形成された小孔4は修復し、結果として
DNAを取り込んだ細胞1が得られることになる。Then, when the switch Sl is turned on and the DC pulse voltage V2 is applied as shown in FIG. 2(b), the cell membrane of the cell 1 is electroporated. At this time, if DNA is included in the medium 2, the DNA can be taken into the cell 1 through the electrically formed small pores 4. Then, by turning off the switch Sl and canceling the application of the DC pulse voltage 2, the small pore 4 formed in the cell 1 is repaired, and as a result, the cell 1 that has taken in the DNA is obtained.
しかしながら、第5図に示す方法では、小孔4の形成さ
れる位置が細胞ごとに一定せず、また全ての細胞につい
て穿孔することも困難である。このため、DNAの取り
込み等を全ての細胞について制御性よく行なうことがで
きなかった。However, in the method shown in FIG. 5, the positions at which the small holes 4 are formed are not constant for each cell, and it is also difficult to form holes in all cells. For this reason, DNA uptake and the like could not be carried out with good control in all cells.
そこで本発明は、媒液中の細胞について、制御性よく小
孔を形成することのできる細胞電気穿孔法と、これに用
いられる装置を提供することを目的とする。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a cell electroporation method capable of forming small pores with good controllability in cells in a medium, and an apparatus used therefor.
本発明に係る細胞電気穿孔法は、媒液に交流電場を印加
して媒液中の細胞を交流電場の電界方向に配列させる第
1のステップと、交流電場の電界方向と交叉する方向に
直流パルス電場を印加して細胞の細胞膜に小孔を形成す
る第2のステップ・とを備えることを特徴とする。ここ
で、媒液中にはDNAのような物質をあらかじめ含ませ
ておいてもよい。The cell electroporation method according to the present invention includes a first step in which an alternating current electric field is applied to a medium solution to arrange cells in the medium solution in the electric field direction of the alternating current electric field, and a direct current is applied in a direction crossing the electric field direction of the alternating current electric field. A second step of forming small pores in the cell membrane of the cell by applying a pulsed electric field. Here, a substance such as DNA may be included in the medium in advance.
また、本発明に係る細胞電気穿孔装置は、細胞を含む媒
液を入れるための凹部が形成された基体と、凹部に入れ
られた媒液に電場を印加できるよう基体に配設された一
対の第1の電極と、この一対の第1の電極による電場の
電界方向と交叉する方向で媒液に電場を印加できるよう
に基体に配設された一対の第2の電極と、第1の電極に
細胞を配列させるための交流電圧を供給する交流電源手
段と、第1の電極への交流電圧の供給後に第2の電極に
細胞膜に小孔を形成するための直流パルス電圧を供給す
る直流パルス電源手段とを備えることを特徴とする。こ
こで、第2の電極は複数の電極部材により構成され、こ
れら複数の電極部材は直流パルス電圧の印加直前まで互
いに電気的に分離されていることを特徴としてもよい。Further, the cell electroporation device according to the present invention includes a base body having a recess formed therein for containing a medium containing cells, and a pair of base bodies disposed on the base so as to be able to apply an electric field to the medium placed in the recess. a first electrode, a pair of second electrodes disposed on the base so as to be able to apply an electric field to the medium in a direction crossing the electric field direction of the electric field generated by the pair of first electrodes; AC power supply means for supplying an alternating current voltage for arranging the cells, and a direct current pulse supplying a direct current pulse voltage for forming small pores in the cell membrane to a second electrode after supplying the alternating voltage to the first electrode. It is characterized by comprising a power source means. Here, the second electrode may be composed of a plurality of electrode members, and the plurality of electrode members may be electrically isolated from each other until just before the application of the DC pulse voltage.
