[go: up one dir, main page]

JPH0212945B2 - - Google Patents

Info

Publication number
JPH0212945B2
JPH0212945B2 JP9226180A JP9226180A JPH0212945B2 JP H0212945 B2 JPH0212945 B2 JP H0212945B2 JP 9226180 A JP9226180 A JP 9226180A JP 9226180 A JP9226180 A JP 9226180A JP H0212945 B2 JPH0212945 B2 JP H0212945B2
Authority
JP
Japan
Prior art keywords
acrylamide
copper
aqueous solution
polyacrylamide
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9226180A
Other languages
Japanese (ja)
Other versions
JPS5718652A (en
Inventor
Jun Saito
Tadatoshi Pponda
Takatoshi Mitsuishi
Hiroshi Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP9226180A priority Critical patent/JPS5718652A/en
Priority to GB8120981A priority patent/GB2079284A/en
Priority to DE19813126999 priority patent/DE3126999A1/en
Publication of JPS5718652A publication Critical patent/JPS5718652A/en
Publication of JPH0212945B2 publication Critical patent/JPH0212945B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F20/56Acrylamide; Methacrylamide
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • D21H17/45Nitrogen-containing groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Paper (AREA)

Description

【発明の詳細な説明】 本発明はポリアクリルアミド系粘剤等を製造す
る際のアクリルアミド水溶液を製造する方法に関
する。 更に詳しくはポリアクリルアミド系粘剤等を製
造する際の2―シアノエチルアクリレート含有量
が5ppm以下である高分子量ポリアクリルアミド
合成用接触水和法アクリルアミド水溶液を製造す
る方法に関する。 ポリアクリルアミドは、ホモポリマー、コーポ
リマーあるいはこれらのメチロール化、カチオン
化等の適当な変性処理を行なうことによつて得ら
れ、紙力増強剤、繊維処理剤、高分子凝集剤、石
油回収助剤等の多くの用途を有している。 紙パルプ関係における用途の一つである製紙用
粘剤は、古くはトロロアオイ根より抽出粘液など
の天然物、ポリエチレンオキサイド等の合成品が
知られているが、前者は腐敗変質と価格変動等の
欠点があるため、後者は泡立ちによる抄紙能力の
低下、色むらの発生等を有するため最近は、これ
らの欠点のないポリアクリルアミド系粘剤が重用
されてきている。 紙を製造する場合、抄紙工程において必要なこ
とは、この段階にある分散液中の繊維を均一に分
散させ、かつ分散した繊維が再てん絡や沈降を起
させないようにすること、更には抄紙時に均一な
湿紙を安定に形成させるために適当な水性を与
えることであり、この目的のために分散粘剤の添
加が行なわれている。 ポリアクリルアミド系粘剤は、これらの機能を
十分に供え性能が良好であることから広く使用さ
れている。ポリアクリルアミド系粘剤の粘剤とし
ての機能は、その分子量と分子中に存在するイオ
ン性基量に依存するものと考えられている。特に
その分子量は大なる程高性能(紙パ技協誌25巻,
522頁、1971年)であることが知られている。紙
層形成能力を成紙に対するポリアクリルアミド系
粘剤の使用率で評価すると分子量によつて大きく
異なり、加水分解率20%のポリアクリルアミド粘
剤の場合、分子量300万で1.88%、分子量500万で
0.65%、分子量800万で0.40%となり分子量が増
加するにつれて紙層形成能力も大きくなることが
知られている。 最近のポリアクリルアミド系粘剤では、分子量
1000〜1200万程度のものが望まれるようになつて
きているが、アクリルアミド系粘剤の主原料であ
るアクリルアミド水溶液は、現在ほとんど金属銅
を主成分とする触媒の存在下アクリルニトリルを
接触水和することにより、工業的に製造されてい
る。この接触水和法で得られたアクリルアミド水
溶液を、ポリアクリルアミド系粘剤合成用原料と
して用いると、比較的低分子量のポリマーないし
はアクリルアミドの割り合いの小さいコポリマー
を合成する場合はともかく、高分子量のポリマー
ないしはアクリルアミドの割り合いの大きなポリ
マーを合成する場合、得られたアクリルアミド系
粘剤の水溶性が非常に悪く極端な場合には単に膨
潤するのみでほとんど水に溶解しないという問題
があり、高性能のアクリルアミド系粘剤を製造す
る上での大きな制約となつていた。 ポリアクリルアミド系粘剤の溶解が不完全のた
め水不溶解物が存在すると抄造の際、成紙のピン
ホールの原因となり、又、ドライヤー面での粘着
傾向が強く紙切れを誘発する原因ともなり高分子
量で且つこれらの欠点のない水溶性の良い粘剤が
望まれていた。 本発明者らは粘剤合成の原料であるアクリルア
ミド水溶液に関して鋭意検討した結果、まつたく
驚くべく事に2―シアノエチルアクリレートを実
質的に含有しないアクリルアミド水溶液を原料と
して合成したアクリルアミド系粘剤は、水不溶解
物を実質的に全く乃至は殆ど生成しないことを見
い出した。 本発明者らは接触水和法アクリルアミド水溶液
を詳細に検討した結果、良好なアクリルアミド系
粘剤を得るためには、アクリルアミドに対して重
量基準で2―シアノエチルアクリレートが5ppm
以下、好ましくは3ppm以下、更に好ましくは
1ppm以下に調製したアクリルアミド水溶液を原
料として使用することが必要であることを見出
し、本発明を達成したものである。 而して本発明は、2―シアノエチルアクリレー
トが5ppm以下である高分子量ポリアクリルアミ
ド合成用接触水和法アクリルアミド水溶液を製造
する方法に関する。 本発明のアクリルアミド水溶液を原料として、
ポリアクリルアミド系粘剤を合成した場合は、ポ
リマーの非常な高分子量域においても水不溶解物
が実質的にまつたく、乃至は殆ど生成しない優れ
た性能を有する粘剤を合成し得る。而して本発明
による場合、何故水不溶解物の生成を抑制できる
か詳細は明らかでないが、アクリルアミドに対し
て重量基準で10〜30ppm程度の2―シアノエチル
アクリレートを含有する市販アクリルアミド水溶
液を精製処理することにより容易にポリアクリル
