JPH0212898A - Manufacture of radio wave absorber - Google Patents
Manufacture of radio wave absorberInfo
- Publication number
- JPH0212898A JPH0212898A JP16404388A JP16404388A JPH0212898A JP H0212898 A JPH0212898 A JP H0212898A JP 16404388 A JP16404388 A JP 16404388A JP 16404388 A JP16404388 A JP 16404388A JP H0212898 A JPH0212898 A JP H0212898A
- Authority
- JP
- Japan
- Prior art keywords
- fibers
- woven cloth
- polymer fibers
- sheets
- conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は広帯域の電波障害を防止する例えば電波暗室用
等の電波吸収体の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a radio wave absorber for use in an anechoic chamber, for example, for preventing broadband radio interference.
(従来の技術)
従来、この種の広帯域の電波吸収体用材料としては、発
泡ポリウレタンに粉末状炭素を分散させたものがよく知
られており、それ以外のものはほとんど知られていない
。発泡ポリウレタンに粉末状炭素を分散させた材料を使
用した電波吸収体には、いわゆるピラミッド型、クサビ
型および多層型と呼ばれているものがある。それらは、
要求される周波数帯域あるいは要求される吸収特性に応
じて、その厚さ、形状あるいは含有する粉末状炭素の含
有量が適切に設計されて利用されている。(Prior Art) Conventionally, as a material for this kind of broadband radio wave absorber, one in which powdered carbon is dispersed in polyurethane foam is well known, and other materials are hardly known. Radio wave absorbers made of foamed polyurethane with powdered carbon dispersed therein include so-called pyramid-shaped, wedge-shaped, and multilayered radio wave absorbers. They are,
The thickness, shape, and content of powdered carbon contained therein are appropriately designed and used depending on the required frequency band or required absorption characteristics.
一方、導電性繊維は織物の薄いシート状で電波シールド
材に利用される例がある。On the other hand, there are examples of conductive fibers being used in radio wave shielding materials in the form of thin sheets of textiles.
(発明が解決しようとする問題点)
ポリウレタンに粉末状炭素を分散させた広帯域の電波吸
収体は機械的強度が弱く、施工後、その形状が変化する
こと、ポリウレタンが欠は落ちること、炭素粉末が抜は
落ちることなどの欠点があった。(Problems to be solved by the invention) A broadband radio wave absorber made by dispersing powdered carbon in polyurethane has weak mechanical strength, its shape changes after construction, the polyurethane chips often fall off, and carbon powder There were drawbacks such as the lack of performance.
(問題点を解決するための手段)
本発明はニッケル、銅などの金属をメッキした導電性高
分子繊維と熱軟化性繊維を含む非導電性の高分子繊維か
らなる不織布を積層し、加熱することによって、熱軟化
性繊維を軟化させ、積層間あるいは不織布シート内で、
相互に繊維のネットワークを形成し、冷却後接合させて
製造するものである。(Means for Solving the Problems) The present invention laminates and heats non-woven fabrics made of conductive polymer fibers plated with metals such as nickel and copper and non-conductive polymer fibers including heat-softening fibers. By softening the heat-softening fibers, between the laminations or within the nonwoven sheet,
It is manufactured by forming a network of fibers with each other and joining them after cooling.
(作用)
本発明の電波吸収体は前記した製造方法をとることによ
って、従来の発泡ポリウレタン材料のものよりも機械的
強度が圧倒的に強く、繊維のみを使用するため材料の抜
は落ちが極めて少なく、さらには実効的長さをもつ導電
性高分子繊維がある確率で接しながら分散されているの
で電流損失が大きく、電波吸収特性も良好となる効果が
ある。(Function) By using the manufacturing method described above, the radio wave absorber of the present invention has overwhelmingly stronger mechanical strength than that of conventional foamed polyurethane materials, and since only fibers are used, material removal is extremely difficult. Since the conductive polymer fibers having a small number of effective lengths are dispersed while being in contact with each other with a certain probability, the current loss is large and the radio wave absorption characteristics are also improved.
(実施例)
ニッケルをメッキした導電性高分子繊維と非導電性の熱
軟化性ポリエステル繊維および難燃性の高分子繊維を所
定の重量秤りとり、手動でセットした後、ベルト送りし
、混綿(繊維をほぐす工程)と不織布化(繊維を少しず
つ送り出してシート化する工程)と積層化のできる通常
の自動機を使用して不織布1の積層体を製造した。次に
その積層体を加熱して接合した(第1図)。一方、積層
体を60cmの正方形に切り抜き、その積層体の厚さを
考慮して別の60cm正方形より大きい目の別の不織布
を用意し、それを積層体の上下に1枚づつ置き、端部2
を加圧し、加熱して圧着した(第2図)。(Example) Conductive polymer fibers plated with nickel, non-conductive heat-softening polyester fibers, and flame-retardant polymer fibers were weighed and set manually, then conveyed with a belt and blended. A laminate of nonwoven fabric 1 was manufactured using a normal automatic machine capable of (a process of loosening the fibers), forming into a nonwoven fabric (a process of feeding out fibers little by little to form a sheet), and laminating. Next, the laminate was heated and bonded (FIG. 1). On the other hand, cut out a 60cm square from the laminate, take into account the thickness of the laminate, prepare another piece of nonwoven fabric with a larger mesh than the other 60cm square, place one on the top and bottom of the laminate, and cut out the edges. 2
was pressurized, heated, and crimped (Fig. 2).
