JPH0212017A - Detector for detecting position of averaged diffraction moire - Google Patents
Detector for detecting position of averaged diffraction moireInfo
- Publication number
- JPH0212017A JPH0212017A JP16305288A JP16305288A JPH0212017A JP H0212017 A JPH0212017 A JP H0212017A JP 16305288 A JP16305288 A JP 16305288A JP 16305288 A JP16305288 A JP 16305288A JP H0212017 A JPH0212017 A JP H0212017A
- Authority
- JP
- Japan
- Prior art keywords
- diffraction
- grating
- light
- moiré
- diffraction grating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006073 displacement reaction Methods 0.000 claims abstract description 22
- 230000003287 optical effect Effects 0.000 claims description 22
- 238000012935 Averaging Methods 0.000 claims description 2
- 238000001514 detection method Methods 0.000 abstract description 9
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 230000000694 effects Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 241000204801 Muraenidae Species 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Optical Transform (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、工作機械等における位置計測に利用される光
学式リニアエンコーダ、特に回折格子によるモアレ縞を
利用した位置検出器に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical linear encoder used for position measurement in machine tools and the like, and particularly to a position detector using moiré fringes formed by a diffraction grating.
(従来の技術)
2枚1組の回折格子を重ね合わせて得られるモアレ縞は
横方向の相対変化にI′7Il感であり、微妙なステッ
プでの変位の計数測定ができるため、測長法として広く
利用されて来た。(Prior art) Moiré fringes obtained by overlapping a set of two diffraction gratings have a relative change in the lateral direction of I'7Il, and the displacement can be counted and measured in delicate steps. It has been widely used as.
2つの回折格子(以下、それぞれを’4x格子。Two diffraction gratings (hereinafter, each will be referred to as a '4x grating).
第2格子と呼ぶ)は機械の相対的に変位する2つの部分
に取付けられて用いられるので、常に適当な間隙を保つ
必要がある。一方、測長の分解能を上げるために上記各
回折格子の格子ピッチを小さくシ゛〔いくと、光の回折
効果の影響が大きくなる。従って、第2格子上の第1格
子の影は回折効果で薄くなり、直托の(アレ縞を高い可
視度で得ることはできなくなる。そこで、フーリエイメ
ージ(Fourier Image)を利用した回折モ
アレが用いられるようになった。すなわち、第1格子を
位相の揃った平行光束で照射した場合、光の回折効果に
よりその後方に、格子のピッチPの2乗の2倍を波長え
で除した距離の整数倍の位置に格子と同しピッチを持っ
た光の明暗分布(手堅数倍の位置には明暗の反転した光
分布ができる)ができ、この再生された光の明暗分布を
フーリエイメージと言う。そして、このフーリエイメー
ジが形成される位置に第2格子を置けば、第2格子から
の回折光は2つの格子の横方向の相対変位に対して、周
期Pの明瞭なコントラストを持つようになり、これが回
折モアレと呼ばれるものである。この原理を利用して、
半導体製造などの微細加工におけるマスク合わせのよう
な比較的測長距諌の短い用途への利用が研究されている
(たとえばJ、 VAC,SC1,TECIINOL、
15(1978)(7) 984ページ同TECII
NOL 81 (1983)の127δページ)。Since the second grid (referred to as the second grid) is used by being attached to two relatively displaced parts of the machine, it is necessary to maintain an appropriate gap at all times. On the other hand, if the grating pitch of each of the above-mentioned diffraction gratings is decreased in order to increase the resolution of length measurement, the influence of the light diffraction effect increases. Therefore, the shadow of the first grating on the second grating becomes thinner due to the diffraction effect, making it impossible to obtain direct (area) fringes with high visibility. In other words, when the first grating is irradiated with a parallel light beam with a uniform phase, due to the diffraction effect of the light, a distance equal to twice the square of the pitch P of the grating divided by the wavelength is A brightness distribution of light with the same pitch as the grid is created at positions that are an integer multiple of the grid (a light distribution with an inverted brightness and darkness is created at positions that are several times the size), and this reproduced brightness distribution of light is called a Fourier image. If the second grating is placed at the position where this Fourier image is formed, the diffracted light from the second grating will have a clear contrast of period P with respect to the relative displacement of the two gratings in the lateral direction. This is called diffraction moiré.Using this principle,
The use of relatively short measuring distances, such as mask alignment in microfabrication in semiconductor manufacturing, is being studied (for example, J, VAC, SC1, TECIINOL,
15 (1978) (7) 984 pages TEC II
NOL 81 (1983), page 127δ).