本発明の細胞電気穿孔法によれば、交流電場によって細
胞は一定方向に配列され(バールチェーン現象)、この
細胞の細胞膜は交流電場と交叉する方向の直流パルス電
場により穿孔される。従って、小孔は細胞の同一部位に
等しく形成されることになる。このため、媒液中にDN
Aなどを含ませておけば、同一条件で多数の細胞にDN
Aなどを取り込ませることができる。According to the cell electroporation method of the present invention, cells are arranged in a fixed direction by an alternating current electric field (burl chain phenomenon), and the cell membranes of these cells are perforated by a direct current pulsed electric field in a direction that intersects the alternating current electric field. Therefore, the pores are equally formed in the same part of the cell. For this reason, DN in the medium
If A is included, DNA can be applied to many cells under the same conditions.
You can import A, etc.
また、本発明の細胞電気穿孔装置によれば、第1の電極
によってパールチェーン現象を生じさせめるための交流
電場が形成され、第2の電極によって電気穿孔のための
直流パルス電場が形成されることになる。ここで、第2
の電極を複数の電極部材により形成すれば、第1の電極
によるバールチェーン現象をより直線状にすることが可
能になる。Further, according to the cell electroporation device of the present invention, the first electrode forms an AC electric field for producing a pearl chain phenomenon, and the second electrode forms a DC pulsed electric field for electroporation. It turns out. Here, the second
If the electrode is formed of a plurality of electrode members, it becomes possible to make the crowbar chain phenomenon caused by the first electrode more linear.
以下、添付図面を参照して本発明の一実施例を説明する
。Hereinafter, one embodiment of the present invention will be described with reference to the accompanying drawings.
第1図は実施例に係る細胞電気穿孔装置の要部を示して
いる。図示の通り、薄い基板10の中央部には平面形状
が略正方形の凹部11が形成され、互いに対向する一対
の側壁には第1の電極3A,3Bが配設され、他方の側
壁には第2の電極6A,6Bが配設されている。電極3
A,3BにはスイッチS を介して交流電源からの交流
電圧v1がl
印加されるようになっており、電極6A,6Bにはスイ
ッチS2を介して直流パルス電源からの直流パルス電圧
V2が印加されるようになっている。FIG. 1 shows the main parts of a cell electroporation device according to an embodiment. As shown in the figure, a recess 11 having a substantially square planar shape is formed in the center of the thin substrate 10, first electrodes 3A and 3B are provided on a pair of side walls facing each other, and a second electrode is provided on the other side wall. Two electrodes 6A and 6B are arranged. Electrode 3
AC voltage v1 from an AC power supply is applied to electrodes A and 3B via switch S, and DC pulse voltage V2 from a DC pulse power supply is applied to electrodes 6A and 6B via switch S2. It is now possible to do so.
そして、細胞を含む媒液は凹部11に垂らされる。Then, the medium containing the cells is dripped into the recess 11.
基板10は例えば石英ガラスのような透明体で形成され
、下方に光源(図示せず)を配設し、上方に顕微鏡を設
けることで、細胞の様子を観察できるようになっている
。凹部11は一辺が1crI1程度の大きさであり、そ
の深さは数嘗−程度とすればよい。また、第1の電極3
A,3Bおよび第2の電極6A,6Bは白金(Pt )
などで形成される。The substrate 10 is made of a transparent material such as quartz glass, and has a light source (not shown) disposed below and a microscope above so that the state of the cells can be observed. The recess 11 has a size of about 1 crI1 on one side, and its depth may be about several inches. In addition, the first electrode 3
A, 3B and second electrodes 6A, 6B are platinum (Pt)
It is formed by etc.