本実施例では導電性高分子繊維の混率を1%と一定にし
、不織布の積層体の厚さを10cmにし、単位面積当た
りの積層体の重量(目付と称す)を2.000gr/m
2にし、加熱条件を130°C−30分とした。そして
、熱軟化性のポリエステル繊維の含量をかえて、第1表
に示す試料を作製した。端面処理をしないものは試料記
号Aで示し、端面処理をしたものは試料記号Bで示す。In this example, the blending ratio of conductive polymer fibers was kept constant at 1%, the thickness of the nonwoven fabric laminate was 10 cm, and the weight of the laminate per unit area (referred to as basis weight) was 2.000 gr/m.
2, and the heating conditions were 130°C for 30 minutes. Then, samples shown in Table 1 were prepared by changing the content of heat-softening polyester fiber. Samples without edge treatment are indicated by sample symbol A, and samples with edge treatment are indicated by sample symbol B.
また端面処理のため積層体の上下に使用した不織布は目
付が80gr1m2で厚さ4mmで熱軟化性ポリエステ
ル繊維の含量は積層体と同組成とした。またこれらの試
料には不織布表面および垂直面に1cmの正方形の板を
エポキシ樹脂で貼り付け、引張り強度を各5回づつ測定
した。同じ測定を従来の発泡ポリウレタン製のピラミッ
ド型吸収体についても実施した。それらの測定値を最大
、最小値で第1表に示す。The nonwoven fabrics used on the top and bottom of the laminate for edge treatment had a basis weight of 80 gr 1 m 2 , a thickness of 4 mm, and the content of heat-softening polyester fibers was the same as that of the laminate. In addition, 1 cm square plates were attached to the surface of the nonwoven fabric and the vertical plane of these samples using epoxy resin, and the tensile strength was measured five times each. The same measurements were carried out on a conventional foamed polyurethane pyramid-shaped absorbent body. The measured values are shown in Table 1 with maximum and minimum values.
また、これらの電波吸収体を通常のアーチ法で、垂直入
射波に対し、3GHzから18GHzの電波吸収特性を
測定し、その平均値を出した。試料記号A−1からA−
4およびB−1からB−4までは反射量は一20±4d
Bの範囲であったが、A−5は一15dB、 B−5は
一14dBであった。In addition, the radio wave absorption characteristics of these radio wave absorbers from 3 GHz to 18 GHz were measured for vertically incident waves using the normal arch method, and the average value was calculated. Sample code A-1 to A-
4 and B-1 to B-4, the reflection amount is -20±4d
A-5 was -15 dB, and B-5 was -14 dB.
第1表
(発明の効果)
以上説明したように、本発明は従来の発泡ポリウレタン
を使用したピラミッド型と比較し、機械強度が強く、従
来最大の欠点とされていた、材料が欠は落ちたり、抜は
落ちたりすることを大巾に改善したものである。さらに
端面処理をした物では、それらの現象は皆無といえる。Table 1 (Effects of the Invention) As explained above, the present invention has higher mechanical strength than the conventional pyramid type using foamed polyurethane, and does not suffer from chipping of the material, which was considered the biggest drawback in the past. , Nuki is a big improvement over falling. Moreover, it can be said that these phenomena do not occur at all in products that have undergone edge treatment.
また、これらの本発明の吸収体はより強度を必要とする
場合あるいはより難燃性を必要とする場合等、必要に応
じて設計できる。また吸収体としての特性に関しては不
織布積層体の積層構造、厚さ、形状を設計することで種
々の用途に応じて対応できる。Further, these absorbers of the present invention can be designed as required, such as when higher strength or flame retardance is required. Furthermore, the properties as an absorbent material can be adapted to various uses by designing the laminated structure, thickness, and shape of the nonwoven fabric laminate.
最後に、実施例では導電性高分子繊維にはニッケルメッ
キをしたもの、熱軟化性高分子繊維にはポリエステルを
使用した場合にのみ記述したが、本発明の性質上、何ら
これにとられれることなく、他の同効果をもっと考えら
れる材料を使用しても本発明と同等の効果が得られるこ
とは明白である。Finally, in the examples, only the cases where nickel plating was used for the conductive polymer fibers and polyester were used for the heat-softening polymer fibers were described, but due to the nature of the present invention, there is no limitation to this. It is clear that the same effect as the present invention can be obtained even if other materials that are more likely to have the same effect are used.