方、測長距離を長くし、かつ格子ピッチPを小さくして
測長精度を高くしようとすると、フーリエイメージので
きる距離2P27λは格子ピッチPの2乗に比例して急
激に短くなるため、長い距離にわたって2枚の回折格子
をフーリエイメージのできる間隙に精度良く保持するこ
とが困難となる。そして、格子の間隙がフーリエイメー
ジのできる位置からずれると、回折光の強度が大きく変
化し”C位置決めか不可能となる。たとえば格子ピッチ
Pを1μmとし、0.633μmの波長λを用いたとす
ると、格子の間隙Qは、回折格子の間隙Gと光の波長λ
との積を回折格子のピッチPの2乗で除して得られるフ
レネル数(λ・G)/P” −2を与える 1.6μl
に対して、十分に小さい変動の中に収められなければな
らない。そのため、回折モアレは一般の工作機械等Cお
ける高精度な測長法として利用できなかった。On the other hand, if you try to increase the length measurement accuracy by increasing the measurement distance and decreasing the grating pitch P, the distance 2P27λ where the Fourier image is formed will rapidly decrease in proportion to the square of the grating pitch P, so it will be longer. It becomes difficult to accurately hold the two diffraction gratings in a gap where a Fourier image can be formed over a distance. If the grating gap deviates from the position where the Fourier image can be formed, the intensity of the diffracted light changes greatly, making it impossible to perform only "C" positioning.For example, if the grating pitch P is 1 μm and the wavelength λ is 0.633 μm, then , the grating gap Q is the diffraction grating gap G and the light wavelength λ
Divide the product by the square of the pitch P of the diffraction grating to give the Fresnel number (λ・G)/P'' -2 1.6μl
It must be kept within a sufficiently small variation. Therefore, diffraction moire cannot be used as a highly accurate length measurement method for general machine tools.
このような事情に刻し、第1格子及び第2格子の間隙変
化に影!されず、かつ横方向変位に敏1毛な回折モアレ
イ3号を得て、高精度な位置検出を行なうことができる
位置検出器が木出顯人によって開示され“〔いる(特開
昭61−17016号公報参照)。Considering these circumstances, there is a shadow on the change in the gap between the first and second gratings! A position detector that can perform highly accurate position detection by obtaining a diffractive Moray No. (See Publication No. 17016).
この位l検出器は、第1格子及び第2格子の有効対向面
積の各部分において、各格子間の間隙光路長を変化させ
て回折モアレ信号の平均値に相当する信号を得て、この
平均値に現われる回折格子のピッチPの2分の1を周期
とする信号変化を用いて位置検出を行なうものである。This detector obtains a signal corresponding to the average value of the diffraction moiré signal by changing the optical path length of the gap between each grating in each part of the effective facing area of the first grating and the second grating, and obtains a signal corresponding to the average value of the diffraction moiré signal. Position detection is performed using signal changes whose period is one-half of the pitch P of the diffraction grating that appears in the value.
第4図〜第6図は、それぞれ上述した平均化回折モアレ
位置検出器の一例を示す斜視図であり、0次回折光を使
用した場合について以下説明する。4 to 6 are perspective views showing an example of the above-mentioned averaged diffraction moiré position detector, and the case where 0th order diffracted light is used will be described below.
第4図において、先ず第1格子1をレーザ光1.8によ
り照射すると共に、第1格子1の後方に置かれた第2格
子2上に階段状の段差を持つ透明な板3を取付けている
。段差を持つ透明な板3は、光学的に間隙Gの範囲がG
oからG0+ 2P2/λになるように、高屈折率材料
に階段を付けたものであり、この段差を持つ透明な板3
によりレーザ光LBの各部分に光路差を与えるようにな
っている。In FIG. 4, first, the first grating 1 is irradiated with a laser beam 1.8, and a transparent plate 3 having stepped steps is attached on the second grating 2 placed behind the first grating 1. There is. The transparent plate 3 with steps has an optical gap G in the range G.
It is made by adding steps to a high refractive index material so that from o to G0+ 2P2/λ, and a transparent plate 3 with these steps.
This gives an optical path difference to each part of the laser beam LB.