アミド系粘剤の品質を向上させることができる。 次に本発明を詳細に説明する。 本発明に適用される粗アクリルアミド水溶液と
は、銅含有触媒の存在下アクリロニトリルを接触
水和することにより得られるものである。 而して、アクリルアミドの製造に際し使用され
る銅含有触媒としては、種々のものが提案されて
いるが、そのいずれもが本発明において使用でき
る。 例えば、(1)銅線、銅粉等の形の銅と銅イオンを
触媒として用いる方法、(2)酸化銅、水酸化銅、銅
塩等の銅化合物を水素または一酸化炭素などで
100〜400℃の様な高温で還元して得られる還元銅
を触媒として用いる方法、(3)酸化銅、水酸化銅、
銅塩等の銅化合物を液相でヒドラジン、アルカリ
金属又はアルカリ土類金属の硼水素化合物、およ
びホルムアルデヒドなどの還元剤を用いて還元し
て得られる還元銅を触媒として用いる方法、(4)酸
化銅、水酸化銅、銅塩等の銅化合物を液相で亜
鉛、アルミニウミ、鉄、錫等の銅よりイオン化傾
向の大きい金属で処理して得られる還元銅を触媒
として用いる方法、(5)アルミニウム、亜鉛または
マグネシウムなどと銅からなるラネー合金を展開
して得られるラネー銅を触媒として用いる方法、
(6)ギ酸銅、シユウ酸銅のような有機鉛化合物を、
例えば100〜400℃のような温度範囲で、熱分解し
て得られる金属銅を触媒として用いる方法、(7)或
は、水素化銅の熱分解物を触媒として用いる等の
方法に見られる金属銅乃至は、金属銅を含有する
触媒があげられる。而してこれ等の銅含有触媒に
は通常用いられる担体の他、銅以外の金属、例え
ばクロムまたはモリブデン等の通常用いられる他
の金属が含まれていても差支えない。 上記した銅含有触媒の存在下アクリロニトリル
と水との反応は、通常、アクリロニトリルに対し
て殆んど任意の量の水を用い、好ましくは50〜
150℃の温度範囲で常圧乃至は加圧下に、けんだ
く床または固定床より成る触媒床および連続また
は回分式の反応型式を採用して、液相下に反応原
料および銅含有触媒と酸素または酸素含有ガスと
の接触を防止し乍ら行なわれる。 次いで、上記反応液は、液中に含まれる未反応
アクリロニトリルの溜出除去および、例えば、30
乃至は50重量%程度の濃度を有するアクリルアミ
ド水溶液とするための濃縮を目的として通常蒸留
操作に附される。 かくして得られるアクリルアミド水溶液は、本
発明に従つて処理される。 2―シアノエチルアクリレートをアクリルアミ
ドから除く方法は、アクリルアミド水溶液の冷却
による再結晶法、同水溶液を活性炭または活性白
土などにより処理する物理的吸着法、同水溶液と
イオン交換樹脂とを接触させ2―シアノエチルア
クリレートを加水分解する加水分解法、同水溶液
をクロロホルムや四塩化炭素などにより処理する
抽出法、同水溶液を1級および/または2級アミ
ノ基を有する化合物により処理する反応吸着法な
どであり、それぞれの方法を単独であるいは組合
せて用いられる。 本発明のアクリルアミド水溶液を原料としてポ
リアクリルアミドを製造するに際して用いられる
重合開始剤としては従来公知の種々のものを挙げ
ることができ、例えば、アゾビスジメチルバレロ
ニトリル、アゾビスシアノバレリツクアシドナト
リウム塩、アゾビスイソブチロニトリル、アゾビ
スアミノプロパン塩酸塩などのアゾ化合物、ベン
ゾイルパーオキシド、ラウロイルパーオキシド、
ターシヤリーブチルハイドロパーオキシドなどの
有機過酸化物、過硫酸カリウム、過臭素酸ナトリ
ウム、過硫酸アンモニウム、過酸化水素などの無
機過酸化物などを挙げることができる。還元剤と
しては、硫酸第一鉄、塩化第一鉄、重亜硫酸ナト
リウム、メタ亜硫酸ナトリウム、チオ硫酸ナトリ
ウム、亜硝酸塩等の無機化合物、および有機化合
物としては、ジメチルアニリン、3―ジメチルア
ミノプロピオニトリル、フエニルヒドラジン等を
挙げることができる。 本発明の方法において、高分子量ポリアクリル
アミドを得るために使用される単量体は、アクリ
ルアミド単独またはアクリルアミドと共重合可能
な単量体との混合物である。而して、アクリルア
ミドと共重合可能な単量体としては、例えば、メ
タアクリルアミド、アクリル酸またはこれらの
塩、N―メチルアクリルアミド、N,N′―ジメ
チルアクリルアミド、N―メチロールアクリルア
ミド、2―アクリルアミド―2―メチルプロパン
スルフオン酸、またはこれらの塩、メタアクリル
酸またはアクリル酸のアミノアルコールエステル
(例えば、ジメチルアミノエチルメタアクリレー
ト、ジエチルアミノエチルアクリレート)および
これらの塩あるいは4級アンモニウム塩、メタア
クリル酸またはアクリル酸のエステル化合物(例
えばメチルメタアクリレート、ヒドロキシエチル
アクリレート)、アクリロニトリルなどが挙げら
れる。 次に本発明を実施例により具体的に説明する。 実施例1および2 市販の接触水和法により製造した40%アクリル
アミド水溶液2種(A,B)についてガスクロマ
トグラフイーによつて分析したところ、2―シア
ノエチルアクリレートの含有量はアクリルアミド
水溶液A中に14.1ppm、水溶液B中に16.0ppmで
あつた。このアクリルアミド水溶液を下記の如く
イオン交換樹脂に通液処理し次いで重合体の製造
および重合体の評価を行なつた。 アクリルアミド水溶液の精製: 内径20mm、長さ50cmのガラス製イオン交換カラ
ム2本(カラム,)を用意し、カラムには
OH形にした強塩基性陰イオン交換樹脂レバチツ
トMP500(バイエル社製、商品名)100mlを充填
し、カラムにはH形にした強酸性陽イオン交換
樹脂アンバーライトIR―120B(ロームアンドハー
ス社製、商品名)100mlを充填し、各々充分に水
洗した。この2本のカラムを―の如く直列に
連結し、前記アクリルアミド水溶液AおよびBを
個別にS.V.3(300ml/hr)の速度で通液した。こ
の時の通液処理アクリルアミド水溶液A,Bの2
―シアノエチルアクリレート含有量は各々0.0,
0.2ppmであつた。 重合体の製造: 前記の方法により得られたアクリルアミド水溶
液を蒸留水でアクリルアミド濃度20重量%とし、
その100部を苛性ソーダ水溶液でPH10に調整後、
窒素ガスを吹き込んで溶存酸素を除き、系内を30
℃とした。これに触媒として過硫酸カリウム、助
触媒としてニトロトリスプロピオンアミドをそれ
ぞれアクリルアミド1モル当たり8.0×10-5モル
および20.0×10-5モル添加し、重合熱による昇温
とそれによる重合が進行するままに放置して反応
を進行させ、昇温が認められなくなつて更に1時
間放置することにより重合反応を終了せしめ、寒
天状物を得た。 次に得られた寒天状物を2mm以下の大きさに砕
いてからメタノール中に投入して寒天状物中の水
をメタノールで置換した後、50℃で減圧乾燥し、
重合体の粉末を得た。 得られた重合体の評価: 上記の方法によつて得られた重合物の水溶解性
および粘度を評価した。 (1) 水溶解性は重合体粉末を0.1重量%になるよ
うに溶解したものを200メツシユの金網に通し、
水不溶解分を水溶液より別しこの水不溶解分
を求めた。 (2) 粘度は上記水溶性試験で得られた重合体水溶
液を利用し温度30℃、1規定硝酸ソーダ中で測
定した。 結果をそれぞれ実施例1,2として表―1に記
載した。 実施例 3〜5 実施例1に於て用いたものと同一のアクリルア
ミド水溶液Aを実施例1に於て得られたイオン交
