[go: up one dir, main page]

JPH02129196A - Production of powdery sucrose ester of fatty acid - Google Patents

Production of powdery sucrose ester of fatty acid

Info

Publication number
JPH02129196A
JPH02129196A JP28286588A JP28286588A JPH02129196A JP H02129196 A JPH02129196 A JP H02129196A JP 28286588 A JP28286588 A JP 28286588A JP 28286588 A JP28286588 A JP 28286588A JP H02129196 A JPH02129196 A JP H02129196A
Authority
JP
Japan
Prior art keywords
fatty acid
reaction mixture
water
ester
unreacted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28286588A
Other languages
Japanese (ja)
Inventor
Shusaku Matsumoto
修策 松本
Yoshio Hatakawa
畑川 由夫
Akihiko Nakajima
明彦 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKS Co Ltd
Original Assignee
Dai Ichi Kogyo Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Kogyo Seiyaku Co Ltd filed Critical Dai Ichi Kogyo Seiyaku Co Ltd
Priority to JP28286588A priority Critical patent/JPH02129196A/en
Publication of JPH02129196A publication Critical patent/JPH02129196A/en
Pending legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)

Abstract

PURPOSE:To industrially and advantageously obtain the subject product without using an organic solvent by regulating a reaction mixture, containing sucrose ester of a fatty acid and unreacted substances and prepared by an aqueous medium method to a neutral pH, adding a neutral salt thereto, washing the formed precipitates with acidic water, repeating the above-mentioned operation, neutralizing the washed precipitates and spray-drying the neutralized precipitates. CONSTITUTION:A synthetic reaction mixture of a sucrose ester of a fatty acid, containing the sucrose ester of the fatty acid which is the objective substance and further unreacted saccharide, unreacted methyl ester of the fatty acid, catalyst, soap and the fatty acid and prepared by an aqueous medium method is regulated within a neutral region, preferably pH6.2-8.2 and preferably heated to 50-80 deg.C. A neutral salt is then added and the formed precipitates are subsequently washed with acidic water. The above-mentioned operation is repeated and the washed precipitates are neutralized and spray-dried to afford the objective ester. Furthermore, an acid used for regulating the pH is preferably lactic, acetic, hydrochloric or sulfuric acid.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、粉末状ショ糖脂肪酸エステルの工業的な製法
に関する。 更に詳しくは、本発明は、水媒法合成により得られたS
E反応混合物を水を用いて精製すると共に、噴霧乾燥手
段によって、経済的に粉末状ショ糖脂肪酸エステルを得
る技術に関するものである。
The present invention relates to an industrial method for producing powdered sucrose fatty acid ester. More specifically, the present invention provides S obtained by aqueous method synthesis.
This invention relates to a technique for economically obtaining powdered sucrose fatty acid ester by purifying the E reaction mixture using water and by spray drying.

【従来の技術】[Conventional technology]

