[go: up one dir, main page]

JPH02129065A - Dielectric ceramic composition and its production - Google Patents

Dielectric ceramic composition and its production

Info

Publication number
JPH02129065A
JPH02129065A JP63284108A JP28410888A JPH02129065A JP H02129065 A JPH02129065 A JP H02129065A JP 63284108 A JP63284108 A JP 63284108A JP 28410888 A JP28410888 A JP 28410888A JP H02129065 A JPH02129065 A JP H02129065A
Authority
JP
Japan
Prior art keywords
phase
tio2
cao
ceramic composition
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63284108A
Other languages
Japanese (ja)
Inventor
Takashi Tsuboi
隆 坪井
Hitoshi Ueda
等 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Nippon Ferrite Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ferrite Ltd filed Critical Nippon Ferrite Ltd
Priority to JP63284108A priority Critical patent/JPH02129065A/en
Publication of JPH02129065A publication Critical patent/JPH02129065A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To reduce the dispersion of the permittivity and temperature coefficient and enable fine control of them by containing MgO, CaO and TiO2 as essential components and having a crystalline structure composed of the perovskite phase and the ilmenite phase. CONSTITUTION:The subject dielectric magnetic composition contains MgO, CaO and TiO2 and is composed of 2 phases: the ilmenite phase of MgTiO3 and the perovskite phase of CaTiO3. The composition is produced by calcinating individual raw materials separately for individual phases to effect uniform reaction, formulating them in a prescribed proportion, crushing, granulating, forming and calcinating. In addition to the above-stated 3 components, ZnO, Nd2O, La2O3 and PbO are added, to form complex perovskite phase consisting of CaO, TiO2, PbO, Nd2O3 and La2O3 and ilmenite phase of MgO, TiO2 and ZnO whereby another dielectric magnetic composition is obtained from the seven components in a similar way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はマイクロ波用回路素子、マイクロ波回路基盤な
どに用いられる誘電体材料に係り、金属酸化物を焼成し
て得られる高誘電率で誘電損失が小さく、誘電率の温度
係数の小さい誘電体磁器組成物に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to dielectric materials used in microwave circuit elements, microwave circuit boards, etc. The present invention relates to a dielectric ceramic composition with low dielectric loss and low temperature coefficient of dielectric constant.

(従来の技術) 近年、マイクロ波回路技術の進歩に伴い、回路の小型化
が図られている。
(Prior Art) In recent years, with advances in microwave circuit technology, circuits have been made smaller.

従来から、このマイクロ波周波数帯(300MHz〜3
0GHz)の回路には、空胴共振器、アンテナなどが用
いられて来たが、これらはマイクロ波の波長と同程度の
大きさになるため回路の小型化には不向きであった。こ
れに対し、近年、マイクロ波周波数帯で使用される誘電
体共振器を用いたマイクロ波フィルタ、発振器の周波数
安定化を計るための小型誘電体共振器、マイクロ波IC
用のコンデンサや基盤等に用いられる誘電体磁器等、マ
イクロ波回路に誘電体磁器を用いて回路の小型化を図る
応用がなされている。これらの磁器に要求される特性は
、マイクロ波周波数帯での誘電損失が小さく、使用周波
帯に適した高い誘電率をもち、誘電率の温度係数が小さ
い事である。
Conventionally, this microwave frequency band (300MHz to 3
Cavity resonators, antennas, and the like have been used in circuits of 0 GHz), but these are not suitable for miniaturizing circuits because their size is about the same as the wavelength of microwaves. In contrast, in recent years, microwave filters using dielectric resonators used in the microwave frequency band, small dielectric resonators for stabilizing the frequency of oscillators, and microwave ICs have been developed.
Dielectric porcelain is used in microwave circuits, such as dielectric porcelain used in capacitors and substrates, to reduce the size of the circuit. The characteristics required of these ceramics are that they have low dielectric loss in the microwave frequency band, a high dielectric constant suitable for the frequency band used, and a small temperature coefficient of dielectric constant.