第4図における段差を持つ透明な板3は、光学的な距離
2P2/λの範囲を5分割しているので、5段の階段状
の構造になっている。第2格了2の後方に一次元状に配
列されたl/レンズ群は、第2格子2において5分割さ
れた光学的距離の異なるiiQ域を通ってきた光束をそ
れぞれ集光させる。レンズ群4で集光された光をそれぞ
れフォトダイ第1へ群5により別々に検出す・る。その
後、演算増幅器等で構成された加算器7によりフt[−
ダイオード群5の信号を加算して変位信号を得る。The transparent plate 3 with steps shown in FIG. 4 divides the range of optical distance 2P2/λ into five parts, so it has a five-step stair-like structure. The l/lens group arranged one-dimensionally behind the second grating 2 converges the light beams that have passed through the iiQ regions having different optical distances divided into five parts in the second grating 2. The light condensed by the lens group 4 is separately detected by the group 5 to the first photo die. After that, an adder 7 composed of an operational amplifier etc.
The signals of the diode group 5 are added to obtain a displacement signal.
第5図において、第1格子1と第2格子2とを平行に置
き、第2格子2にランダム光路差板9を取付ける。この
ランダム光路差板9は、レーザ光LBの各部分の光路差
が2P2/λの範囲でランダムになるように凹凸を付け
られた透明板で成る。レンズ群4によりレーザ光1Bの
各部分は別々に拡散板10に集光され、レンズ群4の焦
点は重ならずに拡11に板lO上に一列に並ぶように構
成するゆレーザ光i4が集光された各部分の光束は、拡
散板lOによりインコヒーレン1〜な光となる。拡散板
10により拡散された光は凸レンズ11を通り、フォト
ダイオード等の光センサ12により検出される。拡散板
10を用いているため、異なる間隙光路長を通ってきた
光束は相互に干渉せずに平均化される。In FIG. 5, a first grating 1 and a second grating 2 are placed in parallel, and a random optical path difference plate 9 is attached to the second grating 2. This random optical path difference plate 9 is made of a transparent plate with unevenness so that the optical path difference of each portion of the laser beam LB is random within the range of 2P2/λ. Each portion of the laser beam 1B is separately focused on the diffuser plate 10 by the lens group 4, and the laser beams i4 are arranged so that the focal points of the lens group 4 are arranged in a line on the plate IO without overlapping. The condensed light flux of each portion becomes incoherent light by the diffuser plate lO. The light diffused by the diffusion plate 10 passes through a convex lens 11 and is detected by an optical sensor 12 such as a photodiode. Since the diffuser plate 10 is used, the light beams passing through different gap optical path lengths are averaged without mutually interfering with each other.
第6図において、第1格子をレーザー光L8に対して垂
直に置き、第2格子2を第1格子に対して傾斜させて配
置する。そ1.7て、各回折格子1及び2の間隙が、各
回折格子1及び2の有効対向面積において、2p2/λ
の範囲を含むように調節する。In FIG. 6, the first grating is placed perpendicular to the laser beam L8, and the second grating 2 is placed at an angle with respect to the first grating. 1.7, the gap between each diffraction grating 1 and 2 is 2p2/λ in the effective opposing area of each diffraction grating 1 and 2.
Adjust to include the range.
各回折格子1及び2を透過した光のうちO次回折光l、
。のみか後方に配置された光電変換素子13の受光面に
入射して検出される。Among the lights transmitted through each diffraction grating 1 and 2, O-order diffracted light l,
. The light is detected by being incident on the light receiving surface of the photoelectric conversion element 13 located at the rear.
また、第7図は2次回折光を使用した平均化回折モアレ
位置検出器の一例を第6図に対応させて示す斜視図であ
り、各回折格子1及び2の間隙がp2/4λの整数倍を
含むように調整する。2次回折光の場合、0次回折光と
は異なり、p2/4λの整数倍の位置に同じ明暗分布が
生じるため、0次回折光で平均化する間隙光路長2p2
/λのt7’aの間隙光路長を平均化すれば良い。なお
、O次回折光と同じ2p2/λの範囲を含むように調整
されていてもp2/4λの整数倍に相当するため、2次
回折光を使用した平均化間隙光路長の条件は満足する。Moreover, FIG. 7 is a perspective view showing an example of an averaged diffraction moiré position detector using second-order diffraction light, corresponding to FIG. Adjust to include. In the case of the 2nd order diffracted light, unlike the 0th order diffracted light, the same brightness and darkness distribution occurs at positions that are integral multiples of p2/4λ, so the gap optical path length 2p2 is averaged by the 0th order diffracted light.