(背景) 現在、界面活性剤として有用なショ糖脂肪酸エステル(
以後<< S E ))ともいう)は、工業的に、ショ
糖とC8〜C22の高級脂肪酸メチルエステルとを溶媒
(ジメチルホルムアミドやジメチルスルホキシドなど)
中で適当な触媒下で反応させるか(溶媒法:特公昭35
−13102)又は溶媒を用いずに水を使ってショ糖を
脂肪酸石鹸と共に溶融混合物とした後、触媒の存在下に
高級脂肪酸メチルエステルと反応させること(水奴法:
特公昭51−14495号)により得られている。 しかし、これら二種の合成法のいずれによっても、その
反応混合物中には、目的とするSEの他に、未反応の糖
、未反応の脂肪酸メチルエステル、残留触媒、石鹸、遊
離脂肪酸等の夾雑物を含んでおり、これらの夾雑物のう
ち含■が規定量を越す不純分は、製品と成る以前に除去
されなければならない。特に、前者の溶媒法では、近年
規制が特に厳しくなってきているDMFなとの高廓点極
性溶媒の除去に煩雑な手数を必要とする。 これに反し、後者の水媒法によれば、反応溶媒が反応混
合物中に混入してくる恐れはないが、矢張り多量の不純
物を含むので、普通その精製には多量の有機溶媒(以下
、単に(溶媒)という)が利用されるが、精製用溶媒の
利用は、下記の如く工業的に多くの不利益をもたらす。 α)爆発、火災の危険性。 ・′わ 七の■に備えた電気装置の防爆化。 (3)上の■に備えた!tJ造装置の密閉化。 ■ 上の■に備えた建物全体の耐火構造化。 (Φ 上の■、■、(2+)による固定費の上昇。 ・′O)溶媒の損耗による原価の上昇。 ■ 製品SE中に残留する残留溶媒による負効果。 ■)従業員の健康上への悪影響、ひいてはその予防のた
めのシフl増加による「】数の増大と原価の上昇。 これらの溶媒使用に因る不利益は、特にSEの工業的生
産を意図する場合、殊に著しい障害となる。それ故、S
E精製時における精製溶媒の使用を不必凹化ならしめる
精製技術の開発は、当業界における切実な要望である。 (従来技術の問題点) そこで従来から溶媒を利用しない精製法が検討され1例
えば代表的なものとして (1)酸性水溶液によるSHの沈殿方法(英国特許80
9,815 (1959)) (2)−殻の中性塩水溶液によるSHの沈殿法(特公昭
42−8950) などが知られている。 以上の精製に加えて、水を精製用溶媒として使用する以
上、必然的SEは含水物として得られるから、水による
精製を工業的に可能ならしめるためには、更に含水SE
の乾燥手段を名慮しなければならない。 即ち、ここに乾燥の対象となる含水SEは、通常、水分
80%以上のものは水溶液状態を、また水分80%未満
のものはスラリー(泥漿)状をなしているのが汀通であ
る。これらSHの含水物は、般に40℃近辺から急激に
粘度が上昇し、50℃近辺で最高値となるが、同温度を
50℃を越えると急激に粘度が下がるという極めて特異
な粘性挙動を呈する(出願人会社刊(シュガーエステル
物語)108頁)、このため、単に真空下に加熱して水
分を蒸発させる試みは、著しい発泡性のため実質的に不
可能である。4¥に水分蒸発の終期には、SHの持つ軟
化点又は融点の低さという特性(例えばショ糖モノステ
アレートの軟化点は52°C近辺シヨ砧ジステアレート
の融点は110°C付近)のため、SE自体が残存して
いる水を抱水する傾向を持ち、このことが脱水を一層困
難とする。 そして、若し加熱時の温度が高く、かつ伝熱体との接触
時間が長い場合には、SE自体分解を起こし、強度の着
色及びカラメル化を引き起すのみでなく5分解により!
Mした脂肪酸により酸価も上昇してくる(特公昭37−
9968参照)。 加えて、溶媒と比較して、水の蒸発潜熱が異常に高い(
500Kcal/Kg−120以上)こと及び蒸発温度
の高いこと等も乾燥を困難ならしめる一因となっている
。 それ故、例えば別形式の乾燥法として、スラリーを加熱
して連続的に真空室へ供給、放出させる、所謂フラッシ
ュ式の乾燥機を用いた場合においても、水の持つ大きな
潜熱のため、充分な脱水、乾燥には種々の困難がつき纏
い、たとえこれらの困難を克服できたとしても、真空下
で脱水乾燥された後のSEは、溶融状態にあるため、そ
れを乾燥機より取出してから融点以下まで冷風等を吹き
つけて冷却し、固化させ、最後に粉砕機で粉砕するとい
う多くの工程を必要とし、しかも最終の粉砕工程では粉
塵爆発の懸念が附随する。 従って、以上のような乾燥に伴う諸問題点を解決するこ
とは、木木奴法精製を実現するための重要なステップと
なる。
(Background) Currently, sucrose fatty acid esters (
Hereinafter also referred to as << S E ))), industrially, sucrose and C8 to C22 higher fatty acid methyl ester are combined in a solvent (dimethylformamide, dimethyl sulfoxide, etc.).
(Solvent method: Japanese Patent Publication No. 1973)
-13102) or by making sucrose into a molten mixture with fatty acid soap using water without using a solvent, and then reacting it with higher fatty acid methyl ester in the presence of a catalyst (Mizunu method:
Japanese Patent Publication No. 51-14495). However, with either of these two synthetic methods, the reaction mixture contains, in addition to the target SE, contaminants such as unreacted sugars, unreacted fatty acid methyl esters, residual catalysts, soaps, and free fatty acids. Among these impurities, impurities that exceed the specified amount must be removed before becoming a product. In particular, the former solvent method requires complicated steps to remove high-temperature polar solvents such as DMF, whose regulations have become particularly strict in recent years. On the other hand, according to the latter aqueous method, there is no fear that the reaction solvent will be mixed into the reaction mixture, but since it contains a large amount of impurities, a large amount of organic solvent (hereinafter referred to as However, the use of solvents for purification brings about many industrial disadvantages as described below. α) Risk of explosion and fire. - Explosion-proofing of electrical equipment in preparation for 7-■. (3) Prepare for ■ above! Sealing the tJ manufacturing equipment. ■ The entire building will be made into a fire-resistant structure in preparation for ■ above. (Increase in fixed costs due to ■, ■, (2+) above Φ. ・'O) Increase in cost due to wear and tear of solvent. ■ Negative effects due to residual solvent remaining in product SE. ■) Negative effects on the health of employees, and furthermore, an increase in the number and cost due to an increase in Schiffl to prevent this.The disadvantages caused by the use of these solvents are particularly important for the industrial production of SE. This poses a particularly serious problem when S
The development of a purification technique that makes the use of purification solvents unnecessary during E purification is a pressing need in the industry. (Problems with the prior art) Therefore, purification methods that do not use solvents have been studied for some time.For example, (1) SH precipitation method using an acidic aqueous solution (British Patent No. 80
9,815 (1959)) (2)-A method of precipitation of SH using a neutral salt aqueous solution of the shell (Japanese Patent Publication No. 42-8950) is known. In addition to the above purification, since water is used as a purification solvent, the necessary SE is obtained as a hydrated product, so in order to make purification with water industrially possible, it is necessary to further
drying methods shall be taken into consideration. That is, the water-containing SE to be dried here is normally in the form of an aqueous solution if it has a water content of 80% or more, and in the form of a slurry if it has a water content of less than 80%. The viscosity of these SH hydrates generally increases rapidly from around 40°C and reaches the highest value around 50°C, but when the same temperature exceeds 50°C, the viscosity decreases rapidly, which is a very unique viscosity behavior. (Published by Applicant Company (Sugar Ester Story), p. 108) Therefore, attempts to simply evaporate water by heating under vacuum are virtually impossible due to the significant foaming property. At the end of water evaporation, SH has a low softening point or melting point (for example, the softening point of sucrose monostearate is around 52°C, and the melting point of distearate is around 110°C). , SE itself has a tendency to retain residual water, which makes dehydration more difficult. If the temperature during heating is high and the contact time with the heat transfer body is long, SE itself will decompose, causing not only strong coloring and caramelization but also 5 decomposition!
The acid value also increases due to M fatty acids (Special Publications Publication No. 1973-
9968). In addition, the latent heat of vaporization of water is unusually high compared to the solvent (
500Kcal/Kg-120 or more) and the high evaporation temperature are also factors that make drying difficult. Therefore, even when using a so-called flash dryer, which heats the slurry and continuously supplies it to a vacuum chamber and discharges it, as another type of drying method, for example, the large latent heat of water makes it difficult to dry the slurry sufficiently. Dehydration and drying are fraught with various difficulties, and even if these difficulties can be overcome, the SE after being dehydrated and dried under vacuum is in a molten state, so the melting point cannot be determined after taking it out of the dryer. It requires many steps, including cooling by blowing cold air, solidifying, and finally pulverizing in a pulverizer, and the final pulverizing step is accompanied by concerns about dust explosions. Therefore, solving the various problems associated with drying as described above is an important step in realizing the Kokunu process.