従来からこれらの特性を満足する磁器材料として、Ti
e、系のものがよく使用されており、特にBa0−Ti
O,系磁器、およびその一部を他の元素で置換した磁器
、更に誘電率の温度係数を調整するために、負の温度係
数をもっているTie、と正の温度係数をもっている誘
電体磁器やガラスと組合わせたものが多数考案され応用
されて来た。
Ti has traditionally been used as a porcelain material that satisfies these characteristics.
e, type is often used, especially Ba0-Ti
In order to adjust the temperature coefficient of dielectric constant, Tie, which has a negative temperature coefficient, and dielectric porcelain and glass, which have a positive temperature coefficient, are available. Many combinations have been devised and applied.

(発明が解決しようとする問題点) 従来の誘電体材料では、主相以外の結晶構造を持つ別の
相は、誘電損失を増加させる要因として。
(Problems to be Solved by the Invention) In conventional dielectric materials, another phase with a crystal structure other than the main phase is a factor that increases dielectric loss.

極力含まないように構成する傾向にあった。There was a tendency to structure the structure so as to not include it as much as possible.

このため、従来の誘電体材料の温度係数(τf)は、そ
の主相のもつ特有の温度係数によりほぼ決定されるため
、自由な温度係数を得ることが困難であった。
For this reason, the temperature coefficient (τf) of conventional dielectric materials is almost determined by the unique temperature coefficient of its main phase, making it difficult to obtain a free temperature coefficient.

また、製造工程において、全ての素原料を同時に混合か
ら焼成まで処理することにより、互いに固溶し合わない
結晶構造が、工程上の微妙な要因により、特性のバラツ
キを生じさせるといった問題があった。
Additionally, in the manufacturing process, all raw materials are processed at the same time from mixing to firing, resulting in crystal structures that do not dissolve into each other, resulting in variations in properties due to subtle process factors. .

本発明は、上記のことを鑑みて、特性のバラツキの少な
い誘電体磁器組成物及びその製造方法を提供することを
目的とする。
In view of the above, an object of the present invention is to provide a dielectric ceramic composition with less variation in properties and a method for manufacturing the same.

(問題点を解決するための手段) 発明者らは1種々の組成系について検討した結果、少な
くともMgO,CaO,TiO2を含む誘電体磁器組成
物であって、結晶構造がペロブスカイト相とイルメナイ
ト相との2相よりなる誘電体磁器組成物が、誘1!率、
温度係数のバラツキが少なく、かつそれらの絶対値を細
かく制御できる組成物であること、またM g O、C
a 0 、71’ i 0、、ZnO,Nd、03.L
a20.、PbOの7成分系よりなる誘電体磁器組成物
であって、結晶構造がペロブスカイト相とイルメナイト
相との2相よりなる誘電体磁器組成物が、誘電率、温度
係数のバラツキが少なく、かつそれらの絶対値を細かく
制御できる組成物であること、また上記2つの組成物に
おいて、製造時、結晶構造の異なる相を構成する成分を
別々に秤量、混合、仮焼した後。
(Means for Solving the Problems) As a result of studying various composition systems, the inventors found that a dielectric ceramic composition containing at least MgO, CaO, and TiO2 has a crystal structure consisting of a perovskite phase and an ilmenite phase. A dielectric ceramic composition consisting of two phases is dielectric 1! rate,
The composition must have little variation in temperature coefficients and its absolute value can be finely controlled, and M g O, C
a 0 , 71' i 0, , ZnO, Nd, 03. L
a20. , a dielectric ceramic composition consisting of a seven-component system of PbO, the dielectric ceramic composition having a two-phase crystal structure of a perovskite phase and an ilmenite phase, which has small variations in dielectric constant and temperature coefficient, and It is a composition that allows fine control of the absolute value of

所定の割合で調合、粉砕、造粒、成形、焼成する製造方
法が、誘電率、温度係数のバラツキが少なく、かつそれ
らの絶対値を細かく制御できる製造方法であることを見
出した。
It has been found that a manufacturing method that involves blending, pulverizing, granulating, molding, and firing in a predetermined ratio is a manufacturing method that has little variation in dielectric constant and temperature coefficient, and allows fine control of their absolute values.