第1図および第2図は本発明の構造図を示す。
なお、図において、1・・・不織布、2・・・加熱圧着
した端部である。1 and 2 show structural diagrams of the present invention. In addition, in the figure, 1... nonwoven fabric, 2... end portion bonded by heat and pressure.
Claims (1)
維を含む非導電性の高分子繊維とからなる不織布を積層
し、加熱接合することを特徴とする電波吸収体の製造方
法。(1) A method for producing a radio wave absorber, which comprises laminating nonwoven fabrics made of conductive polymer fibers plated with metal and non-conductive polymer fibers containing heat-softening fibers and bonding them together by heating.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16404388A JPH0212898A (en) | 1988-06-29 | 1988-06-29 | Manufacture of radio wave absorber |
EP89100020A EP0323826B1 (en) | 1988-01-05 | 1989-01-02 | Electromagnetic wave absorber |
DE68928378T DE68928378T2 (en) | 1988-01-05 | 1989-01-02 | Absorber for electromagnetic radiation |
US07/293,495 US5081455A (en) | 1988-01-05 | 1989-01-04 | Electromagnetic wave absorber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16404388A JPH0212898A (en) | 1988-06-29 | 1988-06-29 | Manufacture of radio wave absorber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0212898A true JPH0212898A (en) | 1990-01-17 |
Family
ID=15785718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16404388A Pending JPH0212898A (en) | 1988-01-05 | 1988-06-29 | Manufacture of radio wave absorber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0212898A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6080356A (en) * | 1994-08-26 | 2000-06-27 | Nippondenso Co., Ltd. | Cordierite honeycomb structure and process for producing the same |
US6429533B1 (en) * | 1999-11-23 | 2002-08-06 | Bourns Inc. | Conductive polymer device and method of manufacturing same |
US6521829B2 (en) | 1999-03-25 | 2003-02-18 | Japan Science And Technology Corporation | Electromagnetic wave absorbing sheet |
JP2004247720A (en) * | 2003-01-22 | 2004-09-02 | Toray Ind Inc | Wave absorber |
-
1988
- 1988-06-29 JP JP16404388A patent/JPH0212898A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6080356A (en) * | 1994-08-26 | 2000-06-27 | Nippondenso Co., Ltd. | Cordierite honeycomb structure and process for producing the same |
US6521829B2 (en) | 1999-03-25 | 2003-02-18 | Japan Science And Technology Corporation | Electromagnetic wave absorbing sheet |
US6429533B1 (en) * | 1999-11-23 | 2002-08-06 | Bourns Inc. | Conductive polymer device and method of manufacturing same |
JP2004247720A (en) * | 2003-01-22 | 2004-09-02 | Toray Ind Inc | Wave absorber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58169997A (en) | Radio wave absorber | |
CN112436286A (en) | Frequency band adjustable flexible multilayer wave-absorbing material and preparation method thereof | |
JPH09158024A (en) | Liquid absorber and method for manufacturing the same | |
US6061011A (en) | Nonflammable radio wave absorber | |
EP0985756B1 (en) | Woven glass fabrics and laminate for printed wiring boards | |
JP4716348B2 (en) | Radio wave absorber | |
JPH0212898A (en) | Manufacture of radio wave absorber | |
CN115821643B (en) | Absorbent gradient-distributed wave-absorbing honeycomb and preparation method thereof | |
JP2000277973A (en) | Ferrite containing fiber and manufacture thereof | |
JP2016157814A (en) | Electromagnetic wave absorber | |
CN113183548A (en) | Conical array type radar stealth textile material and preparation method thereof | |
JP3869147B2 (en) | Electromagnetic wave absorbing sheet | |
CN108638619B (en) | Impact-resistant electromagnetic shielding laminated board and preparation method and application thereof | |
JP2006080502A (en) | Electromagnetic wave absorbing sheet | |
EP0933984B1 (en) | Electromagnetic wave shielding sheet | |
JP6089625B2 (en) | Sheet material for radio wave absorber and radio wave absorber using the same | |
JPH0212899A (en) | Manufacture of non-woven cloth for radio wave absorber | |
JP2917271B2 (en) | Radio wave absorber | |
JP4226140B2 (en) | Non-combustible radio wave absorbing felt and felt with composite panel and metal foil | |
JP5469388B2 (en) | Coiled conductive yarn, radio wave absorber, and radio wave absorption structure | |
JPH0319300A (en) | Electromagnetic wave shielding material | |
CN117565493A (en) | Wave-absorbing material based on unordered distribution of chopped wave-absorbing fibers and preparation method thereof | |
CN206141034U (en) | Fine quilt of environmental protection radioresistance magnetism | |
JP3180588B2 (en) | Radio wave absorber | |
JP2004247720A (en) | Wave absorber |