【発明が解決しようとする課鮪】[The problem that the invention aims to solve]

以上の実情に鑑み、本発明は、水媒法で合成された粗製
SEの精製に際し、精製用溶媒を使用しないに拘らず(
即ち、水を唯一の精製用の溶媒として用いても)、乾燥
過程で品質劣化を生じる恐れのない乾燥手段を開発する
ことによって、溶媒の使用に起因する全ての問題を解決
するのを目的とする。 (発明の概念) そこで本発明者は、(イ)水相側に溶解するSE星を最
少限に押え、(ロ)未反応糖の分解を避けて、SEから
分離することを目標として多くの塩析実験を行なった結
果、一定濃度以上のC度の中性塩を反応混合物の水溶液
中に溶解させたとき4多くの割合のSEが沈殿するとい
う現象を見出した。従って、この現象を利用して、沈殿
したSEを再度水に溶解後、中性塩水溶液による沈殿操
作を反復することにより、沈殿したSHに随伴している
中性塩は、該沈殿を適当なpHの酸性水で洗浄すること
により実質的に除去されて精製されたSEスラリーが得
られること;及び、このSEのスラリーを噴霧乾燥する
ことによって、全く品質の低下なしに、粉末状のSEを
連続的に生産できることが明らかとなった。 (概要) 以上の目的を達成するため、本発明に係る粉末状ショ糖
脂肪酸エステルの製造法は、目的物のショ糖脂肪酸エス
テルの他、未反応の糖、未反応の脂肪酸メチルエステル
、触媒、石鹸、及び脂肪酸を含む水媒法ショ糖脂肪酸エ
ステル合成反応混合物を、中性領域のpHに調整し、水
、中性塩を加えることにより生じる沈殿物を酸性の水で
洗沙し、この操作を反復して、中和後、噴霧乾燥するこ
とを特徴とする。 (水媒法SE合合成反応全介物 水媒法合成によるSEの製造法は、ショ糖を水の存在下
に脂肪酸石鹸と共に溶融混合物とした後、触媒の存在下
に高級脂肪酸メチルエステルと反応させる方法であって
(特公昭51−14495等)、その特徴は、その反応
混合物が、溶媒法合成による当該混合物に比較して、石
鹸をより多く含む反面残留する反応溶媒を含まないとい
う利点を持つことである。 水媒法で合成されたSEE応混合物は、概ね、以下の範
囲の組成を有する。 ショ糖脂肪酸エステル   =15〜74%未反応糖 
        =1.0〜80%未反応脂肪酸メチル
エステル=0.5〜lO%炭酸カリウム由来の中性塩 
= 0.05〜7%石階           810
〜50%脂肪酸          =0.5〜IO%
このとき、SEのエステル分布は、モノエステルlO〜
75%(ジエステル以上が90〜25z)である。 そして、脂肪酸メチルエステル、石鹸及び脂肪酸の夫々
に主として含まれる脂肪酸根は、飽和であって、共通の
016〜C27の炭素数を持つ。 (加水) 次に、上の反応混合物に対して水を、 水:反応混合物=5:l〜40:1(重量比)・・(1
)式の割合になるように、更に望ましくは水:反応混合
物=2o:I(!1f量比)・・・・・・・・(2)式
の割合に加えると共に、PHを6.2〜8.2、望まし
くはpH7,5とする。 この場合、水の添加割合が上の範囲から外れ、例えば、
水と反応混合物との量比が5未満となった場合は、得ら
れた水溶液の粘度が大となり、実質的に以後の操作が困
難となる。また、逆に、水と反応混合物との量比が40
.tlfI過となる程に過剰の水を加えた場合は、粘度
が小となって以後の操作が容易となるが、反面、未反応
糖等の回収に際して水分の除去に多大のエネルギーコス
トを必要とすることになって、経済性が低下する。 更に、水溶液のpHは、目的とするSEの分解を避ける
ため、 pH6.2〜8.2の間に調整されるのが好ま
しい、 pH6.2以上の水素イオン濃度下では、アル
カリによる定量的なSEの分解が起こる心配があり、ま
たpHEi、2以下の弱酸性域でも、例えば80℃以上
の高温にさらされると、酸分解の恐れがある。 (11!析) 以上の如< pH3]整されたSEE応混合物の水溶液
を、なるべく50〜80℃に保って、更に中性塩を加え
る。この場合、中性塩の罎によって水に溶解するSHの
量は変化するが、大官、中性塩の種類とは余り関係なく
表−1の通りである。 (以下余白) 表−1 塩 表−1において、 水相側に溶解しているSEの重R=Y [gl、沈殿し
ているSHの重量=X [g] 全S E (X−Y)[glに対して、水相側に溶解し
ているSEのffi量割合=φ[%] とすれば、φは下式(3)で定義される。 φ=     X100 (X)  ・・・・・・・・
・・(3)X+Y こコテ、水/5E=20.0/1.0 1Q比)サンプ
ルSHの種類=ショ糖ステアリン酸エステル 純分88
% エステル分布 モノエステル=70% ジエステル以上=30% かくして、本発明者らは、6%以上の濃度の中性塩を加
えて得たSHの沈殿を含む水溶液を、50〜80℃まで
加熱昇温させると、多くの割合のSEが沈殿することを
見出した。この現象は特異な現象であると共に、発明目
的上、重要な価値を有するものである。 表−1に示めされるようなSHの沈殿量を最高にするこ
とのできる中性塩の添加によって多くの割合のSEを沈
殿化することができ、沈殿したSEの濾取又は遠心分離
により、水相側に溶解している夾雑物と完全に分離する
ことができる。 (洗浄) 以上の塩析操作の後、pH−3,0〜5.5.温度10
〜40℃程度に調整、調温された酸性水を用いて、前述
の分離されたSEのケーキを洗浄する。これに使用され
る酸は1例えばkiX酸、硫酸等の鉱酸及び酢酸、乳酸
等の可食性有機酸が過ちであるが、別設例示のもののみ
に限る訳ではない。 このような条件の下で洗浄することにより、不純物を、
水相側に移行させることができる。 以上の洗浄操作に当たり、酸性水の温度が40℃以上と
なると、操作が長時間、例えば数ケ月にも及んだとき、
SEの酸分解が懸念されるだけでなく、粘度が上昇して
操作が困難となる。他方、10℃以下の低温の保持には
、経済性を軽視した冷凍機の設備が必要となる。従って
、普通は10〜40℃、殊に常温付近での操業が好まし
い。 なお、この酸性水によるSEケーキの洗浄に際しては1
本ケーキ中に含まれている未反応糖、加えられた中性塩
、及び触媒の中和により副生じた塩の王者を、可能な限
りSEケーキから除く必要があるので、SEケーキは、
該酸性水中で、可能な限り小さい粒子径になるまで細断
されているのが望ましい、この目的は、例えば、分散混
合機(例えば特殊機器工業■製(ホモミキサー))、ホ
モジナイザー又はコロイドミル(例えば商品名(マイコ
ロイダー)))#の細分化装置により効率的に達成でき
、未反応糖、触媒由来の塩、及び中、性用の三者は、全
量比FR5Eのケーキから酸性水相中に移行する。 但し、実質的に少量であるとは言いながら、この際一部
のSEが酸性水相に溶出するのは避けられない、この酸
性水への溶解傾向は、モノエステル含分の多いSE程強
いので、ジエステルやトリエステル分を相対的に増加さ
せることによって減することができる。 以上の酸性水によるSEケーキの洗浄は、洗浄の回数増
加と、洗浄水量の増加によって一層完全となり、かくし
て事実上純粋に近い精製SEを得ることができる。 (泥漿濃度) この沈殿SEのケーキは泥漿(スラリー)状であるが、
このままでは、pHが酸性側に偏っているので、pHを
中性付近になるように調整したスラリーは、未反応の糖
、触媒起源の塩、塩析に際して添加された中性塩を含ま
ないが、SE、未反応の脂肪酸メチルエステル、石鹸及
び脂肪酸の囲者を含み、固形分1〜50%、水分99〜
50%の範囲にあることが多い。 本スラリー中の固形分の量は、後述の乾燥のため、大略
40%以下であるのが好ましいが、固形分の量比が過小
であることは、乾燥のエネルギーコストの面から望まし
くなく、通常、4%以上の値であるのが経済的である。 (噴霧乾燥) 本発明では、SEスラリーの乾燥に際し、特に噴霧乾燥
法を利用する。この乾燥手段の有用性は、本発明者、が
、多くの実験事実から見出した固形分4〜40%のSE
スラリーの脱水乾燥に最適の方法である。因に、既述の
如く、所謂溝型の攪拌型乾燥機で代表される通常の真空
乾燥機を用いた場合も、また、スラリーを連続的に供給
し、加熱して真空室に放出させる所謂フラッシュ式の乾
燥機を用いた場合も、SHの持つ粘度特性や低融点とい
う性質のため、被処理SHの酸価の上昇、着色、カラメ
ル化などの品質低下現象を回避することができず、更に
後者の場合には、なお粉I!!5爆発の危険性も無視で
きない。 しかるに、発明者が見出した噴霧乾燥手段を採用するこ
とにより、既往乾燥手段の欠点を一挙に解決することが
できる。 本発明における乾燥工程では、スラリー状態の含水SE
を、ポンプを介して噴霧乾燥塔へ連続的に供給し、ノズ
ルによる噴霧又は回転円盤(ディスク)の遠心力により
微細な霧状微粒子に分割して乾燥気流と接触させる。こ
れにより水の蒸発面積が著しく大きくなり、このため極
めて短時間内(噴霧してから数秒以内)に脱水、乾燥を
完了し得る。なお霧化手段としては、含水SHの粘度が
大であるため1回転円盤の利用が望ましい。 (噴霧乾燥手段) SEの溶液又はスラリーの供給温度は40〜80℃の間
で任意に変更できるが、品質面の考慮から望ましくは4
0〜60℃の範囲内の温度を選ぶ。 L記溶液又は泥漿を回転円盤により霧化させる場合、例
えば円盤の直径が5〜loc+++φのときは15.0
00〜24,0OOrp+sの回転数が適当である。 塔内へ送風される空気は、溶液又は泥漿中の水分を蒸発
させるに必要な熱量以4二を保有すべきであり、従って
空気温度が低い場合は、より多7.1の空気量が必要で
ある。この際の空気温度は10〜!00℃の広範囲であ
ってよいが、対象SEの乾燥効率と熱分解防止とを考慮
して、60〜80℃の間の温度を選ぶのが右利である。 送風空気中の湿度も前記の空気温度と共に乾燥効率に関
係する0作業上好適な絶対湿度は、大略 の範囲であるが、特に の範囲にあるのが経済的である。 噴霧乾燥塔へ送る泥漿中の固形分濃度が40%を超える
と、粘度が著しく増大する結果、噴霧されたスラリーの
粒子径は相対的に大きくなり、その分、水の乾燥が遅く
なり、結果として乾燥塔の内壁に付着し易くなる。故に
、スラリー中の固形分濃度を40%以下に調整するのが
よい、スラリーの固形分濃度が40%以下であれば、噴
霧された液滴の直径が40%超過の場合より小となり、
乾燥され易くなるから、乾燥塔の内壁に付着する懸念も
なくなる。尤も、スラリーの固形分濃度が1例えば3%
未満のように小さくなると、乾燥は容易となるが、所要
エネルギーの面から不経済である。 従って、噴霧乾燥塔へのスラリー供給濃度としては、4
%〜40%の範囲が適している。 噴霧乾燥塔の所要容積、所要塔経、所要高さなどの諸条
件は、以上の噴霧条件を前提に設計される。塔の設計及
び作業条件が適当であれば、水分5%以下の粉末化され
た乾燥SEが、噴霧乾燥塔の下部より連続的に排出され
る。得られた製品は、熱履歴が短いため品質的に極めて
優れ、かつ乾燥作業用の人員を殆ど必要としない。 (以下余白)
In view of the above circumstances, the present invention provides a method for purifying crude SE synthesized by an aqueous medium method, regardless of whether a purification solvent is used or not.