換樹脂処理を行なつた精製アクリルアミド水溶液
によつてそれぞれ3倍、5倍、15倍に希釈して2
―シアノエチルアクリレート含有量の異なるアク
リルアミド水溶液3種(2―シアノエチルアクリ
レート含有量はそれぞれ4.7ppm、2.8ppm、
0.9ppm)を調製した。 この3種のアクリルアミド水溶液について実施
例1と同じ方法で重合体を製造し、さらに得られ
た重合体の評価を行ない、結果をそれぞれ実施例
3,4,5として表―1に記載した。 比較例 1,2 実施例において用いたものと同一の市販アクリ
ルアミド水溶液A,Bについてイオン交換樹脂処
理せずに実施例と同じ方法で重合体を製造し、さ
らに得られた重合体の評価を行ない、結果をそれ
ぞれ比較例1,2として表―1に記載した。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an aqueous acrylamide solution for producing polyacrylamide adhesives and the like. More specifically, the present invention relates to a method for producing an aqueous acrylamide solution using a contact hydration method for synthesizing high molecular weight polyacrylamide in which the content of 2-cyanoethyl acrylate is 5 ppm or less when producing polyacrylamide adhesives and the like. Polyacrylamide can be obtained by homopolymers, copolymers, or appropriate modification treatments such as methylolization and cationization, and can be used as paper strength agents, fiber treatment agents, polymer flocculants, and oil recovery aids. It has many uses such as Paper-making sticky agents, one of the uses related to paper pulp, have long been known to be made from natural products such as mucilage extracted from the root mallow root, or synthetic products such as polyethylene oxide. Since the latter has drawbacks such as a decrease in paper-making ability due to foaming and the occurrence of color unevenness, recently polyacrylamide-based adhesives, which do not have these drawbacks, have been increasingly used. When manufacturing paper, what is necessary in the papermaking process is to uniformly disperse the fibers in the dispersion liquid at this stage and to prevent the dispersed fibers from re-entangling or settling. Sometimes, the purpose is to provide an appropriate aqueous property to stably form a uniform wet paper, and for this purpose, a dispersing adhesive is added. Polyacrylamide-based adhesives are widely used because they sufficiently provide these functions and have good performance. The function of a polyacrylamide adhesive as a sticky agent is thought to depend on its molecular weight and the amount of ionic groups present in the molecule. In particular, the higher the molecular weight, the higher the performance (Paper Technology Association Journal Vol. 25,
522 pages, 1971). When paper layer forming ability is evaluated by the usage rate of polyacrylamide sticky agent in paper formation, it varies greatly depending on the molecular weight. In the case of polyacrylamide sticky agent with a hydrolysis rate of 20%, it is 1.88% with a molecular weight of 3 million, and 1.88% with a molecular weight of 5 million.
It is known that as the molecular weight increases, the paper layer forming ability also increases as the molecular weight increases. Recent polyacrylamide adhesives have molecular weight