(作用) MgO,CaO,TiO2を有する組成系では、イオン
半径の違いにより、MgTiO3のイルメナイト相とC
a T i O3のペロブスカイト相の混晶相となるこ
とは周知の事実である。ところが。
(Function) In a composition system containing MgO, CaO, and TiO2, due to the difference in ionic radius, the ilmenite phase of MgTiO3 and the C
It is a well-known fact that the perovskite phase of a T i O3 is a mixed crystal phase. However.

実際の組成物では、各々の結晶相が、互いに全く固溶せ
ず分離している訳でなく、素原料の粉体特性、製造工程
中の混合、仮焼、粉砕、焼成条件により、本来固溶しな
い元素、例えばCaイオンが、MgTi−o、の結晶格
子に、また、Mgイオンが。
In actual compositions, each crystalline phase does not form a solid solution with each other and is not separated from each other, but may vary depending on the powder characteristics of the raw materials and the mixing, calcination, pulverization, and firing conditions during the manufacturing process. Insoluble elements, such as Ca ions, are present in the crystal lattice of MgTi-O, and Mg ions are present in the crystal lattice of MgTi-O.

Ca T i O,の結晶格子に入り、格子欠陥となっ
ている。この格子欠陥は、材料特性、特に誘電損失(1
/janδ6)のバラツキの要因の一つとなっている。
It enters the crystal lattice of CaT i O, and becomes a lattice defect. This lattice defect affects material properties, especially dielectric loss (1
/janδ6) is one of the causes of variation.

従って、本発明では、積極的に混晶相とし、格子欠陥を
極力無くし、誘電損失のバラツキを小さクシ、更にCa
 T i○3系が正の温度係数、MgTie、系が負の
温度係数を持つことから、両者の混合比を適宜選択する
ことにより、所望の温度係数を持つ誘電体磁器組成物を
構成できる。
Therefore, in the present invention, we actively create a mixed crystal phase, eliminate lattice defects as much as possible, reduce the variation in dielectric loss, and further improve Ca
Since the Ti○3 system has a positive temperature coefficient and the MgTie system has a negative temperature coefficient, by appropriately selecting the mixing ratio of both, a dielectric ceramic composition having a desired temperature coefficient can be constructed.

また、MgO,CaO,TiO2、ZnO,Nd2O3
,La、O,、PbOの7成分系では、Ca OHT 
l 02.P b Og N d203+ L a20
.が複合ペロブスカイト相を形成し、MgO,I’ i
 0、、ZnOが、イルメナイト相を形成しており、上
記と同様の事が言える。
Also, MgO, CaO, TiO2, ZnO, Nd2O3
, La, O, , PbO, in the seven-component system, Ca OHT
l 02. P b Og N d203+ L a20
.. forms a composite perovskite phase, and MgO,I' i
0, ZnO forms an ilmenite phase, and the same thing as above can be said.

また、この各々の相となる素原料を別に仮焼し、均一に
反応させた後調合、粉砕することにより、不要な格子欠
陥を容易に減少させることが出来。
In addition, unnecessary lattice defects can be easily reduced by calcining the raw materials for each phase separately, allowing them to react uniformly, and then blending and pulverizing them.

lW誘電損失低下させることが出来る。It is possible to reduce the dielectric loss by 1W.

(実施例) 以下本発明を実施例に従って説明する。(Example) The present invention will be explained below according to examples.