In other words, the aim is to solve all the problems caused by the use of solvents by developing a drying method that does not cause quality deterioration during the drying process (even if water is used as the only solvent for purification). do. (Concept of the Invention) Therefore, the present inventor has developed a large number of SE stars with the aim of (a) minimizing SE stars dissolved in the aqueous phase, and (b) separating unreacted sugar from SE while avoiding decomposition of the unreacted sugar. As a result of conducting a salting-out experiment, it was found that when a neutral salt having a degree of C above a certain concentration is dissolved in an aqueous solution of a reaction mixture, a large proportion of SE precipitates. Therefore, by taking advantage of this phenomenon and repeating the precipitation operation with a neutral salt aqueous solution after dissolving the precipitated SE in water, the neutral salt accompanying the precipitated SH can be used to dissolve the precipitate into an appropriate amount. By washing with pH acidic water, a purified SE slurry is obtained which is substantially removed; and by spray drying this SE slurry, powdered SE can be obtained without any loss of quality. It has become clear that continuous production is possible. (Summary) In order to achieve the above object, the method for producing powdered sucrose fatty acid ester according to the present invention includes, in addition to the target sucrose fatty acid ester, unreacted sugar, unreacted fatty acid methyl ester, catalyst, The aqueous method sucrose fatty acid ester synthesis reaction mixture containing soap and fatty acids is adjusted to a pH in the neutral range, water and neutral salts are added, and the precipitate formed is washed with acidic water. The method is characterized by repeating neutralization and then spray drying. (Aqueous medium method SE synthesis reaction All inclusions SE production method by aqueous method synthesis involves making sucrose into a molten mixture with fatty acid soap in the presence of water, and then reacting it with higher fatty acid methyl ester in the presence of a catalyst. (Japanese Patent Publication No. 51-14495, etc.), which has the advantage that the reaction mixture contains more soap than the mixture obtained by solvent synthesis, but does not contain any residual reaction solvent. The SEE reaction mixture synthesized by the water-based method generally has a composition in the following range: Sucrose fatty acid ester = 15-74% unreacted sugar
= 1.0-80% unreacted fatty acid methyl ester = 0.5-10% neutral salt derived from potassium carbonate
= 0.05-7% stone floor 810
~50% fatty acids = 0.5~IO%
At this time, the ester distribution of SE is monoester lO ~
75% (diester or higher is 90-25z). The fatty acid roots mainly contained in each of fatty acid methyl ester, soap, and fatty acid are saturated and have a common carbon number of 016 to C27. (Addition of water) Next, water was added to the above reaction mixture, water: reaction mixture = 5: 1 to 40: 1 (weight ratio)... (1
), more preferably water:reaction mixture = 2o:I (!1f quantity ratio)......(2), and the pH is adjusted to 6.2 to 6.2. 8.2, preferably pH 7.5. In this case, the water addition ratio is outside the above range, e.g.
If the ratio of water to reaction mixture is less than 5, the resulting aqueous solution will have a high viscosity, making subsequent operations substantially difficult. Conversely, the quantitative ratio of water and reaction mixture is 40.
.. If too much water is added to the extent that a tlfI reaction occurs, the viscosity decreases and subsequent operations become easier, but on the other hand, a large amount of energy is required to remove water when recovering unreacted sugars, etc. This reduces economic efficiency. Furthermore, the pH of the aqueous solution is preferably adjusted between pH 6.2 and 8.2 in order to avoid decomposition of the target SE. At a hydrogen ion concentration of pH 6.2 or higher, quantitative alkali-based There is a risk of SE decomposition, and even in a weakly acidic range of pHEi of 2 or less, there is a risk of acid decomposition if exposed to high temperatures of 80° C. or higher, for example. (11! Analysis) The aqueous solution of the SEE reaction mixture adjusted to pH 3 as described above is maintained at 50 to 80°C as much as possible, and a neutral salt is further added. In this case, the amount of SH dissolved in water varies depending on the size of the neutral salt, but it is as shown in Table 1, regardless of the type of neutral salt. (Left below) Table 1 In Salt Table 1, weight of SE dissolved in the aqueous phase R=Y [gl, weight of precipitated SH=X [g] Total SE (X-Y) [Ratio of ffi amount of SE dissolved in the aqueous phase to gl = φ [%], then φ is defined by the following formula (3). φ=X100 (X) ・・・・・・・・・
...(3)
% Ester distribution Monoester = 70% Diester or higher = 30% Thus, the present inventors heated an aqueous solution containing a SH precipitate obtained by adding a neutral salt of 6% or more concentration to 50 to 80 °C. It was found that upon warming, a large proportion of SE precipitates. This phenomenon is unique and has important value for the purpose of the invention. As shown in Table 1, a large proportion of SE can be precipitated by adding neutral salts that can maximize the amount of SH precipitated, and by filtering or centrifuging the precipitated SE. It is possible to completely separate impurities dissolved in the aqueous phase. (Washing) After the above salting-out operation, pH-3.0 to 5.5. temperature 10
The separated SE cake described above is washed using acidic water whose temperature is adjusted to about 40°C. The acids used here include mineral acids such as kiX acid and sulfuric acid, and edible organic acids such as acetic acid and lactic acid, but are not limited to those listed separately. By washing under these conditions, impurities are removed.
It can be transferred to the aqueous phase side. During the above cleaning operation, if the temperature of the acidic water exceeds 40°C, if the operation lasts for a long time, for example, several months,
Not only is there a concern about acid decomposition of SE, but also the viscosity increases, making operation difficult. On the other hand, maintaining a low temperature of 10° C. or less requires a refrigerator that is not economical. Therefore, it is usually preferable to operate at 10 to 40°C, particularly around room temperature. In addition, when washing the SE cake with this acidic water, 1
Since it is necessary to remove from the SE cake as much as possible the unreacted sugars contained in the cake, the added neutral salts, and the king of salts produced by neutralization of the catalyst, the SE cake is