電極3A,3Bに印加される交流電圧■1は周波数が数
M H z程度で、媒体中で10〜IOOV/1程度の
電場を形成する強さになっている。また、電極6A,6
Bに印加される直流パルス電圧V2はパルス幅が10〜
20μSee程度で、媒体中で10 〜10’V/am
程度の電場を形成する強さになっている。なお、細胞膜
が破壊される時に細胞膜にかかる電圧は、細胞の種類に
よらず一定(1v)であるが、交流電場の周波数および
高電圧パルスの波形、長さ、大きさは、パルス時の温度
、塩環境、細胞の大きさや種類、媒体の性質などにより
適宜に変更され、上記の値に限定されないことは当然で
ある。The alternating current voltage (1) applied to the electrodes 3A and 3B has a frequency of about several MHz and has a strength to form an electric field of about 10 to IOOV/1 in the medium. In addition, electrodes 6A, 6
The DC pulse voltage V2 applied to B has a pulse width of 10~
At about 20μSee, 10 to 10'V/am in the medium
It is strong enough to form an electric field of approximately The voltage applied to the cell membrane when the cell membrane is destroyed is constant (1v) regardless of the type of cell, but the frequency of the alternating current electric field and the waveform, length, and size of the high voltage pulse depend on the temperature at the time of the pulse. It goes without saying that the values may be changed as appropriate depending on the salt environment, the size and type of cells, the properties of the medium, etc., and are not limited to the above values.
次に、上記実施例の作用を、第2図を参照して説明する
。Next, the operation of the above embodiment will be explained with reference to FIG.
まず、スイッチS 18 をOFFにした状態l2
で凹部11に細胞1を含む媒液2を垂らす。そして、ス
イッチSlをONにするとバールチェーン現象により細
胞1は一列に配列される。第2図(a)はこの状態を示
しており、基板10の下側に光源を設けて上方から顕微
鏡で観察すれば、この状態を知ることができる。次に、
スイッチS2をONにすることで、直流パルスを交流電
場に直交する方向に加えると、第2図(b)のように細
胞1に小孔4が形成される。すると、この細胞膜の小孔
4を介して媒液2中のDNAが細胞1中に取り込まれる
。その直後にスイッチS2をOFFにして直流パルス電
場の印加を解除すると、細胞膜の小孔4は徐々に修復し
、結果としてDNAが細胞1中に取り込まれることにな
る。First, the medium 2 containing the cells 1 is dripped into the recess 11 in a state l2 with the switch S 18 turned off. Then, when the switch Sl is turned on, the cells 1 are arranged in a line due to the crowbar chain phenomenon. FIG. 2(a) shows this state, which can be seen by providing a light source below the substrate 10 and observing it from above with a microscope. next,
When the switch S2 is turned ON and a DC pulse is applied in a direction perpendicular to the AC electric field, a small pore 4 is formed in the cell 1 as shown in FIG. 2(b). Then, the DNA in the medium 2 is taken into the cell 1 through the small pore 4 of this cell membrane. Immediately after that, when the switch S2 is turned OFF and the application of the DC pulsed electric field is canceled, the small pores 4 in the cell membrane are gradually repaired, and as a result, the DNA is taken into the cell 1.
この場合、細胞1は交流電場によって一定方向に向きな
がら一列に配列されており、小孔4を形成するための直
流パルス電場は一定方向に加えられている。このため、
全ての細胞1については同一部位に略同一の大きさの小
孔4を形成できる。In this case, the cells 1 are arranged in a line while facing in a fixed direction by an alternating current electric field, and a direct current pulsed electric field for forming the small pores 4 is applied in a fixed direction. For this reason,
For all cells 1, small pores 4 of approximately the same size can be formed at the same site.
また、形成された小孔4の部位は細胞1の配列方向と異
なっているため、小孔4の修復過程で細胞1が互いに融
合するようなこともない。Furthermore, since the position of the formed small pore 4 is different from the arrangement direction of the cells 1, the cells 1 will not fuse with each other during the repair process of the small pore 4.
第3図は上記実施例を変形した細胞電気穿孔装置の要部
を示している。この例では、直流パルス電圧■2を印加
するための第2の電極6A,6Bが、それぞれ4個の電
極部材6 A t〜6A46B 〜6B4により形成さ
れている。そして、■
一方の側壁の電極部材6A 〜6A4はスイッチS21
によって直流パルス電圧■2に接続され、他方の側壁の
電極部位6B 〜6B4はスイッチl
S22によって直流パルス電圧■2に接続されているが
、スイッチS21およびスイッチS22をOFFにした
状態(図示の状態)では、各電極部材6A 〜6A,6
B 〜6 B 4は互いに電気的に分離された状態に
なっている。FIG. 3 shows the main parts of a cell electroporation device that is a modification of the above embodiment. In this example, the second electrodes 6A, 6B for applying the DC pulse voltage (2) are each formed by four electrode members 6At to 6A46B to 6B4. and ■ Electrode members 6A to 6A4 on one side wall are switches S21.