試料を作成するための出発原料は、95〜99.9%以
上の高純度のMgO,CaC0,、Tie、、 Nd、
O,、ZnO。
The starting materials for preparing the samples are MgO, CaC0, Tie, Nd, with a high purity of 95 to 99.9% or more.
O,, ZnO.

しa203+ pboの粉末を用いた。もちろん、素原
料は、酸化物に限定されるものでなく、焼成時に酸化物
となる硝酸塩、炭酸塩、有機酸塩等でも良い。上記出発
原料を所定の各組成になる様に秤量し、ボールミルに純
水とともに投入し湿式混合を行った。
Shia203+ pbo powder was used. Of course, the raw materials are not limited to oxides, and may also be nitrates, carbonates, organic acid salts, etc. that become oxides during firing. The above-mentioned starting materials were weighed so as to have each predetermined composition, and put into a ball mill together with pure water for wet mixing.

この混合物を熱風乾燥器で乾燥させた後、空気巾約10
00℃で4時間仮焼し、得られた仮焼粉末を所定の割合
で再びボールミルに純水とともに投入し湿式粉砕を行っ
た。この粉砕物を乾燥し、バインダ水溶液を添加混練し
て、ふるいにより整粒後、l ton/ci+2の圧力
で成形し、1200℃〜1450℃で2時間空気中で焼
成を行なった。その後、直径10mm。
After drying this mixture in a hot air dryer, an air width of about 10
The powder was calcined at 00°C for 4 hours, and the resulting calcined powder was again put into a ball mill together with pure water at a predetermined ratio for wet pulverization. This pulverized material was dried, an aqueous binder solution was added and kneaded, and the particles were sized using a sieve, then molded at a pressure of 1 ton/ci+2, and fired in air at 1200 DEG C. to 1450 DEG C. for 2 hours. Then the diameter is 10mm.

高さ5m@の円柱に加工し、円柱誘電体共振器を構成し
て、共振周波数(約6GHz)より、誘電率(εr)、
誘電体損失(janδE)を求めた。
It is processed into a cylinder with a height of 5 m @ to configure a cylindrical dielectric resonator, and from the resonance frequency (about 6 GHz), the dielectric constant (εr),
Dielectric loss (janδE) was determined.

また、−20℃〜+60℃での共振周波数の変化より、
温度係数(τf〔ρpm/’C))を求めた。
Also, from the change in resonance frequency between -20℃ and +60℃,
The temperature coefficient (τf[ρpm/'C)) was determined.

第1表に、本発明で得られた試料の特性結果を示す、こ
の表中で傘印を付した試料は従来の製造工程にて得た試
料である。また、第1図に1本発明で得られた試料の自
由焼成面、第2図に、そのラッピング面のSEM観察写
真を示す、この第2図において、黒く見えるものがイル
メナイト相であり、白く見えるのものがペロブスカイト
相である。
Table 1 shows the characteristic results of the samples obtained by the present invention. In this table, the samples marked with an umbrella mark are samples obtained by the conventional manufacturing process. In addition, Fig. 1 shows a free firing surface of a sample obtained by the present invention, and Fig. 2 shows an SEM observation photograph of its lapping surface. In Fig. 2, what appears black is the ilmenite phase, and the white What you can see is the perovskite phase.

この第1表の試料1’−1〜1−5と試料6−1〜6−
5とを比較してみると、本発明の実施例である試料1−
1〜1−5の方が誘電率、誘電損失、温度係数ともバラ
ツキが少ないことが分かる。
Samples 1'-1 to 1-5 and samples 6-1 to 6- of this Table 1
Sample 1-5, which is an example of the present invention, is compared with Sample 1-5.
It can be seen that samples 1 to 1-5 have less variation in dielectric constant, dielectric loss, and temperature coefficient.