It is desirable that the particles be shredded to the smallest possible particle size in the acidic water. For example, this can be efficiently achieved using a fragmentation device with the trade name (Mycolloider))), and unreacted sugars, salts derived from catalysts, and three substances are separated from a cake with a total ratio of FR5E in an acidic aqueous phase. to move to. However, although it is said to be a substantially small amount, it is inevitable that some SE will elute into the acidic aqueous phase. Therefore, it can be reduced by relatively increasing the diester or triester content. The above-mentioned washing of the SE cake with acidic water becomes more complete by increasing the number of washings and increasing the amount of washing water, thus making it possible to obtain purified SE that is virtually pure. (Slurry concentration) This precipitated SE cake is slurry-like,
As it is, the pH is biased toward the acidic side, so the slurry whose pH is adjusted to around neutrality does not contain unreacted sugars, salts originating from the catalyst, and neutral salts added during salting out. , SE, including unreacted fatty acid methyl ester, soap and fatty acid surround, solids content 1-50%, moisture 99-99%
It is often in the 50% range. The amount of solids in this slurry is preferably about 40% or less for drying purposes, which will be described later.However, an excessively small amount of solids is undesirable from the viewpoint of energy costs for drying, and is usually , a value of 4% or more is economical. (Spray Drying) In the present invention, a spray drying method is particularly used for drying the SE slurry. The usefulness of this drying method is based on the fact that the present inventor has discovered from many experimental facts that SE
This is the best method for dehydrating and drying slurry. Incidentally, as mentioned above, even when using a normal vacuum dryer, typified by a so-called groove-type stirring dryer, slurry is continuously supplied, heated, and then released into a vacuum chamber. Even when a flash dryer is used, due to the viscosity characteristics and low melting point of SH, it is not possible to avoid quality deterioration phenomena such as an increase in the acid value, coloration, and caramelization of the SH to be treated. Furthermore, in the latter case, Naoko I! ! 5. The risk of explosion cannot be ignored. However, by employing the spray drying means discovered by the inventor, the drawbacks of the existing drying means can be solved at once. In the drying step in the present invention, the water-containing SE in a slurry state is
is continuously supplied to the spray drying tower via a pump, and is divided into fine atomized particles by atomization by a nozzle or centrifugal force of a rotating disk, and brought into contact with a drying air stream. This significantly increases the evaporation area of water, and therefore dehydration and drying can be completed within an extremely short time (within a few seconds after spraying). Note that as the atomizing means, it is desirable to use a one-rotation disk because the viscosity of the water-containing SH is high. (Spray drying means) The supply temperature of the SE solution or slurry can be arbitrarily changed between 40 and 80°C, but from the viewpoint of quality, it is preferably 40°C.
Choose a temperature within the range of 0-60°C. When the L solution or slurry is atomized by a rotating disk, for example, when the diameter of the disk is 5 to loc+++φ, it is 15.0
A rotational speed of 00 to 24.0 OOrp+s is suitable. The air blown into the tower should have at least the amount of heat required to evaporate the water in the solution or slurry; therefore, if the air temperature is low, a higher amount of air is required. It is. The air temperature at this time is 10~! Although the temperature may be in a wide range of 00°C, it is best to choose a temperature between 60 and 80°C in consideration of drying efficiency and prevention of thermal decomposition of the target SE. The humidity in the blown air is related to the drying efficiency as well as the air temperature.Although the absolute humidity suitable for the work is within a general range, it is particularly economical to have it within the range of . When the solid content concentration in the slurry sent to the spray drying tower exceeds 40%, the viscosity increases significantly, and as a result, the particle size of the sprayed slurry becomes relatively large, which slows down the drying of the water. As a result, it tends to adhere to the inner wall of the drying tower. Therefore, it is better to adjust the solid content concentration in the slurry to 40% or less. If the solid content concentration of the slurry is 40% or less, the diameter of the sprayed droplets will be smaller than if it exceeds 40%.
Since it becomes easier to dry, there is no fear of it adhering to the inner wall of the drying tower. However, if the solid content concentration of the slurry is 1, for example, 3%
Drying becomes easier when the size is smaller, such as less than 1,000 yen, but it is uneconomical in terms of the energy required. Therefore, the concentration of slurry supplied to the spray drying tower is 4.
A range of % to 40% is suitable. Conditions such as the required volume, required tower length, and required height of the spray drying tower are designed on the premise of the above spray conditions. If the tower design and operating conditions are suitable, powdered dry SE with less than 5% water content is continuously discharged from the bottom of the spray drying tower. The resulting product has a short thermal history and is of excellent quality, and requires almost no drying personnel. (Margin below)