It is sufficient to average the gap optical path length of t7'a of /λ. Note that even if it is adjusted to include the same range of 2p2/λ as the O-order diffracted light, it corresponds to an integral multiple of p2/4λ, so the condition for the averaged gap optical path length using the second-order diffracted light is satisfied.
このように、類似した光学系で2次回折光(他の次数の
回折光でも良い)を用いても、0次回折光と同様に第1
格子及び第2格子の間隙変化に影響されずに高精度な位
置検出を行なうことができる。In this way, even if the second-order diffracted light (or diffracted light of other orders is fine) is used in a similar optical system, the first-order diffracted light
Highly accurate position detection can be performed without being affected by changes in the gap between the grating and the second grating.
(発明が解決しようとする課題)
上述した各平均化回折モアレ位置検出器によれば、第1
格子及び第2格子の間隙変化に影響されず、第8図に示
すように光量Iが各回折格子の相対変位Xに従って変化
し、その周期が回折格子のピッチPの2分の1である変
位信号を得ることができる。そして、この変位信号は次
式(1)で近似できる。(Problems to be Solved by the Invention) According to each of the above-mentioned averaged diffraction moiré position detectors, the first
Displacement where the amount of light I changes according to the relative displacement X of each diffraction grating without being affected by the change in the gap between the grating and the second grating, as shown in FIG. 8, and whose period is one half of the pitch P of the diffraction grating. I can get a signal. This displacement signal can be approximated by the following equation (1).
I (x)−八−cos (2yr・2x /
P)+8 −−−−−・(1)ただし、A:振幅
B:オフセット成分
しかし゛ながら、実装組立時や稼動時に平均化すべき間
隙光路長と、実際に平均化する間陳尤路長ヒの間に誤差
が発生したり、その他の設置条件に誤差があると、得ら
打る変位信号に回折格子のピッチPを周期とする誤差成
分や奇数次の誤差成分が含まれる場合がある。そし”C
1このような誤差成分が変位信号に含まれると、P/2
周期での変位信号の反復性が失われ゛C精密な位置検出
を行なうことができなくなるという問題があった。I (x)-8-cos (2yr・2x /
P) +8 -------・(1) However, A: Amplitude B: Offset componentHowever, the gap optical path length that should be averaged during mounting and assembly and operation, and the average path length during actual averaging. If an error occurs between the two or in other installation conditions, the resulting displacement signal may include an error component having a period equal to the pitch P of the diffraction grating or an odd-order error component. Soshi”C
1 When such an error component is included in the displacement signal, P/2
There is a problem in that the repeatability of the displacement signal is lost over a period, making it impossible to perform accurate position detection.
本発明は上述のような事情から成されたものであり、本
発明の目的は、各回折格子の間隙変化にfP、雪されず
、かつ横方向変位に@感な回折モアレ信号を得ることか
できると共に、実装組立時や稼動時に発生する誤差によ
る影響を軽減して高精度の位置検出を行なうことができ
る平均化回折モアレ位置検出器を1是供することにある
。The present invention was made in view of the above-mentioned circumstances, and an object of the present invention is to obtain a diffraction moiré signal that is free from fP and snow due to gap changes in each diffraction grating and is sensitive to lateral displacement. It is an object of the present invention to provide an averaged diffraction moiré position detector which can perform highly accurate position detection by reducing the influence of errors occurring during mounting and assembly and during operation.