(発明の効果) 以上のように、本発明により、特性(誘電率1、誘電損
失、温度係数等)のバラツキが少なく、かつそれらの絶
対値を細かく制御できる誘電体磁器組成物及びその製造
方法を得ることが出来たものである。
(Effects of the Invention) As described above, the present invention provides a dielectric ceramic composition with little variation in properties (permittivity 1, dielectric loss, temperature coefficient, etc.) and whose absolute values can be precisely controlled, and a method for producing the same. This is what I was able to obtain.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明で得られた試料の自由焼成面のSEM
観察写真であり、第2図は、そのラッピング面のSEM
観察写真である。
Figure 1 is an SEM of the free firing surface of the sample obtained by the present invention.
This is an observation photograph, and Figure 2 is an SEM of the wrapping surface.
This is an observation photo.

Claims (3)

【特許請求の範囲】[Claims] 1.少なくともMgO,CaO,TiO_2を含む誘電
体磁器組成物であって、結晶構造がペロブスカイト相と
イルメナイト相との2相よりなることを特徴とする誘電
体磁器組成物。
1. A dielectric ceramic composition containing at least MgO, CaO, and TiO_2, characterized in that its crystal structure consists of two phases: a perovskite phase and an ilmenite phase.
2.MgO,CaO,TiO_2,ZnO,Nd_2O
_3,La_2O_3,PbOの7成分系よりなる誘電
体磁器組成物であって、結晶構造がペロブスカイト相と
イルメナイト相との2相よりなることを特徴とする誘電
体磁器組成物。
2. MgO, CaO, TiO_2, ZnO, Nd_2O
A dielectric ceramic composition comprising a seven-component system of _3, La_2O_3, and PbO, the dielectric ceramic composition having a crystal structure consisting of two phases: a perovskite phase and an ilmenite phase.
3.特許請求の範囲第1項又は第2項において、製造時
、結晶構造の異なる相を構成する成分を別々に秤量、混
合、仮焼した後、所定の割合で調合、粉砕、造粒、成形
、焼成したことを特徴とする誘電体磁器組成物の製造方
法。
3. In claim 1 or 2, during manufacturing, components constituting phases with different crystal structures are separately weighed, mixed, and calcined, and then blended in a predetermined ratio, pulverized, granulated, molded, A method for producing a dielectric ceramic composition, characterized in that it is fired.
JP63284108A 1988-11-09 1988-11-09 Dielectric ceramic composition and its production Pending JPH02129065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63284108A JPH02129065A (en) 1988-11-09 1988-11-09 Dielectric ceramic composition and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63284108A JPH02129065A (en) 1988-11-09 1988-11-09 Dielectric ceramic composition and its production

Publications (1)

Publication Number Publication Date
JPH02129065A true JPH02129065A (en) 1990-05-17

Family

ID=17674302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63284108A Pending JPH02129065A (en) 1988-11-09 1988-11-09 Dielectric ceramic composition and its production

Country Status (1)

Country Link
JP (1) JPH02129065A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340784A (en) * 1992-08-03 1994-08-23 Ngk Spark Plug Company, Ltd. Microwave dielectric ceramic composition
US5457076A (en) * 1993-08-19 1995-10-10 Ngk Spark Plug Co., Ltd. Microwave dielectric ceramic composition and preparing method thereof
US5939344A (en) * 1997-11-06 1999-08-17 Ngk Spark Plug Co., Ltd. Microwave dielectric porcelain composition
US5977005A (en) * 1997-05-29 1999-11-02 Ngk Spark Plug Co., Ltd. Microwave dielectric porcelain composition
KR100419868B1 (en) * 2001-05-14 2004-02-25 한국과학기술연구원 Method for Preparing Dielectric Ceramic for Low Temperature Co-fired Ceramic Substrate
JP2005154263A (en) * 2003-10-30 2005-06-16 Kyocera Corp Discharge plasma cleaning device
JP2005158675A (en) * 2003-10-30 2005-06-16 Kyocera Corp Plasma processing equipment
CN110143814A (en) * 2019-06-27 2019-08-20 无锡鑫圣慧龙纳米陶瓷技术有限公司 A kind of intermediary's temperature-stable microwave-medium ceramics and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115704A (en) * 1981-01-12 1982-07-19 Matsushita Electric Ind Co Ltd Temperature compensating dielectric porcelain composition
JPS6114169A (en) * 1984-06-27 1986-01-22 京セラ株式会社 porcelain composition
JPS63141205A (en) * 1986-12-04 1988-06-13 太陽誘電株式会社 Dielectric ceramic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115704A (en) * 1981-01-12 1982-07-19 Matsushita Electric Ind Co Ltd Temperature compensating dielectric porcelain composition
JPS6114169A (en) * 1984-06-27 1986-01-22 京セラ株式会社 porcelain composition
JPS63141205A (en) * 1986-12-04 1988-06-13 太陽誘電株式会社 Dielectric ceramic