【作用】[Effect]

未反応の糖、未反応の脂肪酸メチルエステル触媒、石鹸
、及び脂肪酸を含むSE生成反応混合物に酸を加えて中
性領域のPHにA整径、水、中性塩を加えて適当な温度
下に塩析すると、SE、未反応の脂肪酸メチルエステル
、石鹸及び脂肪酸が沈殿する。 次いで、この沈殿を酸性の水で洗浄することにより、本
沈殿中に夾雑する未反応糖、加えられた中性塩、及び触
媒の中和により副生じた塩等の不純物が除去され、精製
されたSHのスラリーとなる。そしてこの精製スラリー
を噴霧乾燥することにより、水分5%以下の粉末状SE
が連続的に生産される。
Add acid to the SE-generating reaction mixture containing unreacted sugar, unreacted fatty acid methyl ester catalyst, soap, and fatty acid, adjust the pH to a neutral range, add water, and neutral salt, and heat at an appropriate temperature. When salted out, SE, unreacted fatty acid methyl ester, soap and fatty acid precipitate. Next, by washing this precipitate with acidic water, impurities such as unreacted sugars contaminating the precipitate, added neutral salts, and salts produced as by-products due to neutralization of the catalyst are removed and purified. This becomes a slurry of SH. By spray-drying this purified slurry, powdered SE with a moisture content of 5% or less is obtained.
is produced continuously.