Currently, aqueous acrylamide solutions, which are the main raw material for acrylamide-based adhesives, are mostly produced by catalytic hydration of acrylonitrile in the presence of a catalyst whose main component is metallic copper. It is manufactured industrially by When the acrylamide aqueous solution obtained by this contact hydration method is used as a raw material for the synthesis of polyacrylamide-based adhesives, it is possible to synthesize relatively low-molecular-weight polymers or copolymers with a small proportion of acrylamide, as well as to synthesize high-molecular-weight polymers. When synthesizing a polymer with a large proportion of acrylamide, the resulting acrylamide-based adhesive has very poor water solubility, and in extreme cases, it simply swells and is hardly soluble in water. This has been a major constraint in producing acrylamide adhesives. Due to incomplete dissolution of the polyacrylamide sticky agent, the presence of water-insoluble substances will cause pinholes in the paper during papermaking, and will also tend to stick strongly on the dryer surface, causing paper breakage. A sticky agent with a high molecular weight and good water solubility without these drawbacks has been desired. The present inventors conducted intensive studies on acrylamide aqueous solutions, which are raw materials for the synthesis of sticky agents, and surprisingly found that acrylamide-based sticky agents synthesized from acrylamide aqueous solutions that do not substantially contain 2-cyanoethyl acrylate are It has been found that substantially no or very little insoluble matter is produced. The present inventors conducted a detailed study on contact hydration acrylamide aqueous solutions, and found that in order to obtain a good acrylamide-based adhesive, 2-cyanoethyl acrylate should be added at 5 ppm by weight based on the acrylamide.
or less, preferably 3 ppm or less, more preferably
The present invention was achieved by discovering that it is necessary to use an acrylamide aqueous solution prepared to a concentration of 1 ppm or less as a raw material. Accordingly, the present invention relates to a method for producing an aqueous acrylamide solution using a catalytic hydration method for synthesizing high molecular weight polyacrylamide containing 2-cyanoethyl acrylate of 5 ppm or less. Using the acrylamide aqueous solution of the present invention as a raw material,
When a polyacrylamide-based sticky agent is synthesized, it is possible to synthesize a sticky agent with excellent performance in which substantially no or almost no water-insoluble substances are generated even in the extremely high molecular weight range of the polymer. In the case of the present invention, the details of why the formation of water-insoluble substances can be suppressed are not clear, but a commercially available acrylamide aqueous solution containing about 10 to 30 ppm of 2-cyanoethyl acrylate on a weight basis to acrylamide is purified. By doing so, the quality of the polyacrylamide adhesive can be easily improved. Next, the present invention will be explained in detail. The crude acrylamide aqueous solution applied to the present invention is obtained by catalytically hydrating acrylonitrile in the presence of a copper-containing catalyst. Various types of copper-containing catalysts have been proposed for use in the production of acrylamide, any of which can be used in the present invention. For example, (1) a method using copper in the form of copper wire, copper powder, etc. and copper ions as a catalyst, (2) a method using copper compounds such as copper oxide, copper hydroxide, copper salt, etc. with hydrogen or carbon monoxide, etc.