(課題を解決するための手段)
本発明は、第1の回折格子と、この第1の回折格子に対
してその横方向に変位する第2の回折格子と、前記2つ
の回折格子の間に設けられた前記2つの回折格子の有効
対向面積の各部分について、前記2つの回折格子の間の
間隙光路長をフレネル数2又は2の整数倍に相当する光
路長の範囲にわたって変化させる手段と、前記2つの回
折格子の有効面積の部分にわたっての回折モアレ信号の
平均値に相当する信号を得る手段とを具え、6N記平均
値に現われる前記回折格子のピッチの2分の1を周期と
する信号変化を用いて、前記回折格子の横方向の相対変
位を高い精度で検出し得る平均化回折モアレ位置検出器
に関するものであり、本発明の上記目的は、前記回折干
アレ信号の平均値に相当する信号を得る手段を、前記2
つの回折格子を透過して複数の次数に回折された光のう
ち同次数の正負の回折光のそれぞれの光量若しくはそれ
ぞれの光量に比例した電気信号を加算する加算手段で構
成することによって達成され、さらに詳しくは、前記加
算手段が前記同次数の正負の回折光を一緒に光電変換し
、若しくは前記同次数の正負の回折光を個別に光電変換
した後で電気的に加算するようになっている。(Means for Solving the Problems) The present invention provides a first diffraction grating, a second diffraction grating that is laterally displaced with respect to the first diffraction grating, and a space between the two diffraction gratings. means for changing the optical path length of the gap between the two diffraction gratings over a range of optical path lengths corresponding to a Fresnel number of 2 or an integral multiple of 2 for each portion of the effective facing area of the two provided diffraction gratings; means for obtaining a signal corresponding to the average value of the diffraction moiré signal over a portion of the effective area of the two diffraction gratings, the signal having a period equal to one half of the pitch of the diffraction grating appearing at the 6N average value. The present invention relates to an averaged diffraction moiré position detector capable of detecting the relative displacement in the lateral direction of the diffraction grating with high precision by using the change, and the above object of the present invention is to The means for obtaining the signal to be
This is achieved by comprising an adding means that adds the respective light amounts of positive and negative diffracted light of the same order among the light transmitted through one diffraction grating and diffracted into a plurality of orders, or an electric signal proportional to each light amount, More specifically, the adding means photoelectrically converts the positive and negative diffracted lights of the same order together, or individually photoelectrically converts the positive and negative diffracted lights of the same order and then electrically adds them. .
(作用)
本発明の平均化回折モアレ位置検出器は、同次数の正負
の回折光に含まれるそれぞれの誤差成分の位相がずれて
いることを利用したものであり、各回折光の光量を加算
することで各誤差成分を互いに打消し合せ、良好な変位
信号を出力する。(Function) The averaged diffraction moiré position detector of the present invention utilizes the fact that the phases of the respective error components included in the positive and negative diffracted lights of the same order are shifted, and the light amount of each diffracted light is added. By doing so, each error component cancels out each other, and a good displacement signal is output.
(実施例)
第1図は、本発明の平均化回折モアレ位置検出器の一例
を示す斜視図であり、2次回折光を使用した場合につい
て以下説明する。(Example) FIG. 1 is a perspective view showing an example of the averaged diffraction moire position detector of the present invention, and the case where second-order diffracted light is used will be described below.
第1図において、第1格子21をレーザー光LBに対し
て垂直に起き、第2格子22を第1格子21に対して傾
斜させて配置する。各回折格子21及び22を透過して
複数の次数に回折された光を第2格子22の後方に配置
されたシリンドリカルレンズ23で収束する(ただし、
第1図では±2次回折光重t2のみ図示)。収束した2
次回折光りやよ及びt、−2を光電変換素子24八及び
24Bでそれぞれ検出して光量に比例した電気信号に変
換し、変換された各電気信号I。2及びL2を加算器2
5で加算して変位信号を得る。In FIG. 1, the first grating 21 is arranged perpendicular to the laser beam LB, and the second grating 22 is arranged at an angle with respect to the first grating 21. The light transmitted through each of the diffraction gratings 21 and 22 and diffracted into a plurality of orders is converged by the cylindrical lens 23 arranged behind the second grating 22 (however,
In FIG. 1, only the ±2nd-order diffraction light weight t2 is shown). Converged 2
Next-order diffraction light, t, and -2 are detected by photoelectric conversion elements 248 and 24B, respectively, and converted into electrical signals proportional to the amount of light, and each converted electrical signal I. 2 and L2 to adder 2
5 to obtain a displacement signal.
このような構成において、例えば、回折格子のピッチP
を周期とする誤差成分が+2次回折光し、2に含まれて
いる場合、+22次回折光L42光1の変化、即ち変位
信号■や。(x)は第2図(A)に示すような波形とな
る。なお、この波形は次式(2)で近似される。In such a configuration, for example, the pitch P of the diffraction grating
If the error component having a period of is +2nd order diffracted light and is included in 2, the +22nd order diffracted light L42 changes in light 1, that is, the displacement signal (2). (x) has a waveform as shown in FIG. 2(A). Note that this waveform is approximated by the following equation (2).