【実施例】【Example】

以下、実施例により発明実施の態様及び効果を説明する
が1例示は勿論説明のためのものであって、発明思想の
限定又は制限を7α図したものではない。 (以下余白) 実AJに1 1表−2の組成で表される水媒法SE反応混合物から反
応溶媒を留去した残液を乳酪で中和後。 乾燥させた乾物100gに水2.000gを加えて溶解
させた。 この水溶液に1食塩を100gを加えて、80°Cまで
加熱、昇温させ、沈殿したケーキを濾別し、ケーキを得
た。なお、e液中にSEは若干の(計だけ含まれていた
。 (以下余白) 表 末エステル分lf5:モノエステル65%、ジエステル
以上は35%。 上のケーキに、常温塩酸水(pH3,8’) 2.00
0gを加えたところ、直ちにSEが白色沈殿として析出
した。 次いで、この沈殿を含む酸性の水溶液(p)!3.8)
をホモミキサー(前掲)で、充分攪拌した後、沈澱を癌
取した。この沈殿に、再び酢酪水を加えて再洗浄する操
作を二回行った後、苛性ソーダでpH7、5に調整後の
沈殿は、32%の固形分を含有し、その乾燥物は、下表
−3の組成を持っていた。なお洗液(i!!液)中には
少rl(なからSEが含まれていた。 回転円盤(ディスク)径: 10cmφ円盤回転数21
.000 rpm 入「」空気温度、55°C1 このスラリーを、 60℃に保ったまま ト噴霧乾燥塔へ供給し、噴霧乾燥した。 は、 噴霧乾燥塔の直径: 2.Omφ 直筒部の長さ: 1.5m パイロ7 乾燥条件 でめった。 噴霧乾燥塔の下部から得られた粉末状SEは、水分2.
1%、嵩比重0.46で、過熱による着色も無く、流動
性のよいものであった。 乾燥は安定して継続でき、ち初心配された、粉末が噴霧
乾燥塔の内部壁に付着する等のトラブルはみられなかっ
た。 なお、SE中のモノエステル礒は乾燥前後を通じ61%
と全く変化がなく、かつ、酸価にも変化がなかった。 実施例−2 実施例−1で得られた。固形分32.0%の沈殿ケーキ
(スラリー)を、55°Cの温度に保ちながら、入口空
気温度を60°C,スラリーの供給速度を0.8kg/
時に変えた点を除き、回倒と同様に噴霧乾燥した。 得られたSE粒粉末、水分1.8%、嵩比重0.41で
、流動性がよく、過熱による着色は皆無であった。なお
、SH中のモノエステル量は、61.0%と乾燥前後を
通じ変化なく、かつ酸価についても同様であった。 更に、噴霧乾燥塔の内壁部へのSE粒粉末付着も観察さ
れなかった。
Hereinafter, the embodiments and effects of the invention will be explained with reference to Examples, but the examples are of course for explanation and are not meant to illustrate the limitations or limitations of the idea of the invention. (Left space below) Actual AJ 1 1 After the reaction solvent was distilled off from the aqueous method SE reaction mixture represented by the composition in Table 2, the residual liquid was neutralized with dairy milk. 2.000 g of water was added to 100 g of the dried material to dissolve it. To this aqueous solution, 100 g of monosalt was added, heated to 80° C., and the precipitated cake was filtered to obtain a cake. In addition, only a small amount of SE was contained in the e-liquid. 8') 2.00
When 0 g was added, SE was immediately precipitated as a white precipitate. Next, an acidic aqueous solution (p) containing this precipitate! 3.8)
After thoroughly stirring the mixture using a homomixer (described above), the precipitate was removed. This precipitate was rewashed twice by adding vinegar and water, and the pH was adjusted to 7.5 with caustic soda. The precipitate contained 32% solids, and the dry matter was as shown in the table below. It had a composition of -3. The washing liquid (i!! liquid) contained a small amount of SE.Rotating disk (disk) diameter: 10cmφ disk rotation speed 21
.. 000 rpm, air temperature, 55° C. This slurry was supplied to a spray drying tower while being maintained at 60° C., and was spray-dried. is the diameter of the spray drying tower: 2. Omφ Length of straight cylinder part: 1.5m Pyro 7 Met under dry conditions. The powdered SE obtained from the bottom of the spray drying tower has a moisture content of 2.
1%, bulk specific gravity 0.46, no coloring due to overheating, and good fluidity. Drying continued stably, and there were no problems such as powder adhesion to the internal walls of the spray drying tower, which was initially a concern. Furthermore, the monoester content during SE was 61% before and after drying.
There was no change at all, and there was also no change in the acid value. Example-2 Obtained in Example-1. While maintaining a precipitation cake (slurry) with a solid content of 32.0% at a temperature of 55°C, the inlet air temperature was 60°C and the slurry feeding rate was 0.8 kg/
Spray drying was performed in the same manner as in the spin-down process, except that the time was changed. The obtained SE grain powder had a water content of 1.8%, a bulk specific gravity of 0.41, good fluidity, and no coloration due to overheating. The amount of monoester in SH was 61.0%, which remained unchanged before and after drying, and the same was true for the acid value. Furthermore, no SE grain powder was observed to adhere to the inner wall of the spray drying tower.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明は、溶媒を一切使用せずに水
媒法ショ糖脂肪酸エステル合成反応混合物から粉末状の
精製SEを工業的に生産するための一連の技術を開発し
たことにより、以下のような多大の効果を奏する。 (+)安価な水のみを用いてSHの精製が可能となるこ
と。 (2)SHの乾燥を、常圧下に短時間内に行うことがで
きるため、製品の熱劣化がないこと。 (3)溶剤の爆発、火災の心配がなく、従って、防爆仕
様の高価な電気装置も不要となること。 (4)溶媒が一切製品に混入する懸念がないこと。 (5)@場の衛生環境が向上すること。 (6)低費用で工業化できること。 特許出願人 第一工業製薬株式会社
As explained above, the present invention has developed a series of techniques for industrially producing purified SE in powder form from a reaction mixture for aqueous sucrose fatty acid ester synthesis without using any solvent. It has many effects such as: (+) It is possible to purify SH using only inexpensive water. (2) Since SH can be dried under normal pressure within a short period of time, there is no thermal deterioration of the product. (3) There is no need to worry about solvent explosion or fire, and therefore there is no need for expensive explosion-proof electrical equipment. (4) There is no concern that any solvent will be mixed into the product. (5) Improving the sanitary environment at @ba. (6) It can be industrialized at low cost. Patent applicant Daiichi Kogyo Seiyaku Co., Ltd.

Claims (1)