A method using reduced copper obtained by reduction at a high temperature such as 100 to 400°C as a catalyst, (3) copper oxide, copper hydroxide,
A method in which reduced copper obtained by reducing a copper compound such as a copper salt in a liquid phase using hydrazine, a borohydride compound of an alkali metal or alkaline earth metal, and a reducing agent such as formaldehyde is used as a catalyst, (4) Oxidation (5) A method in which reduced copper obtained by treating copper compounds such as copper, copper hydroxide, and copper salts in a liquid phase with metals that have a greater ionization tendency than copper, such as zinc, aluminum, iron, and tin, as a catalyst; (5) Aluminum , a method using Raney copper obtained by developing a Raney alloy consisting of zinc or magnesium, etc. and copper as a catalyst;
(6) Organic lead compounds such as copper formate and copper oxalate,
For example, metals found in methods such as using metallic copper obtained by thermal decomposition as a catalyst in a temperature range of 100 to 400°C, (7) or methods using thermal decomposition products of copper hydride as a catalyst. Examples include catalysts containing copper or metallic copper. These copper-containing catalysts may contain, in addition to commonly used carriers, other commonly used metals such as chromium or molybdenum. The reaction of acrylonitrile with water in the presence of the copper-containing catalyst described above usually uses almost any amount of water relative to the acrylonitrile, preferably 50 to
Using a catalyst bed consisting of a suspended bed or a fixed bed and a continuous or batch reaction type, the reaction materials and copper-containing catalyst are mixed with oxygen or This is done while preventing contact with oxygen-containing gases. Next, the reaction solution is subjected to distillation removal of unreacted acrylonitrile contained in the solution and, for example, 30%
It is usually subjected to a distillation operation for the purpose of concentration to obtain an aqueous acrylamide solution having a concentration of about 50% by weight. The aqueous acrylamide solution thus obtained is treated according to the invention. Methods for removing 2-cyanoethyl acrylate from acrylamide include a recrystallization method by cooling an aqueous acrylamide solution, a physical adsorption method in which the aqueous solution is treated with activated carbon or activated clay, and a method for removing 2-cyanoethyl acrylate by bringing the aqueous solution into contact with an ion exchange resin. These include the hydrolysis method in which the aqueous solution is hydrolyzed, the extraction method in which the aqueous solution is treated with chloroform or carbon tetrachloride, and the reaction adsorption method in which the aqueous solution is treated with a compound having a primary and/or secondary amino group. The methods may be used alone or in combination. As the polymerization initiator used in producing polyacrylamide using the acrylamide aqueous solution of the present invention as a raw material, there can be mentioned various conventionally known initiators, such as azobisdimethylvaleronitrile, azobiscyanovaleric acid sodium salt, Azo compounds such as azobisisobutyronitrile, azobisaminopropane hydrochloride, benzoyl peroxide, lauroyl peroxide,