The electrode parts 6B to 6B4 on the other side wall are connected to the DC pulse voltage 2 by the switch S22, but when the switch S21 and the switch S22 are turned OFF (the state shown in the figure), ), each electrode member 6A to 6A, 6
B to 6B4 are electrically isolated from each other.
この変形例により電気穿孔を行なう場合には、まず細胞
1を含んだ媒液2を基板10の凹部11中に垂らす。そ
して、スイッチSlをONLて電極3A,3Bに交流電
圧■1を印加することにより、パールチェーン現象を生
じさせて細胞1を配列させる。ここで、細胞1の配列方
向は交流電場の電気力線の方向に沿うことになるが、こ
の変形例では第2の電極6A,6Bは4分割され、互い
に電気的に分離されているので、第1の電極3A,3B
間の交流電圧V1による電気力線が第2の電極6A,6
Bに影響されることなく、略直線状に保たれる。このた
め、スイッチS ,S をONにした後に細胞1の細胞
膜に形成される小孔4の部位を、全ての細胞1について
より一定にすることができる。When performing electroporation according to this modification, first, the medium 2 containing the cells 1 is dripped into the recess 11 of the substrate 10. Then, by turning on the switch Sl and applying an AC voltage 1 to the electrodes 3A and 3B, a pearl chain phenomenon is caused and the cells 1 are arranged. Here, the arrangement direction of the cells 1 is along the direction of the electric lines of force of the alternating current electric field, but in this modification, the second electrodes 6A and 6B are divided into four parts and are electrically separated from each other, so that First electrodes 3A, 3B
The lines of electric force due to the AC voltage V1 between the second electrodes 6A, 6
It is kept substantially straight without being affected by B. Therefore, the position of the small pore 4 formed in the cell membrane of the cell 1 after turning on the switches S 1 and S 2 can be made more constant for all the cells 1.
なお、第1の電極3A,3Bおよび第2の電極6A,6
Bの形状や位置関係には、各種の変形が可能である。例
えば電極6Aについては凹部11の底面の基板10に透
明電極として設け、電極6Bについては四部11の蓋体
に透明電極とじて設けてもよい。Note that the first electrodes 3A, 3B and the second electrodes 6A, 6
Various modifications can be made to the shape and positional relationship of B. For example, the electrode 6A may be provided as a transparent electrode on the substrate 10 on the bottom surface of the recess 11, and the electrode 6B may be provided as a transparent electrode on the lid of the four parts 11.
次に、本発明者による具体的な実施例および比較例を説
明する。Next, specific examples and comparative examples by the present inventor will be described.
まず、一辺がlcmで深さが31I1の凹部を中央に形
成した石英ガラス板を用意し、この四部に第1図のよう
な電極を白金(Pt )で形成した。そして、一方の電
極対には電圧および周波数が可変の交流電圧源を接続し
、他方の電極対には電圧およびパルス幅が可変の直流パ
ルス電源を接続した。First, a quartz glass plate was prepared in which a concave portion with a side of 1 cm and a depth of 31I1 was formed in the center, and electrodes as shown in FIG. 1 were formed on the four parts using platinum (Pt). An AC voltage source with variable voltage and frequency was connected to one pair of electrodes, and a DC pulse power source with variable voltage and pulse width was connected to the other pair of electrodes.
更に、石英ガラスからなる基板の下方には白色光源を置
き、凹部の上方に光学顕微鏡の対物レンズを対向させた
。上記装置を用いて、ウニの卵および人間の赤血球によ
る実験を行なった。Furthermore, a white light source was placed below the substrate made of quartz glass, and an objective lens of an optical microscope was placed above the recess. Using the above device, we conducted experiments with sea urchin eggs and human red blood cells.