!+z(x)−acos(2ytx/P)+Acos(
2π・2x/I’)+8・・・・・・・・・(2)
ただし、aはPを周期とする誤差成分の振幅一方、−2
次回折光L−2の光量の変化にも回折格子のピッチPを
周期とする誤差成分が含まれており、その誤差成分の位
相は+2次回折光1.+2の誤差成分の位相とP/2だ
けずれている。従って、−2次回折1.−2の光量の変
化、即ち変位信号[2(X)は第2図(B)に示すよう
な波形となる。なお、この波形は次式(3)で近似され
る。! +z(x)-acos(2ytx/P)+Acos(
2π・2x/I')+8・・・・・・・・・(2) However, a is the amplitude of the error component whose period is P, while -2
The change in the light amount of the second-order diffracted light L-2 also includes an error component whose period is the pitch P of the diffraction grating, and the phase of the error component is the +second-order diffracted light 1. The phase is shifted by P/2 from the phase of the +2 error component. Therefore, −2nd order diffraction 1. -2 change in light amount, that is, the displacement signal [2(X) has a waveform as shown in FIG. 2(B). Note that this waveform is approximated by the following equation (3).
12(x)−acos(2π(x/P−172)l+A
cos(2rt ・2x/P)+8−−acos(2m
x/P)+Acos(2a ・2X/P)+8・・・
・・・・・・(3)
従って、+2次回折光14,2の光量の変化に比例した
電気信号(変位信号)■や、(×)と−2次回折光L−
2の光量の変化に比例した電気信号(変位信号)[2(
X)とを加算することにより、回折格子のピッチPを周
期とする誤差成分は相殺されてP/2を周期とする正確
な変位信号(第2図(C))を得ることができる。12(x)-acos(2π(x/P-172)l+A
cos(2rt ・2x/P)+8--acos(2m
x/P)+Acos(2a ・2X/P)+8...
......(3) Therefore, the electric signal (displacement signal) ■ which is proportional to the change in the amount of light of the +2nd order diffracted light 14, 2, (x) and the -2nd order diffracted light L-
An electrical signal (displacement signal) proportional to the change in the amount of light in 2 [2(
By adding X), the error component having a period equal to the pitch P of the diffraction grating is canceled out, and an accurate displacement signal having a period equal to P/2 can be obtained (FIG. 2(C)).
第3図は、本発明の平均化回折モアレ位置検出器の別の
一例を第1図に対応させて示す斜視図であり、同一構成
箇所は同符号を付して説明を省略する。このように、シ
リンドリカルレンズ23で収束した各次数の回折光のう
ちO次回折光及び±1次回折光を遮へい板26で遮へい
し、±2次回折光L12のみを遮へい板26の後方に配
置された1つの光電変換素子24Gで検出して同時にま
とめて電気15号に変換すれば、2つの電気信号を加算
したことと同一になり、前述した実施例と同様の効果を
得ることができる。FIG. 3 is a perspective view showing another example of the averaged diffraction moiré position detector of the present invention, corresponding to FIG. 1, and the same components are given the same reference numerals and the description thereof will be omitted. In this way, among the diffracted lights of each order converged by the cylindrical lens 23, the O-order diffracted light and the ±1st-order diffracted light are shielded by the shielding plate 26, and only the ±2nd-order diffracted light L12 is transmitted to the diffracted light L12 disposed behind the shielding plate 26. If they are detected by two photoelectric conversion elements 24G and simultaneously converted into electrical signal No. 15, it becomes the same as adding two electrical signals, and the same effect as the above-described embodiment can be obtained.
なお、上述した各実施例では±2次回折光を用いたが、
それ以外の同次数の正負の回折光を利用する、二とも可
能である。In addition, although ±2nd-order diffraction light was used in each of the above-mentioned examples,
It is possible to use other positive and negative diffracted lights of the same order.
(発明の効果)
以上のように本発明の平均化回折モアレ位置検出によれ
ば、正負のどちらか一方の回折光の光量で位置検出する
検出器に比べ、倍の光量で位置検出することができると
同時に誤差成分が打ち消し合うので高精度の位置検出を
行なうことができ、例えば工作機械において精密の高い
加工を容易に行ない、生産効率を向上させることができ
る。(Effects of the Invention) As described above, according to the averaged diffraction moiré position detection of the present invention, position detection can be performed with twice the amount of light compared to a detector that detects the position using the amount of light of either positive or negative diffracted light. At the same time, since the error components cancel each other out, highly accurate position detection can be performed, and, for example, highly precise machining can be easily performed with a machine tool, and production efficiency can be improved.