Examples include organic peroxides such as tertiary butyl hydroperoxide, and inorganic peroxides such as potassium persulfate, sodium perbromate, ammonium persulfate, and hydrogen peroxide. Reducing agents include inorganic compounds such as ferrous sulfate, ferrous chloride, sodium bisulfite, sodium metasulfite, sodium thiosulfate, and nitrite; organic compounds include dimethylaniline and 3-dimethylaminopropionitrile. , phenylhydrazine, and the like. In the method of the invention, the monomer used to obtain the high molecular weight polyacrylamide is acrylamide alone or a mixture of acrylamide and a monomer copolymerizable with it. Examples of monomers copolymerizable with acrylamide include methacrylamide, acrylic acid or salts thereof, N-methylacrylamide, N,N'-dimethylacrylamide, N-methylolacrylamide, and 2-acrylamide. 2-Methylpropanesulfonic acid or salts thereof, methacrylic acid or amino alcohol esters of acrylic acid (e.g. dimethylaminoethyl methacrylate, diethylaminoethyl acrylate) and salts or quaternary ammonium salts thereof, methacrylic acid or Examples include ester compounds of acrylic acid (eg, methyl methacrylate, hydroxyethyl acrylate), acrylonitrile, and the like. Next, the present invention will be specifically explained using examples. Examples 1 and 2 When two types of 40% acrylamide aqueous solutions (A and B) prepared by a commercially available contact hydration method were analyzed by gas chromatography, the content of 2-cyanoethyl acrylate in acrylamide aqueous solution A was 14.1%. ppm, and 16.0 ppm in aqueous solution B. This acrylamide aqueous solution was passed through an ion exchange resin as described below, and then a polymer was produced and evaluated. Purification of acrylamide aqueous solution: Prepare two glass ion exchange columns (columns, ) with an inner diameter of 20 mm and a length of 50 cm.
The column was filled with 100 ml of a strongly basic anion exchange resin Revachit MP500 (manufactured by Bayer AG, trade name) in the OH form, and a strongly acidic cation exchange resin Amberlite IR-120B (manufactured by Rohm and Haas) in the H form. , trade name) and thoroughly washed with water. These two columns were connected in series, and the acrylamide aqueous solutions A and B were passed through each column individually at a rate of SV3 (300 ml/hr). At this time, 2 of the acrylamide aqueous solutions A and B
- Cyanoethyl acrylate content is 0.0, respectively.
It was 0.2 ppm. Production of polymer: The acrylamide aqueous solution obtained by the above method was adjusted to an acrylamide concentration of 20% by weight with distilled water,
After adjusting 100 parts of it to pH 10 with aqueous caustic soda solution,
Blow nitrogen gas to remove dissolved oxygen and clean the system for 30 minutes.