【特許請求の範囲】 1 目的物のショ糖脂肪酸エステルの他、未反応の糖、
未反応の脂肪酸メチルエステル、触媒、石鹸、及び脂肪
酸を含む水媒法ショ糖脂肪酸エステル合成反応混合物を
、中性領域のpHに調整し、中性塩を加えることにより
生じる沈殿物を酸性の水で洗浄し、この操作を反復して
中和後、噴霧乾燥することを特徴とする粉末状ショ糖脂
肪酸エステルの製造方法。 2 反応混合物の組成が、 未反応のショ糖=1.0〜80.0% 未反応の脂肪酸メチルエステル=0.5〜10.0% 触媒=0.05〜7.0% 石鹸=1.0〜80.0% 脂肪酸=0.5〜10.0% ショ糖脂肪酸エステル=15.0〜95% である請求項1記載の方法。 3 反応混合物が、pH6.2〜8.2に調整される請
求項1記載の方法。 4 pH調整後の反応混合物が、50〜80℃に加熱さ
れる請求項1記載の方法。 5 反応混合物に加えられる水と反応混合物の重量比が
、水:反応混合物=5:1〜40:1である請求項1記
載の方法。 6 反応混合物のpHの調整に使用される酸が、乳酸、
酢酸、塩酸及び硫酸からなる群から選ばれた酸のいずれ
かである請求項1又は3記載の方法。 7 反応混合物中の脂肪酸メチルエステル、石鹸及び脂
肪酸の夫々に主として含まれる脂肪酸根が、炭素数が1
6〜22の共通飽和脂肪酸根を持つ請求項1又は2記載
の方法。 8 反応混合物に加えられる中性塩が、食塩、芒硝、乳
酸カリウム及び酢酸カリウムからなる群から選ばれた塩
のいずれかである請求項1記載の方法。 9 ショ糖脂肪酸エステルのエステル分布が、モノエス
テル含分として、10〜75%(ジエステル以上が90
〜25%)である請求項1又は2記載の方法。 10 酸性の水のpH値が、3.0〜5.5である請求
項1記載の方法。 11 酸性の水の温度が、10〜40℃である請求項1
又は10記載の方法。 12 噴霧乾燥される沈殿のスラリー(泥漿)が、固形
分=4〜40%、水分=96〜60%のものである請求
項1記載の方法。 13 噴霧乾燥時の送風空気の湿度と温度が、絶対湿度
=0.008〜0.05(kg・水/kg・乾燥空気)
温度=10.0〜100.0℃ の範囲内に在る請求項1記載の方法。 14 製品の粉末状ショ糖脂肪酸エステルの組成が、下
記範囲内に在る請求項1記載の製法。 水分=0.5〜5.0% 未反応脂肪酸メチルエステル=0.5〜10.0% 石鹸=0.5〜60.0% 脂肪酸=0.5〜10.0% ショ糖脂肪酸エステル=98.0〜15.0%
[Claims] 1. In addition to the target sucrose fatty acid ester, unreacted sugar,
The aqueous sucrose fatty acid ester synthesis reaction mixture containing unreacted fatty acid methyl ester, catalyst, soap, and fatty acid was adjusted to a pH in the neutral range, and the precipitate produced by adding a neutral salt was dissolved in acidic water. 1. A method for producing a powdered sucrose fatty acid ester, which comprises washing with water, repeating this operation to neutralize it, and then spray-drying it. 2 The composition of the reaction mixture is: Unreacted sucrose = 1.0-80.0% Unreacted fatty acid methyl ester = 0.5-10.0% Catalyst = 0.05-7.0% Soap = 1. The method according to claim 1, wherein: 0-80.0% fatty acid = 0.5-10.0% sucrose fatty acid ester = 15.0-95%. 3. The method according to claim 1, wherein the reaction mixture is adjusted to a pH of 6.2 to 8.2. 4. The method according to claim 1, wherein the reaction mixture after pH adjustment is heated to 50-80°C. 5. The method according to claim 1, wherein the weight ratio of water added to the reaction mixture and the reaction mixture is water:reaction mixture = 5:1 to 40:1. 6 The acid used to adjust the pH of the reaction mixture is lactic acid,
4. The method according to claim 1, wherein the acid is any acid selected from the group consisting of acetic acid, hydrochloric acid and sulfuric acid. 7 The fatty acid radical mainly contained in each of the fatty acid methyl ester, soap, and fatty acid in the reaction mixture has a carbon number of 1.
3. A method according to claim 1 or 2, having from 6 to 22 common saturated fatty acid roots. 8. The method according to claim 1, wherein the neutral salt added to the reaction mixture is any salt selected from the group consisting of common salt, mirabilite, potassium lactate, and potassium acetate. 9 Ester distribution of sucrose fatty acid ester is 10 to 75% as monoester content (diester or more is 90%
25%). 10. The method according to claim 1, wherein the acidic water has a pH value of 3.0 to 5.5. 11. Claim 1, wherein the temperature of the acidic water is 10 to 40°C.
or the method described in 10. 12. The method according to claim 1, wherein the slurry of the precipitate to be spray dried has a solids content of 4 to 40% and a water content of 96 to 60%. 13 The humidity and temperature of the blown air during spray drying are absolute humidity = 0.008 to 0.05 (kg・water/kg・dry air)
The method according to claim 1, wherein the temperature is in the range of 10.0 to 100.0°C. 14. The manufacturing method according to claim 1, wherein the composition of the powdered sucrose fatty acid ester of the product is within the following range. Moisture = 0.5-5.0% Unreacted fatty acid methyl ester = 0.5-10.0% Soap = 0.5-60.0% Fatty acid = 0.5-10.0% Sucrose fatty acid ester = 98 .0~15.0%
JP28286588A 1988-11-09 1988-11-09 Production of powdery sucrose ester of fatty acid Pending JPH02129196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28286588A JPH02129196A (en) 1988-11-09 1988-11-09 Production of powdery sucrose ester of fatty acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28286588A JPH02129196A (en) 1988-11-09 1988-11-09 Production of powdery sucrose ester of fatty acid

Publications (1)

Publication Number Publication Date
JPH02129196A true JPH02129196A (en) 1990-05-17

Family

ID=17658084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28286588A Pending JPH02129196A (en) 1988-11-09 1988-11-09 Production of powdery sucrose ester of fatty acid

Country Status (1)

Country Link
JP (1) JPH02129196A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229910A (en) * 1990-10-02 1993-07-20 Abisare Co., Ltd. Billboard device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229910A (en) * 1990-10-02 1993-07-20 Abisare Co., Ltd. Billboard device

Similar Documents

Publication Publication Date Title
US4996309A (en) Process for preparing sucrose fatty acid ester powder
JPH0667953B2 (en) Method for producing powdery sucrose fatty acid ester
JP2000007651A (en) Production of aqueous solution of sodium methionate and use of the same solution for producing granule
US5017697A (en) Process for purifying sucrose fatty acid esters having high HLB
JPH02129196A (en) Production of powdery sucrose ester of fatty acid
JPH01305096A (en) Production of powdery fatty acid ester of sucrose
JP2648936B2 (en) Method for producing sucrose fatty acid ester
JPH029893A (en) Production of powdery sucrose ester of fatty acid
JPH01311092A (en) Preparation of powdery sucrose fatty acid ester
US5536435A (en) Process for making peroxyacid containing particles
JPH0873501A (en) Process for granulating and drying alkali salt of carboxymethyl cellulose ether
JP2688937B2 (en) Method for producing powdery sucrose fatty acid ester
JPH0256493A (en) Production of powdery ester of fatty acid with sucrose
US5463100A (en) Process for the preparation of aminoaryl β-sulfatoethyl sulfone compounds
JPH02295995A (en) Production of powdery high-hlb sucrose fatty acid ester
JPH01290691A (en) Method for drying water-containing saccharide fatty acid ester
JPH0314595A (en) Production of powdery high-hlb sucrose fatty acid ester
JPH0240392A (en) Production of powdery sucrose fatty acid ester
US4142059A (en) Spray drying sodium and potassium 2-ethylhexanoate
JPH02164889A (en) Production of powdery high-hlb sucrose fatty acid ester
JP2688930B2 (en) Method for producing powdery high HLB sucrose fatty acid ester
KR100346882B1 (en) Purification of sugar ester
JPH0219394A (en) Production of powdery high hlb sucrose fatty acid ester
JP2686966B2 (en) Method for recovering unreacted sugar in powder form from sucrose fatty acid ester synthesis reaction mixture
JPH01319491A (en) Production of powdery fatty ester of sucrose