第1図は本発明の平均化回折モアレ位置検出器の一例を
示す斜視図、第2図(A)〜(C)はそれぞれ本発明に
よる出力波形を示す特性図、第3図は本発明の平均化回
折モアレ位置検出器の別の一例を示す斜視図、第4図〜
第7図はそれぞれ従来の平均化回折モアレ位置検出器の
一例を示す斜視図、第8図は従来例による出力波形を示
す特性図である。
1.21・・・第1の回折格子、2.22・・・第2の
回折格子、3・・・段差を持つ透明板、4・・・レンズ
群、5・・・フォトダイオード群、7・・・加算器、9
・・・ランダム光路差板、lO・・・拡散板、11・・
・凸レンズ、12・・・光センサ、13.24A、24
B、24C・・・光電変換素子、23・・・シリンドリ
カルレンズ、25・・・加算器、26・・・遮へい板。FIG. 1 is a perspective view showing an example of the averaged diffraction moiré position detector of the present invention, FIGS. 2(A) to (C) are characteristic diagrams showing output waveforms of the present invention, and FIG. A perspective view showing another example of the averaged diffraction moiré position detector, FIG.
FIG. 7 is a perspective view showing an example of a conventional averaged diffraction moiré position detector, and FIG. 8 is a characteristic diagram showing an output waveform of the conventional example. 1.21... First diffraction grating, 2.22... Second diffraction grating, 3... Transparent plate with steps, 4... Lens group, 5... Photodiode group, 7 ... Adder, 9
... Random optical path difference plate, lO... Diffusion plate, 11...
・Convex lens, 12... Optical sensor, 13.24A, 24
B, 24C... Photoelectric conversion element, 23... Cylindrical lens, 25... Adder, 26... Shielding plate.
Claims (1)
の横方向に変位する第2の回折格子と、前記2つの回折
格子の間に設けられた前記2つの回折格子の有効対向面
積の各部分について、前記2つの回折格子の間の間隙光
路長をフレネル数2又は2の整数倍に相当する光路長の
範囲にわたって変化させる手段と、前記2つの回折格子
の有効面積の部分にわたっての回折モアレ信号の平均値
に相当する信号を得る手段とを具え、前記平均値に現わ
れる前記回折格子のピッチの2分の1を周期とする信号
変化を用いて、前記回折格子の横方向の相対変位を高い
精度で検出し得る平均化回折モアレ位置検出器において
、前記回折モアレ信号の平均値に相当する信号を得る手
段が、前記2つの回折格子を透過して複数の次数に回折
された光のうち同次数の正負の回折光のそれぞれの光量
若しくはそれぞれの光量に比例した電気信号を加算する
加算手段で成っていることを特徴とする平均化回折モア
レ位置検出器。 2、前記加算手段が前記同次数の正負の回折光を一緒に
光電変換するようになっている請求項1に記載の平均化
回折モアレ位置検出器。 3、前記加算手段が前記同次数の正負の回折光を個別に
光電変換した後で電気的に加算するようになっている請
求項1に記載の平均化回折モアレ位置検出器。[Claims] 1. A first diffraction grating, a second diffraction grating that is displaced laterally with respect to the first diffraction grating, and the second diffraction grating provided between the two diffraction gratings. means for changing the gap optical path length between the two diffraction gratings over a range of optical path lengths corresponding to a Fresnel number of 2 or an integral multiple of 2 for each portion of the effective facing area of the two diffraction gratings; means for obtaining a signal corresponding to an average value of the diffraction moiré signal over a portion of the effective area of the diffraction grating, using a signal change having a period of one half of the pitch of the diffraction grating appearing in the average value, In an averaging diffraction moiré position detector capable of detecting a relative displacement in the lateral direction of a diffraction grating with high precision, means for obtaining a signal corresponding to the average value of the diffraction moiré signal transmits a plurality of signals through the two diffraction gratings. An averaged diffraction moiré position detector comprising an adding means for adding respective amounts of positive and negative diffracted light of the same order or electric signals proportional to the respective amounts of light among the light diffracted to the order of . 2. The averaged diffraction moiré position detector according to claim 1, wherein the adding means photoelectrically converts the positive and negative diffracted lights of the same order together. 3. The averaged diffraction moiré position detector according to claim 1, wherein the adding means individually photoelectrically converts the positive and negative diffracted lights of the same order and then electrically adds them.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16305288A JPH0212017A (en) | 1988-06-30 | 1988-06-30 | Detector for detecting position of averaged diffraction moire |
GB8903956A GB2216257B (en) | 1988-02-26 | 1989-02-22 | Optical linear encoder |
US07/313,606 US4979827A (en) | 1988-02-26 | 1989-02-22 | Optical linear encoder |