℃. To this, potassium persulfate as a catalyst and nitrotrispropionamide as a cocatalyst were added at 8.0 x 10 -5 mol and 20.0 x 10 -5 mol per mol of acrylamide, respectively, and the temperature was raised by the heat of polymerization and the resulting polymerization was allowed to proceed. The reaction was allowed to proceed for a while, and when no rise in temperature was observed, the polymerization reaction was terminated by being left for another 1 hour to obtain an agar-like substance. Next, the obtained agar-like material was crushed into pieces of 2 mm or less in size, and then poured into methanol to replace the water in the agar-like material with methanol, and then dried under reduced pressure at 50 ° C.
A polymer powder was obtained. Evaluation of the obtained polymer: The water solubility and viscosity of the polymer obtained by the above method were evaluated. (1) Water solubility is determined by dissolving the polymer powder to a concentration of 0.1% by weight and passing it through a 200 mesh wire mesh.
The water-insoluble matter was separated from the aqueous solution and the water-insoluble matter was determined. (2) Viscosity was measured in 1N sodium nitrate at a temperature of 30°C using the aqueous polymer solution obtained in the above water solubility test. The results are listed in Table 1 as Examples 1 and 2, respectively. Examples 3 to 5 The same acrylamide aqueous solution A used in Example 1 was diluted 3 times and 5 times, respectively, with the purified acrylamide aqueous solution treated with the ion exchange resin obtained in Example 1. , diluted 15 times and 2
- Three types of acrylamide aqueous solutions with different cyanoethyl acrylate contents (2-cyanoethyl acrylate content is 4.7 ppm, 2.8 ppm,
0.9ppm) was prepared. Polymers were produced using these three types of acrylamide aqueous solutions in the same manner as in Example 1, and the obtained polymers were further evaluated, and the results are listed in Table 1 as Examples 3, 4, and 5, respectively. Comparative Examples 1 and 2 Polymers were produced using the same commercially available acrylamide aqueous solutions A and B used in the examples in the same manner as in the examples without ion exchange resin treatment, and the resulting polymers were further evaluated. The results are listed in Table 1 as Comparative Examples 1 and 2, respectively. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 接触水和法により製造したアクリルアミド水
溶液であつて2―シアノエチルアクリレート含有
量が5ppmを越えるアクリルアミド水溶液を精製
し、2―シアノエチルアクリレート含有量を
5ppm以下とすることを特徴とする高分子量ポリ
アクリルアミド合成用接触水和法アクリルアミド
水溶液を製造する方法。
1 An acrylamide aqueous solution produced by a contact hydration method with a 2-cyanoethyl acrylate content of more than 5 ppm is purified, and the 2-cyanoethyl acrylate content is reduced.
A method for producing an aqueous acrylamide solution using a contact hydration method for synthesizing high molecular weight polyacrylamide, characterized in that the concentration is 5 ppm or less.
JP9226180A 1980-07-08 1980-07-08 Aqueous solution of acrylamide Granted JPS5718652A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9226180A JPS5718652A (en) 1980-07-08 1980-07-08 Aqueous solution of acrylamide
GB8120981A GB2079284A (en) 1980-07-08 1981-07-07 Aqueous acrylamide solution for production of high molecular weight polyacrylamide
DE19813126999 DE3126999A1 (en) 1980-07-08 1981-07-08 "AQUEOUS ACRYLAMIDE SOLUTION FOR PRODUCING A HIGH MOLECULAR WEIGHT POLYACRYLAMID"