実施例1
海水と略同一濃度のシヨ糖水溶液を1 ml用意し、こ
の中に生きたウニの卵を500個程度入れ試料液とした
。次に、この試料液を石英ガラス板の四部に1〜2關の
深さになるまで垂らし、200V/cmの電界強度で2
MHzの交流電場を加えた。Example 1 1 ml of a sucrose aqueous solution having approximately the same concentration as seawater was prepared, and approximately 500 live sea urchin eggs were placed therein to serve as a sample solution. Next, this sample solution was dripped onto the four parts of the quartz glass plate to a depth of 1 to 2 degrees, and the electric field strength was 200 V/cm.
A MHz alternating current electric field was applied.
パールチェーン現象が生じたのを顕微鏡で確認した後、
400V/cmの電界強度で50μSeeのパルス幅の
パルスを1秒間隔で5回だけ印加したところ、ウニの卵
に穿孔が見られた。この穿孔は98%以上のウニの卵に
対して略同一の部位に略同一の大きさで形成された。ま
た、細胞膜の小孔が修復した後にも、ウニの卵が互いに
融合してしまうようなことはなかった。After confirming the occurrence of the pearl chain phenomenon using a microscope,
When pulses with an electric field strength of 400 V/cm and a pulse width of 50 μSee were applied five times at 1 second intervals, perforation was observed in sea urchin eggs. These perforations were formed in approximately the same location and with approximately the same size in more than 98% of sea urchin eggs. Furthermore, even after the pores in the cell membrane were repaired, the sea urchin eggs did not fuse with each other.
比較例1
実施例1と同一の試料を用い、交流電場を加えないで直
流パルスを印加した。その結果、穿孔が生じたウニの卵
は全体の40%程度であった。また、穿孔の部位および
大きさも一定していなかった。Comparative Example 1 Using the same sample as in Example 1, a DC pulse was applied without applying an AC electric field. As a result, about 40% of all sea urchin eggs had perforations. Additionally, the location and size of the perforation were not consistent.
実施例2
人間の血液と略同一濃度のシヨ糖水溶液を1 ml用意
し、この中に生きた赤血球を1000個程度入れ試料液
とした。次に、この試料液を石英ガラス板の凹部に1〜
2■■の深さになるまで垂らし、3 0 0 V /
cmの電界強度でIMHzの交流電場を加えた。バール
チェーン現象が生じたのを顕微鏡で確認した後、1.O
KV/cmの電界強度で5μSeeのパルス幅のパルス
を1秒間隔で5回だけ印加したところ、赤血球に穿孔が
見られた。この穿孔は98%以上の赤血球に対して略同
一の部位に略同一の大きさで形成された。また、細胞膜
の小孔が修復した後にも、赤血球が互いに融合してしま
うようなことはなかった。Example 2 1 ml of a sucrose aqueous solution having approximately the same concentration as human blood was prepared, and about 1,000 live red blood cells were added thereto to form a sample solution. Next, apply this sample solution to the concave part of the quartz glass plate.
Drop down to a depth of 2■■, and apply 300 V/
An alternating current electric field of IMHz was applied with a field strength of cm. After confirming the occurrence of the crowbar chain phenomenon using a microscope, 1. O
When pulses with an electric field strength of KV/cm and a pulse width of 5 μSee were applied only 5 times at 1 second intervals, perforation of red blood cells was observed. This perforation was formed at approximately the same site and with approximately the same size in more than 98% of the red blood cells. Furthermore, even after the small pores in the cell membrane were repaired, the red blood cells did not fuse with each other.
比較例2
実施例1と同一の試料を用い、交流電場を加えないで直
流パルスを印加した。その結果、穿孔が生じた赤血球は
全体の40%程度であった。また、穿孔の部位および大
きさも一定していなかった。Comparative Example 2 Using the same sample as in Example 1, a DC pulse was applied without applying an AC electric field. As a result, about 40% of the red blood cells were perforated. Additionally, the location and size of the perforation were not consistent.