DE3943731A DE3943731C2 (en) | 1988-02-26 | 1989-02-24 | Linear optical coder for machine tool position detector |
DE3905838A DE3905838C2 (en) | 1988-02-26 | 1989-02-24 | Position transmitter working with an average diffraction pattern |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16305288A JPH0212017A (en) | 1988-06-30 | 1988-06-30 | Detector for detecting position of averaged diffraction moire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0212017A true JPH0212017A (en) | 1990-01-17 |
Family
ID=15766259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16305288A Pending JPH0212017A (en) | 1988-02-26 | 1988-06-30 | Detector for detecting position of averaged diffraction moire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0212017A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5652426A (en) * | 1993-04-19 | 1997-07-29 | Ricoh Company, Ltd. | Optical encoder having high resolution |
JP2013221829A (en) * | 2012-04-16 | 2013-10-28 | Fujitsu Ltd | Displacement measuring device, displacement measuring method, and displacement measuring program |
CN107796310A (en) * | 2017-06-01 | 2018-03-13 | 常州秦宁迈超电子科技有限公司 | The device and its measuring method of grating displacement sensor monocycle error in dipping |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60243514A (en) * | 1984-05-08 | 1985-12-03 | ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング | Photoelectric measuring device |
JPS6117016A (en) * | 1984-07-02 | 1986-01-25 | Okuma Mach Works Ltd | Averaged diffraction moire position detector |
-
1988
- 1988-06-30 JP JP16305288A patent/JPH0212017A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60243514A (en) * | 1984-05-08 | 1985-12-03 | ドクトル・ヨハネス・ハイデンハイン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング | Photoelectric measuring device |
JPS6117016A (en) * | 1984-07-02 | 1986-01-25 | Okuma Mach Works Ltd | Averaged diffraction moire position detector |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5652426A (en) * | 1993-04-19 | 1997-07-29 | Ricoh Company, Ltd. | Optical encoder having high resolution |
JP2013221829A (en) * | 2012-04-16 | 2013-10-28 | Fujitsu Ltd | Displacement measuring device, displacement measuring method, and displacement measuring program |
CN107796310A (en) * | 2017-06-01 | 2018-03-13 | 常州秦宁迈超电子科技有限公司 | The device and its measuring method of grating displacement sensor monocycle error in dipping |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4979827A (en) | Optical linear encoder | |
US4970388A (en) | Encoder with diffraction grating and multiply diffracted light | |
US4091281A (en) | Light modulation system | |
JPH0697171B2 (en) | Displacement measuring device | |
JPH0827171B2 (en) | Optical device | |
JPH0820275B2 (en) | Position measuring device | |
JPH0625675B2 (en) | Averaged diffraction moire position detector | |
EP0694764B1 (en) | Detector array for use in interferomic metrology systems | |
JPH03279812A (en) | Diffraction interference type encoder | |
JPH0212017A (en) | Detector for detecting position of averaged diffraction moire | |
JP2718440B2 (en) | Length measuring or angle measuring device | |
JP3294684B2 (en) | Photoelectric encoder | |
JPS6117016A (en) | Averaged diffraction moire position detector | |
JP3428129B2 (en) | Fixed point detector | |
JP2718439B2 (en) | Length measuring or angle measuring device | |
JPH0599638A (en) | Angle measuring device | |
JPH09126818A (en) | Device for photoelectric length measurement or angle measurement | |
JPH0629740B2 (en) | Averaged diffraction moire position detector | |
JPH0521485B2 (en) | ||
JPH02167427A (en) | Grating interference type displacement gauge | |
JPH0620969Y2 (en) | Grating interference displacement detector | |
JPS5939683B2 (en) | Optical displacement detection method | |
JPH0638048B2 (en) | Reflective encoder | |
JPS6347615A (en) | Optical displacement detector | |
JPH0521486B2 (en) |