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9226180A JPS5718652A (en) 1980-07-08 1980-07-08 Aqueous solution of acrylamide

Publications (2)

Publication Number Publication Date
JPS5718652A JPS5718652A (en) 1982-01-30
JPH0212945B2 true JPH0212945B2 (en) 1990-03-30

Family

ID=14049458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9226180A Granted JPS5718652A (en) 1980-07-08 1980-07-08 Aqueous solution of acrylamide

Country Status (3)

Country Link
JP (1) JPS5718652A (en)
DE (1) DE3126999A1 (en)
GB (1) GB2079284A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108774U (en) * 1991-03-01 1992-09-21 株式会社ニフコ rotating damper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108774U (en) * 1991-03-01 1992-09-21 株式会社ニフコ rotating damper

Also Published As

Publication number Publication date
DE3126999A1 (en) 1982-03-25
JPS5718652A (en) 1982-01-30
GB2079284A (en) 1982-01-20

Similar Documents

Publication Publication Date Title
CA2006768C (en) Method of manufacturing cationic acrylamide polymers, cationic acrylamide polymers, and the applications of these polymers
KR100400146B1 (en) Use as water-soluble polymers and paper-based dry strength additives prepared from meth (acrylamide), ethylenically unsaturated aliphatic carboxylic acids or salts thereof and polyvinyl monomers
JPH0212945B2 (en)
KR0164921B1 (en) Productor of acrylamide
CA1223700A (en) Process for producing acrylamide-type cationic polymeric flocculant
US4313001A (en) Process for purifying aqueous acrylamide solutions
JPS5924708A (en) Production of cationic acrylamide polymer
JP2000212229A (en) Papermaking additive and method for producing the same
JP3173113B2 (en) Manufacturing method of papermaking additives
JPS6140217B2 (en)
JPH09227478A (en) Method for producing acrylamide
JP3102107B2 (en) Papermaking additives
JPH0134983B2 (en)
US2868738A (en) Preparation of cation-exchange resins by oxidation of vinylalkoxy sulfide polymers
JP4288541B2 (en) Paper manufacturing method
JPH07145123A (en) Method for producing acrylamide
JP2000273790A (en) Internal additive for papermaking and production of paper
JPH03227489A (en) Additive for paper-making process
JP3109194B2 (en) Papermaking additives
JPH07291907A (en) Method for producing acrylamide
JPH0364200B2 (en)
JPS59120609A (en) Manufacturing method of polyacrylamide resin
JPH11246498A (en) Purification method of acrylamide aqueous solution and method of producing acrylamide polymer
JPH10180293A (en) How to prevent calcium oxalate scale
NO853177L (en) PROCEDURE FOR THE PREPARATION OF CATIONIC PREPOLIMERS AND PRODUCTS MADE THEREOF.