以上、詳細に説明した通り、本発明では交流電場によっ
て細胞は一定方向に配列され、この細胞は交流電場と交
叉する方向の直流パルス電場により穿孔される。従って
、小孔は細胞の同一部位に等しく形成されることになる
。このため、媒液中にDNAなどを含ませておけば、同
一条件で多数の細胞にDNAなどを取り込ませることが
できる。As described in detail above, in the present invention, cells are arranged in a fixed direction by an alternating current electric field, and these cells are perforated by a direct current pulsed electric field in a direction crossing the alternating current electric field. Therefore, the pores are equally formed in the same part of the cell. Therefore, by including DNA or the like in the medium, it is possible to incorporate the DNA or the like into a large number of cells under the same conditions.
本発明では、媒液中の細胞について制御性よく小孔を形
成することのできるので、バイオテクノロジーに関連す
る工業上の用途に幅広く適用することが可能である。In the present invention, small pores can be formed in cells in a medium with good controllability, so that it can be widely applied to industrial applications related to biotechnology.
第1図は、本発明の実施例に係る細胞電気穿孔装置の要
部の輯視図、第2図は、実施例の作用を説明する図、第
3図は、第1図に示す実施例の変形例の要部を示す斜視
図、第4図および第5図は、従来技術の説明図である
1・・・細胞、2・・・媒液、3A,3B・・・第1の
電極、4・・・小孔、6A,6B・・・第2の電極、1
0・・・基板、11・・・凹部、■ ・・・交流電圧、
V2・・・直流パルスl
電圧。
特許出願人 浜松ホトニクス株式会社代理人弁理士
長谷川 芳 樹採寸
偵t,mFIG. 1 is a perspective view of the main parts of a cell electroporation device according to an embodiment of the present invention, FIG. 2 is a diagram explaining the operation of the embodiment, and FIG. 3 is an embodiment of the embodiment shown in FIG. 1. FIGS. 4 and 5 are perspective views showing essential parts of a modified example of 1. Cells, 2. Medium, 3A, 3B. First electrodes. , 4... Small hole, 6A, 6B... Second electrode, 1
0...Substrate, 11...Recess, ■...AC voltage,
V2...DC pulse l voltage. Patent applicant Hamamatsu Photonics Co., Ltd. Representative Patent Attorney
Hasegawa Yoshi Itsuki Measuring Detective t,m
Claims (1)
胞電気穿孔法において、 前記媒液に交流電場を印加して前記細胞を前記交流電場
の電界方向に配列させる第1のステップと、 前記交流電場の電界方向と交叉する方向に直流パルス電
場を印加して前記細胞の細胞膜に小孔を形成する第2の
ステップと を備えることを特徴とする細胞電気穿孔法。 2、前記媒液には前記細胞中に取り込まれる被取込物が
あらかじめ含まれていることを特徴とする請求項1記載
の細胞電気穿孔法。 3、細胞を含む媒液を入れるための凹部が形成された基
体と、 前記凹部に入れられた媒液に電場を印加できるよう前記
基体に配設された一対の第1の電極と、この一対の第1
の電極による電場の電界方向と交叉する方向で前記媒液
に電場を印加できるように前記基体に配設された一対の
第2の電極と、前記第1の電極に交流電圧を供給する交
流電源手段と、 前記第1の電極への交流電圧の供給後に前記第2の電極
に直流パルス電圧を供給する直流パルス電源手段と を備えることを特徴とする細胞電気穿孔装置。 4、前記第2の電極は複数の電極部材により構成され、
これら複数の電極部材は前記直流パルス電圧の印加直前
まで互いに電気的に分離されていることを特徴とする請
求項3記載の細胞電気穿孔装置。[Claims] 1. In a cell electroporation method in which small pores are formed in the cell membrane of cells contained in a medium, an alternating current electric field is applied to the medium, and the cells are moved in the direction of the electric field of the alternating electric field. Cell electricity comprising: a first step of arranging the cells; and a second step of applying a DC pulsed electric field in a direction crossing the electric field direction of the AC electric field to form small pores in the cell membrane of the cells. perforation method. 2. The cell electroporation method according to claim 1, wherein the medium contains in advance a substance to be taken into the cells. 3. a base having a recess formed therein for containing a medium containing cells; a pair of first electrodes disposed on the base so as to be able to apply an electric field to the medium placed in the recess; the first of