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340784A (en) * 1992-08-03 1994-08-23 Ngk Spark Plug Company, Ltd. Microwave dielectric ceramic composition
US5457076A (en) * 1993-08-19 1995-10-10 Ngk Spark Plug Co., Ltd. Microwave dielectric ceramic composition and preparing method thereof
US5977005A (en) * 1997-05-29 1999-11-02 Ngk Spark Plug Co., Ltd. Microwave dielectric porcelain composition
US5939344A (en) * 1997-11-06 1999-08-17 Ngk Spark Plug Co., Ltd. Microwave dielectric porcelain composition
KR100419868B1 (en) * 2001-05-14 2004-02-25 한국과학기술연구원 Method for Preparing Dielectric Ceramic for Low Temperature Co-fired Ceramic Substrate
JP2005154263A (en) * 2003-10-30 2005-06-16 Kyocera Corp Discharge plasma cleaning device
JP2005158675A (en) * 2003-10-30 2005-06-16 Kyocera Corp Plasma processing equipment
CN110143814A (en) * 2019-06-27 2019-08-20 无锡鑫圣慧龙纳米陶瓷技术有限公司 A kind of intermediary's temperature-stable microwave-medium ceramics and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2023093221A1 (en) Preparation method for high-stability low-loss microwave dielectric ceramic material, and microwave dielectric ceramic material prepared by applying same
JPH02129065A (en) Dielectric ceramic composition and its production
JP3974723B2 (en) Dielectric porcelain manufacturing method
CN105272213A (en) High-dielectric low-loss microwave dielectric ceramic material and preparation method thereof
CN111377710A (en) Microwave dielectric ceramic material and preparation method of dielectric ceramic block
JPH05109318A (en) Dielectric porcelain for microwave
JPH0625023B2 (en) High frequency dielectric ceramic composition
US4752594A (en) Dielectric ceramic
JPS62170102A (en) Dielectric ceramic and making thereof
DE69803623T2 (en) Dielectric ceramics
JPH11130544A (en) Dielectric porcelain composition and method for producing the same
JP2002187771A (en) Dielectric porcelain and dielectric resonator using the same
JP3194994B2 (en) Method for controlling dielectric properties of dielectric ceramic composition
CN111377711A (en) Microwave dielectric ceramic material, dielectric ceramic block and microwave communication equipment
JP2617938B2 (en) Manufacturing method of dielectric resonator material
JP4959043B2 (en) Dielectric porcelain composition, method for producing the same, and dielectric resonator
JP2687287B2 (en) Dielectric ceramic composition for microwave and method for producing the same
JPH0873266A (en) Production of dielectric ceramic
JP2687288B2 (en) Dielectric ceramic composition for microwave and method for producing the same
JPS63112449A (en) Manufacture of composite dielectric ceramics
JPH0971457A (en) Dielectric porcelain composition for high-frequency wave
JPS63292507A (en) Manufacture of dielectric resonator material
JPS62283862A (en) Dielectric ceramic composition for microwave
JPH02239150A (en) Dielectric ceramics for microwave
JP3340019B2 (en) High frequency dielectric ceramic composition