a pair of second electrodes arranged on the base body so as to be able to apply an electric field to the medium in a direction crossing the direction of the electric field generated by the electrodes; and an AC power source that supplies an AC voltage to the first electrode. A cell electroporation device comprising: means for supplying a DC pulse voltage to the second electrode after supplying the AC voltage to the first electrode. 4. The second electrode is composed of a plurality of electrode members,
4. The cell electroporation apparatus according to claim 3, wherein the plurality of electrode members are electrically isolated from each other until immediately before the application of the DC pulse voltage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63284177A JPH0687782B2 (en) | 1988-11-10 | 1988-11-10 | Cell electroporation method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63284177A JPH0687782B2 (en) | 1988-11-10 | 1988-11-10 | Cell electroporation method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02131584A true JPH02131584A (en) | 1990-05-21 |
JPH0687782B2 JPH0687782B2 (en) | 1994-11-09 |
Family
ID=17675177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63284177A Expired - Fee Related JPH0687782B2 (en) | 1988-11-10 | 1988-11-10 | Cell electroporation method and device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0687782B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5720921A (en) * | 1995-03-10 | 1998-02-24 | Entremed, Inc. | Flow electroporation chamber and method |
US6074605A (en) * | 1995-03-10 | 2000-06-13 | Entremed, Inc. | Flow electroporation chamber and method |
JP2003511699A (en) * | 1999-10-08 | 2003-03-25 | エンエムイー ナトゥヴィッセンシャフトリヘス ウント メディツィニシェス インスティテュート アン デル ウニヴェルシタト ティユービンゲン | Method and apparatus for measuring cells in a liquid environment |
US6773669B1 (en) | 1995-03-10 | 2004-08-10 | Maxcyte, Inc. | Flow electroporation chamber and method |
US7029916B2 (en) | 2001-02-21 | 2006-04-18 | Maxcyte, Inc. | Apparatus and method for flow electroporation of biological samples |
US7141425B2 (en) | 2001-08-22 | 2006-11-28 | Maxcyte, Inc. | Apparatus and method for electroporation of biological samples |
JP2008136400A (en) * | 2006-11-30 | 2008-06-19 | Olympus Corp | Gene transfer device and method therefor |
US7771984B2 (en) | 2004-05-12 | 2010-08-10 | Maxcyte, Inc. | Methods and devices related to a regulated flow electroporation chamber |
JP2013529463A (en) * | 2010-06-22 | 2013-07-22 | ロンザ ケルン ゲーエムベーハー | Method and apparatus for uniformly treating adherent cells |
JP2016063828A (en) * | 2009-12-23 | 2016-04-28 | ズートツッカー アクチェンゲゼルシャフト マンハイム/オクセンフルト | Reactor device for electroporation |
-
1988
- 1988-11-10 JP JP63284177A patent/JPH0687782B2/en not_active Expired - Fee Related
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5720921A (en) * | 1995-03-10 | 1998-02-24 | Entremed, Inc. | Flow electroporation chamber and method |
US6074605A (en) * | 1995-03-10 | 2000-06-13 | Entremed, Inc. | Flow electroporation chamber and method |
US6773669B1 (en) | 1995-03-10 | 2004-08-10 | Maxcyte, Inc. | Flow electroporation chamber and method |
JP2003511699A (en) * | 1999-10-08 | 2003-03-25 | エンエムイー ナトゥヴィッセンシャフトリヘス ウント メディツィニシェス インスティテュート アン デル ウニヴェルシタト ティユービンゲン | Method and apparatus for measuring cells in a liquid environment |
US7029916B2 (en) | 2001-02-21 | 2006-04-18 | Maxcyte, Inc. | Apparatus and method for flow electroporation of biological samples |
US7186559B2 (en) | 2001-08-22 | 2007-03-06 | Maxcyte, Inc. | Apparatus and method for electroporation of biological samples |
US7141425B2 (en) | 2001-08-22 | 2006-11-28 | Maxcyte, Inc. | Apparatus and method for electroporation of biological samples |
US7771984B2 (en) | 2004-05-12 | 2010-08-10 | Maxcyte, Inc. | Methods and devices related to a regulated flow electroporation chamber |
US9546350B2 (en) | 2004-05-12 | 2017-01-17 | Maxcyte, Inc. | Methods and devices related to a regulated flow electroporation chamber |
JP2008136400A (en) * | 2006-11-30 | 2008-06-19 | Olympus Corp | Gene transfer device and method therefor |
JP2016063828A (en) * | 2009-12-23 | 2016-04-28 | ズートツッカー アクチェンゲゼルシャフト マンハイム/オクセンフルト | Reactor device for electroporation |
JP2013529463A (en) * | 2010-06-22 | 2013-07-22 | ロンザ ケルン ゲーエムベーハー | Method and apparatus for uniformly treating adherent cells |
US9624486B2 (en) | 2010-06-22 | 2017-04-18 | Lonza Cologne Gmbh | Method and electrode assembly for treating adherent cells |
US9701954B2 (en) | 2010-06-22 | 2017-07-11 | Lonza Cologne Gmbh | Method and device for uniformly treating adherent cells |
US11021698B2 (en) | 2010-06-22 | 2021-06-01 | Lonza Cologne Gmbh | Method and device for uniformly treating adherent cells |
Also Published As
Publication number | Publication date |
---|---|
JPH0687782B2 (en) | 1994-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gabriel et al. | Direct observation in the millisecond time range of fluorescent molecule asymmetrical interaction with the electropermeabilized cell membrane | |
JP4321962B2 (en) | Method for the electroosmosis of individual solid cell structures and organelle structures and uses thereof | |
US20210324367A1 (en) | Method and device for uniformly treating adherent cells | |
Caprettini et al. | Enhanced Raman investigation of cell membrane and intracellular compounds by 3D plasmonic nanoelectrode arrays | |
US5137817A (en) | Apparatus and method for electroporation | |
US7018819B2 (en) | Method and apparatus for manipulation of cells and cell-like structures focused electric fields in microfludic systems and use thereof | |
JPH02131584A (en) | Method and device for electrically boring cell | |
US20080220491A1 (en) | Method and device for electroporation of biological cells | |
Vogt et al. | Impact of micropatterned surfaces on neuronal polarity | |
EP1196549A4 (en) | CONTROLLED ELECTROPORATION AND SUBSTRATE TRANSFER THROUGH CELL MEMBRANES | |
Tien et al. | The bilayer lipid membrane (BLM) under electrical fields | |
WO1999064581A9 (en) | Electrofusion chamber | |
KR100807852B1 (en) | Electroporation microfluidic chip with polyelectrolyte salt bridge | |
JP2004528553A5 (en) | ||
JP7397489B2 (en) | Bubble ejection method, power supply device, and bubble ejection device | |
JPH02131585A (en) | Method and device for electrically boring hole | |
De Angelis et al. | A microdosimetric realistic model to study frequency-dependent electroporation in a cell with endoplasmic reticulum | |
CN210176871U (en) | Electroporation chip and electroporation system | |
Neumann | Electric gene transfer into culture cells | |
US6962816B2 (en) | Highly controllable electroporation and applications thereof | |
AU2001241535B2 (en) | Electrofusion chamber | |
WO2009140161A1 (en) | Electroporation of adherent cells with an array of closely spaced electrodes | |
AU2001241535A1 (en) | Electrofusion chamber | |
JPH11103858A (en) | Dna transfer by electroporation | |
Angelaki | Laser based micro-and nano-structured Si surfaces for neural tissue engineering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |